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Abstract
Background: Medium vessel occlusion (MeVO) strokes, particularly affecting the M2 segment of the middle cerebral 
artery, represent a critical proportion of acute ischemic strokes, posing significant challenges in management and 
outcome prediction. The efficacy of mechanical thrombectomy (MT) in MeVO stroke may warrant reliable predictors of 
functional outcomes. This study aimed to investigate the prognostic value of follow-up infarct volume (FIV) for predicting 
90-day functional outcomes in MeVO stroke patients undergoing MT.
Methods: This multicenter, retrospective cohort study analyzed data from the Multicenter Analysis of primary Distal 
medium vessel occlusions: effect of Mechanical Thrombectomy (MAD-MT) registry, covering patients with acute 
ischemic stroke due to M2 segment occlusion treated with MT. We examined the relationship between 90-day functional 
outcomes, measured by the modified Rankin Scale (mRS), and follow-up infarct volume (FIV), assessed through CT or 
MRI within 12–36 h post-MT.
Results: Among 130 participants, specific FIV thresholds were identified with high specificity and sensitivity for predicting 
outcomes. A FIV ⩽5 ml was highly specific for predicting favorable and excellent outcomes. The optimal cut-off for both 
prognostications was identified at ⩽15 ml by the Youden Index, with significant reductions in the likelihood of favorable 
outcomes observed above a 40 ml threshold. Receiver Operator Curve (ROC) analyses confirmed FIV as a superior 
predictor of functional outcomes compared to traditional recanalization scores, such as final modified thrombolysis in 
cerebral infarction score (mTICI). Multivariable analysis further highlighted the inverse relationship between FIV and 
positive functional outcomes.
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Introduction

Stroke is a multifaceted condition where clinical outcome 
is affected by an array of factors, including patient age, 
prior functional status, comorbidities, as well as elements 
related to post-stroke management and rehabilitation. 
Within the realm of stroke treatment, especially concern-
ing endovascular interventions like mechanical thrombec-
tomy (MT), the use of recanalization scores has emerged 
as a key surrogate marker for assessing the effectiveness 
of these therapies. Medium vessel occlusions (MeVOs), 
primarily occurring in the M2 and M3 segments of the 
middle cerebral artery (MCA), account for a substantial 
portion of acute ischemic strokes (AIS), with estimates 
ranging between 25% and 40%. MeVO strokes are clini-
cally significant, given their potential to induce severe 
disabilities.1,2

The prevailing consensus in stroke management is the 
critical impact of vessel recanalization on clinical outcomes 
in AIS,3 underpinning the rationale behind reperfusion ther-
apies aimed at salvaging the ischemic penumbra to limit 
final infarct size.4 This therapeutic goal addresses the mis-
match between the ischemic core and penumbra, where the 
core expands at the penumbra’s expense due to collateral 
failure.5 While experimental models of focal ischemia pre-
dominantly utilize infarct volume as an outcome measure, 
human studies have traditionally favored disability assess-
ment scales, primarily due to the importance of targeting 
clinically meaningful endpoints as well as due to mixed 
results in correlating infarct volumes with clinical out-
comes. These studies have faced challenges, including the 
heterogeneity of vascular occlusion sites and limited sam-
ple size, complicating the understanding of the infarct vol-
ume’s role in patient recovery.6–10

This study focuses on a homogeneous patient cohort 
with MCA-M2 segment occlusions undergoing MT, aiming 
to clarify the relationship between clinical outcomes, reca-
nalization, and follow-up infarct volume (FIV). Advances 
in neuroimaging have enhanced the precision of FIV meas-
urements,10–12 which are closely linked to neurological 
impairment and overall functional outcomes.13,14 FIV’s 
early evaluability and its reduced susceptibility to con-
founding factors position it as a potential indicator of thera-
peutic effect compared to traditional outcome measures.15–18 
Previous research has underscored the significance of FIV 
in large vessel occlusion (LVO) strokes, including the iden-
tification of specific cut-off points correlating with out-
comes. However, evidence remains limited on FIV’s 
predictive value in MeVO stroke, especially those treated 
with MT.19–24

Our investigation aims to assess whether FIV could 
serve as a more precise indicator of procedural success 
compared to recanalization scores and to identify FIV 
thresholds that predict favorable (mRS 0–2) and excellent 
(mRS 0–1) outcomes in patients with M2 segment stroke 

treated with MT. By focusing on this specific patient popu-
lation, we aim to investigate the prognostic utility of FIV in 
the context of MeVO stroke and propose its potential as a 
surrogate marker for outcomes in ongoing MeVO reperfu-
sion therapy trials.

Methods

This investigation is part of an analysis of the Multicenter 
Analysis of primary Distal medium vessel occlusions: 
effect of Mechanical Thrombectomy (MAD-MT) regis-
try.25–35 The study received approval from the institutional 
review board or local ethical standards committee at each 
participating site, and informed consent from patients was 
waived given minimal patient risk. The de-identified data 
supporting this study’s findings are available from the 
corresponding author upon reasonable request. This study 
is reported according to the Strengthening the Reporting 
of Observational Studies in Epidemiology (STROBE) 
guideline.36,37

Study population and setting

Inclusion criteria for this analysis were as follows: (1) mid-
dle cerebral artery acute ischemic stroke patients with 
DMVO in the M2 segment only; (2) MT with or without 
IVT; (3) availability of 90-day modified Rankin Scale 
(mRS) data; (3) Pre-stroke mRS of 0 or 1. Exclusion 
criteria encompassed with missing 90-day post-stroke 
mRS data; (2) Patients received intra-arterial urokinase 
(Supplemental Figure 1). Characteristics and outcomes 
of consecutive patients with acute ischemic stroke due to 
DMVO treated with MT or MT + IVT were collected at 
37 centers in North America, Asia, and Europe.

Data collection and outcomes

Data were collected between September 2017 and July 
2021. Data for this study were collected prospectively and 
reviewed retrospectively. The local neurointerventionalist 
reviewed all cases before sending their data to the MAD-MT 
consortium. They determined the angiographic treatment 
success before the data was sent to the consortium, which 
was self-reported by each center.

Baseline clinical and demographic characteristics were 
recorded for patients and included sex (male or female), 
age, hypertension, hypercholesterolemia, diabetes melli-
tus, atrial fibrillation, and smoking status. Pre-stroke 
modified Rankin Scale (mRS) score and occluded vessel 
were recorded. National Institutes of Health Stroke Scale 
(NIHSS) score was recorded at presentation. Baseline 
Alberta Stroke Program Early CT Score (ASPECTS) was 
assessed using non contrast head CT.38 Hemorrhagic 
transformation was scored according to the Heidelberg 
Classification.39
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Other details of interest included antiplatelet and antico-
agulation medication status, mothership versus drip-and-
ship, time from onset to puncture and recanalization, vital 
sign readings (blood pressure, heart rate), glycemic read-
ings, anesthesia type (general, sedation, or local), access 
site (femoral or radial), and imaging after MT (computed 
tomography (CT), magnetic resonance (MR), or none). 
Clinical outcome measures were favorable (mRS 0–2) and 
excellent outcome (mRS 0–1).

Procedural and technical details

Treatment consisted of MT alone or MT + IVT. MT access 
site, either femoral or radial artery, and endovascular strat-
egy (aspiration, stent retriever, combined or rescue tech-
niques) were left to the individual operator’s discretion. 
Similarly, the number of passes was left to the treating phy-
sician’s discretion and institutional guidelines. The final 
mTICI scores were site adjudicated.

Follow-up infarct volume (FIV) assessment

FIV was assessed on follow-up NCCT or MRI. If multiple 
follow-up scans were available, MRI was the preferred 
modality with a range of 12 h–36 h post MT. FIVs was cal-
culated using either manual or semi-automated segmenta-
tion techniques and were reported per each center protocol. 
FIVs were calculated in milliliters (mL) by multiplying the 
number of voxels of the segmented ischemic lesions with 
its voxel size.

NCCT scans in our study were conducted using a helical 
scanning technique. The scans were performed with each 
slice having a thickness of 5 mm and a reconstruction reso-
lution of 0.75 mm. The kilovoltage peak (kVp) was set at 
120, and the milliampere-seconds (mAs) were set at 365. 
The rotation time of the CT scanner was maintained at 1 s, 
and the total acquisition time for each scan ranged between 
6 and 8 s. The collimation of the scans was 128 mm × 0.6 mm, 
and a pitch value of 0.55 was used. All scans were per-
formed in a craniocaudal direction.

Fluid-Attenuated Inversion Recovery (FLAIR) imaging 
was conducted using Siemens Aera or Skyra scanners 
(Erlangen, Germany). The FLAIR sequence parameters on 
3T were: Repetition Time (TR) was set in the range of 
9000 ms, Echo Time (TE) around 105 ms, and Inversion 
Time (TI) at 2500 ms. Flip Angle: 160; Field of View 
(FOV): 42.8 cm × 23 cm. The imaging was performed using 
either a 1.5 Tesla or 3 Tesla scanner. The slice thickness was 
maintained at 4 mm. At 1.5 T: Repetition Time (TR) was 
7500 ms, Echo Time (TE) 78 ms, and Inversion Time (TI) at 
2300 ms. Flip Angle: 180; FOV: 40.9 cm × 22 cm. The slice 
thickness was maintained at 5 mm.35

The FLAIR images were reviewed and analyzed by 
experienced neuroradiologists, focusing on the presence, 
location, and volume of ischemic lesions. The volume of 

ischemic lesions on FLAIR was calculated using either 
manual or semi-automated segmentation techniques, with 
the FIV determined by measuring the hyperintense regions 
indicative of ischemic tissue.

These imaging protocols varied among centers; how-
ever, the parameters provided are representative of those 
used in the majority of centers.

Statistical analysis

Statistical analysis was conducted utilizing R software 
(version 4.2.2).40 We presented categorical variables as fre-
quencies with percentages, while continuous variables were 
summarized using medians and interquartile ranges (IQRs).

For inferential statistics, we employed logistic regres-
sion model to estimate odds ratios (ORs). To determine 
whether the FIV was independently associated with the 
functional outcome, we adjusted our model for age, admis-
sion NIHSS score, final mTICI score, administration of 
IVT, and the time from stroke onset to arterial puncture. A 
p-value of <0.05 was pre-specified as the threshold for sta-
tistical significance.

Separate receiver operating characteristic (ROC) curves 
were employed for a favorable and excellent outcome, and 
the area under the curve (AUC) calculated for each model. 
The optimal cutoff point for the predictive variables was 
determined using the Youden Index. We then calculated the 
positive predictive value (PPV), as well as the negative pre-
dictive value (NPV), sensitivity and specificity for each 
cut-off point, each with a corresponding 95% confidence 
interval.

Results

Baseline characteristics

The study included 130 patients with acute ischemic stroke 
in the MCA-M2 segment who underwent MT. The median 
age was 76 years (Interquartile Range (IQR): 66, 82), with 
33% (43/130) being male. The prevalence of common 
stroke risk factors included hypertension (75%, 97/130), 
hypercholesterolemia (37%, 48/130), and diabetes mellitus 
(18%, 24/130). Atrial fibrillation was noted in 28% (37/130) 
of the patients, and 25% (33/130) were current smokers. 
Prior to the stroke, 85% (110/130) of the patients had a 
mRS score of 0, and 15% (20/130) had a score of 1. The 
median baseline NIHSS score was 11 (IQR: 5, 16; Table 1).

Imaging, procedural, and clinical outcomes data

In terms of treatment, 62% (80/130) of patients received 
IVT. The median time from stroke onset to arterial punc-
ture was 210 min (IQR: 148–313), and the median time 
from puncture to recanalization was 35 min (IQR: 20–60). 
Most patients (70%, 89/130) underwent general anesthesia 
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Table 1.  Baseline patient demographics and clinical 
characteristics.

Characteristic N = 130

Male, n (%) 43 (33)
Age, median (IQR) 76 (66, 82)
Hypercholesterolemia, n (%) 48 (37)
Hypertension, n (%) 97 (75)
Diabetes, n (%) 24 (18)
Atrial fibrillation, n (%) 37 (28)
Current smokers, n (%) 33 (25)
Previous use of antiplatelet drugs, n (%) 36 (28)
Previous use of anticoagulant drugs, n (%) 32 (25)
Pre-stroke mRS, n (%)  
  0 110 (85)
  1 20 (15)
ASPECTS, median (IQR) 9.00 (8.00, 10.00)
Baseline NIHSS, median (IQR) 11 (5, 16)
Stroke cause, n (%)  
  Large artery atherosclerosis 14 (11)
  Cardioembolic 91 (70)
  Other etiology 4 (3.1)
  Unknown etiology despite work-up 21 (16)

Table 2.  Imaging and procedural data with clinical outcomes.

Characteristic N = 130

Given IVT, n (%) 80 (62)
First line technique, n (%)  
  Aspiration 46 (38)
  Both 56 (46)
  Stentretriever 19 (16)
Side, n (%)  
  Right 53 (41)
  Left 77 (59)
Onset to arterial puncture (min), median 
(IQR)

210 (148, 313)

Puncture to recanalization time (min), 
median (IQR)

35 (20, 60)

Onset to recanalization (min), median 
(IQR)

251 (189, 366)

Onset to IVT needle time (min), median 
(IQR)

120 (85, 180)

Anesthesia, n (%)  
  CS/LA 39 (30)
  GA 89 (70)
Follow-up infarct volume (FIV; ml) 3.6 (13.65, 27.34)
Imaging after MT, n (%)  
  CT 96 (75)
  Both 10 (7.8)
  MRI 22 (17)
Total number of passes, median (IQR) 1.50 (1.00, 2.75)
Day one NIHSS, Median (IQR) 4.0 (1.0, 8.8)
NIHSS shift, Median (IQR) −4 (−9, −1)
TICI 2c-3, n (%) 67 (53)
Successful Recanalization (TICI 2b-3),  
n (%)

107 (85)

FPE, n (%) 34 (27)
90-day mRS 0–1, n (%) 70 (54)
90-day mRS 0–2, n (%) 83 (64)
90-day Mortality, n (%) 14 (11)
sICH, n (%) 8 (6.2)
Intracranial hemorrhage (any type), n (%) 39 (30)

during the procedure. Successful recanalization (TICI 2b-3) 
was achieved in 85% (107/130) of cases. At 90 days, 54% 
(70/130) of patients achieved an mRS score of 0–1, and 
64% (83/130) achieved a mRS score of 0–2 (Table 2).

Predictive values for different FIV thresholds

The analysis of predictive values for different FIV thresh-
olds revealed that a FIV of ⩽5 ml had a high specificity of 
94% (95% CI: 82%–99%) for predicting a favorable out-
come (mRS 0–2), as illustrated in Figure 1, and 90% speci-
ficity (95% CI: 79%–96%) for predicting an excellent 
outcome (mRS 0–1), as illustrated in Figure 2. Notably, 
⩽15 ml was determined to be the optimal cut-off point for 
both outcomes, with a sensitivity of 75% (95% CI: 64%–
84%) and a specificity of 79% (95% CI: 64%–89%) for 
mRS 0–2, and a sensitivity of 77% (95% CI: 66%–86%) 
and a specificity of 70% (95% CI: 57%–81%) for mRS 0–1 
(Table 3).

For the threshold of 40 ml, this cut-off point had a sensi-
tivity of 89% (95% CI: 80%–95%) for predicting a favora-
ble outcome (mRS 0–2) and 90% sensitivity (95% CI: 
80%–96%) for predicting an excellent outcome (mRS 0–1).

Univariable and multivariable logistic regression 
models

In the univariable model, every 10 ml increase in FIV was 
associated with a 30% reduction in the odds of achieving 
mRS 0–2 (OR: 0.70, 95% CI: 0.58–0.82, p < 0.001) and a 
28% reduction for mRS 0–1 (OR: 0.72, 95% CI: 0.60–0.85, 

p < 0.001). These associations persisted even after adjust-
ment (mRS 0–2: adjusted OR: 0.69, 95% CI: 0.53–0.84, 
p = 0.002; mRS 0–1: adjusted OR: 0.73, 95% CI: 0.58–0.89, 
p = 0.006).

At the optimal (15 ml) cut-off points, the odds of achiev-
ing functional independence with an FIV of ⩽15 ml were 
13 times higher (OR: 13.0, 95% CI: 4.50–43.4, p < 0.001) 
in the multivariable model, while the odds for an excellent 
outcome were increased by over seven times (OR: 7.09, 
95% CI: 2.77–19.7, p < 0.001; Table 4).

Receiver operating characteristic (ROC) analysis 
for predictive models

The multivariable model for predicting functional inde-
pendence (mRS 0–2) achieved an AUC of 87% (95% CI: 
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Figure 2.  Receiver operating characteristic (ROC) curve for 
90-day modified Rankin scale (mRS) scores of 0–1.

Figure 1.  Receiver operating characteristic (ROC) curve for 
90-day modified Rankin scale (mRS) scores of 0–2.

Discussion

In this multicenter cohort analysis, we have explored the 
role of FIV as a prognostic imaging biomarker for 90 days 
outcomes prediction. In addition, we have sought to iden-
tify optimal thresholds of FIV for predicting favorable and 
excellent outcomes after stroke, focusing on M2 stroke 
patients that underwent MT.

The analysis revealed that a threshold of ⩽5 ml FIV was 
highly specific for predicting both favorable and excellent 
outcomes, with ⩽15 ml as the optimal cut-off for these 
prognostications. Notably, a FIV of 40 ml emerged as a 
critical marker, above which the likelihood of achieving 
these desired outcomes diminishes significantly. Our 
regression models, both univariable and multivariable, con-
sistently demonstrated that each increment of 10 ml in FIV 
substantially reduced the odds of 90-days mRS of 0–2 or 
0–1. Furthermore, our study underscored FIV as the pri-
mary determinant of functional outcomes with AUC of 0.79 
for predicting mRS 0–2 by FIV alone, surpassing the pre-
dictive value of recanalization status.

To the best of our knowledge, this study is the first to 
examine the association between FIV in MCA-M2 segment 
strokes and 90-day functional outcomes, and to compare its 
predictive power with the mTICI score. Prior research, 
including the HERMES dataset, has incorporated M2 
occlusions within a larger, more heterogeneous array of 
occlusion sites, identifying a 96 ml threshold for high speci-
ficity in predicting poor outcomes. In contrast, our focused 
analysis on the M2 segment has identified a lower threshold 
of 40 ml that carries similar prognostic specificity. This dis-
crepancy can be attributed to differences in the occlusion 
sites being studied. The HERMES meta-analysis focused 
on LVOs, whereas our study concentrated on the M2 seg-
ment, suggesting a lesser infarct volume is required to 
influence cortical functionality and outcomes adversely in 
these cases as a smaller volume of brain tissue is also ini-
tially affected. Moreover, our inclusion of FIV measure-
ments within a narrower time window post-MT (12–36 h) 
aimed to minimize the confounding influence of lesion 
growth, in contrast to HERMES, which accounted for 
imaging up to 1 week post-stroke, potentially overestimat-
ing FIV due to cerebral edema.41–49

Other studies were not able to establish a robust associa-
tion between FIV and patient outcomes, a discrepancy we 
attribute to the examination of a diverse patient cohort with 
varying vascular occlusion sites and different treatments.9,50 
To mitigate these confounding factors, our study focused 
exclusively on patients with a homogeneous vascular occlu-
sion site—specifically M2 segment occlusion, and those 
who had undergone MT, which further enhances the relia-
bility of our findings. Moreover, we advocate for further 
research into how FIV may act within different vascular 
territories, suggesting that the impact of FIV on stroke out-
comes may vary across different regions of the brain, 

81%–93%), reflecting a high level of discriminative abil-
ity (Figure 3(a)). Within this model, the mTICI score, 
patient age, baseline NIHSS score, and FIV yielded AUCs 
of 67%, 66%, 67%, and 79%, respectively. For the predic-
tion of excellent outcomes (mRS 0–1), the multivariable 
model exhibited an AUC of 83% (95% CI: 75%–90%), 
and the individual AUCs for final mTICI, age, baseline 
NIHSS, and FIV were 64%, 62%, 65%, and 76%, respec-
tively (Figure 3(b)).
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Table 3.  Predictive values for different follow-up infarct volumes (FIV) in stroke outcomes.

FIV (ml) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

mRS 0–2  
  ⩽5 ml 0.4 (0.29–0.51) 0.94 (0.82–0.99) 0.92 (0.78–0.98) 0.47 (0.36–0.57)
  ⩽15 mla 0.75 (0.64–0.84) 0.79 (0.64–0.89) 0.86 (0.76–0.93) 0.64 (0.5–0.76)
  ⩽40 ml 0.89 (0.8–0.95) 0.43 (0.28–0.58) 0.73 (0.64–0.82) 0.69 (0.49–0.85)
mRS 0–1  
  ⩽5 ml 0.43 (0.31–0.55) 0.9 (0.79–0.96) 0.83 (0.67–0.94) 0.57 (0.47–0.68)
  ⩽15 mla 0.77 (0.66–0.86) 0.7 (0.57–0.81) 0.75 (0.63–0.84) 0.72 (0.59–0.83)
  ⩽40 ml 0.9 (0.8–0.96) 0.37 (0.25–0.5) 0.62 (0.52–0.72) 0.76 (0.56–0.9)

PPV: Positive predictive value; NPV: Negative predictive value; FIV (ml): follow up infarct volume; CI: Confidence Interval.
aYouden index cut-off point.

Table 4.  Univariable and multivariable logistic regression models to predict mRS 0–1 and mRS 0–2.

FIV (ml) Univariable model Multivariable modela

OR (95% CI) p-value OR (95% CI) p-value

mRS 0–2  
  FIV (per 10 ml) 0.70 (0.58–0.82) <0.001 0.69 (0.53–0.84) 0.002
  ⩽5 ml 9.68 (3.19–42.2) <0.001 11.0 (2.93–60.9) 0.001
  ⩽15 mlb 10.9 (4.80–26.9) <0.001 13.0 (4.50–43.4) <0.001
  ⩽40 ml 6.09 (2.54–15.6) <0.001 7.93 (2.56–28.6) <0.001
mRS 0–1  
  FIV (per 10 ml) 0.72 (0.60–0.85) <0.001 0.73 (0.58–0.89) 0.006
  ⩽5 ml 6.75 (2.72–19.4) <0.001 7.70 (2.64–26.1) <0.00
  ⩽15 mlb 7.88 (3.67–17.7) <0.001 7.09 (2.77–19.7) <0.001
  ⩽40 ml 5.21 (2.12–14.3) <0.001 5.09 (1.70–17.6) 0.006

aAll estimates are adjusted for age, admission NIHSS score, final mTICI, administration of IVT and stroke onset to arterial puncture time.
bYouden Index cut-off point.

underscoring the need for a territory-specific approach in 
future studies.42

In this study, we used FLAIR and NCCT for assessing 
FIV rather than diffusion-weighted imaging (DWI), as 
FLAIR imaging is considered the gold standard for identi-
fying subacute infarcts, and it provides superior contrast in 
the subacute phase of ischemia compared to DWI.16–18 
Most cases in our cohort had MRIs performed after 24 h of 
stroke onset, aligning with the subacute phase where 
FLAIR is particularly effective.15,35 NCCT was only used 
for patients who did not undergo follow-up MRI.

Our study is subject to several limitations that warrant 
consideration. Primarily, its retrospective design intro-
duces inherent selection bias. Although infarct volumes 
were measured using both CT and MRI, and FLAIR 
imaging is recognized for its accuracy, existing literature 
suggests that both modalities offer comparable precision 
in FIV estimation.51 A notable limitation arises from the 
decentralization of FIV adjudication, performed by indi-
vidual participating centers rather than a centralized 
imaging facility. This approach, while potentially enhanc-
ing the generalizability of our findings, may introduce 

variability due to differing institutional protocols and 
readers. However, it’s important to note that previous 
studies have demonstrated high intra- and inter-rater reli-
ability for infarct size delineation on MRI and CT, espe-
cially for infarcts larger than 10 ml.6,12,52–54

Our analysis acknowledges that the proposed infarct 
volume thresholds for guiding treatment decisions neces-
sitate further validation, particularly using pre-treatment 
infarct volumes. Moreover, although FIV emerged as a 
potent predictor of functional outcomes post-MT, the 
integration of additional imaging metrics with FIV is 
likely to refine outcome predictions.55 Such enhance-
ments, however, demand further investigation, including 
both clinical and imaging validations, before lesion 
topography can be reliably utilized for outcome predic-
tion in clinical settings.56

Furthermore, our analysis did not fully incorporate the 
potential impact of edema-related lesion expansion, 
although this factor could improve clinical predictions by 
identifying patients prone to malignant edema patterns. 
Consequently, future research is imperative to establish 
reliable edema measurement techniques and to explore the 
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Figure 3.  Comparative receiver operating characteristic (ROC) curves for 90-day mRS outcomes. (a) 90-day mRS (0–2).  
(b) 90-day mRS (0–1).

comprehensive utility of FIV as a surrogate marker by rig-
orously testing the treatment-FIV-functional outcome 
causal pathway.6,57 Despite these limitations, our study is 
strengthened by its incorporation of large scale, multina-
tional, multicenter, and real-world data, thereby improving 
generalizability.

Conclusion

In conclusion, this study underscores the significance of 
FIV as a pivotal predictor of functional outcomes in MeVO 
stroke patients undergoing MT. By demonstrating the 
potential superiority of FIV over traditional recanalization 
scores and establishing precise thresholds for favorable and 
excellent prognoses, our findings advocate for the integra-
tion of neuroimaging in the upcoming endovascular stroke 
trial as surrogate for the intervention effect. This study 

paves the way for future research to validate these thresh-
olds across broader populations and investigate the synergy 
between FIV and other prognostic markers with long-term 
stroke outcomes.
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