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Objective(s): Asthma is a complex inflammatory disorder with the infiltration of inflammatory cells in 
the lung airways. Saffron’s active component, crocin, has been proven to possess anti-inflammatory 
and anti-oxidant effects. The objective of this current study was to explore the impact of crocin on 
NF-kB and nuclear erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathways 
in ovalbumin (OVA)-sensitized mice, aiming to understand its mechanism.
Materials and Methods: Four different groups were formed by dividing forty male BALB/C mice: 
control group, OVA-sensitized group (OVA), OVA combined with crocin 30 mg/kg (OVA-Cr30), and 
the OVA combined with crocin 60 mg/kg (OVA-Cr60). In order to determine the total number of 
WBC and inflammatory cells infiltrating the lung, we utilized the bronchoalveolar lavage fluid for 
counting purposes. The mRNA and protein levels of Nrf2, HO-1, IL-17, and NF-κB in lung tissue were 
assessed through real-time PCR and western blot techniques. 
Results: Crocin significantly prevented the increase of total WBC and inflammatory cells in the lung 
tissue (P<0.001 for all) and histopathological changes in OVA-sensitized mice. Furthermore, crocin 
displayed suppressive effects on the enhancement of NF-kB (P<0.01) and IL-17 (P<0.05) mRNA and 
protein levels in OVA-sensitized mice while preserving Nrf2 (P<0.01) and HO-1 (P<0.05) expression 
levels. Crocin effects became increasingly apparent when utilized at high concentrations.
Conclusion: Crocin decreased airway inflammation, partially by inhibiting NF-κB and IL-17 and up-
regulating Nrf2/HO-1 mRNA and protein expression levels. 
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Introduction

                                   © 2024 mums.ac.ir All rights reserved.
                                 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/         
                                   by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Bronchial asthma causes an ongoing inflammation in 
the airways marked by the infiltration of inflammatory cells 
such as neutrophils, eosinophils, and lymphocytes into the 
lung tissue (1). Furthermore, asthma has more prominent 
features, including airway hyperresponsiveness (AHR), 
mucus hypersecretion, and lung tissue remodeling (2). The 
pathogenesis of asthma has been linked to an imbalance 
between Th2 and Th1 cells, resulting in increased levels of 
interleukin (IL)-4, IL-5, and IL-13 and decreased levels of 
interferon (IFN)-γ (3). Also, the Th2/Th1 imbalance results 
in eosinophilia and the release of immunoglobulin (Ig) E 
into the lung (3). It has also been reported that in severe 
and treatment-resistant asthma, Th17 cell activation leads 
to the release of inflammatory mediators IL-17A and IL-17F 
(4). Moreover, findings from animal studies suggest that the 
coexistence of obesity and asthma triggers the activation of 
Th1, Th2, and Th17 cells, which could be responsible for the 

exacerbation of asthma symptoms (4-6). 
Asthmas pathophysiology involves multiple signaling 

pathways, with nuclear factor kappa B (NF-kB) as an essential 
transcription factor mediating inflammatory and immune 
responses (7, 8). Animal studies have demonstrated that 
inhibiting NF-κB, a pathway activated in asthma, promotes 
the decreased production of inflammatory cytokines, 
ultimately leading to reduced asthma symptoms (9). Among 
the noteworthy signaling pathways in asthma research, the 
nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme 
oxygenase-1 (HO-1) have attracted considerable attention. 
Through its association with anti-oxidant-response element 
(ARE) genes, Nrf2 exerts anti-inflammatory and anti-
oxidant effects (10). It has been documented that activating 
the Nrf2/HO-1 pathway in asthma leads to detectable 
decreases in AHR, mucus hypersecretion, and Th2 cytokine 
release (11). Therefore, suppressing the NF-kB pathway and 
potentiating the Nrf2/HO-1 pathway have been considered 
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therapeutic targets in patients with asthma.
Recently, studies have emphasized plant-derived and 

naturally-occurring Nrf2 activators (12-14). Human and 
animal studies have revealed the potential therapeutic 
effects of saffron and its active ingredients (crocin, 
crocetin, safranal, and picrocrocin) in treating different 
inflammatory disorders such as asthma, chronic obstructive 
pulmonary disease (COPD), obesity, diabetes, cancer, 
metabolic syndrome, polycystic ovary syndrome (PCOS), 
and cardiovascular disease (15-19). Anti-inflammatory, 
anti-oxidant, and anti-cancer effects make crocin a highly 
significant substance. In some studies, activating the Nrf2/
HO-1 pathway is believed to be responsible for crocin anti-
oxidant and anti-inflammatory effects (20, 21). Despite 
numerous studies on the beneficial effects of crocin in 
treating asthma in animal models, limited focus has been 
placed on investigating the potential involvement of the 
Nrf2/HO-1 pathway. To address this possibility, this study 
aimed to explore the impacts of crocin on NF-kB, IL-17, and 
Nrf2/HO-1 pathways in a murine model of asthma.

Experimental procedures
Animals and studied groups

Forty male BALB/C mice weighing 20-25 g were included 
in the current research. Animals sourced from Tehran 
Pasteur Institute underwent a one-week acclimatization at 
Ardabil University of Medical Sciences animal house. In 
order to conduct the study, animals were given unlimited 
access to food and water, and their living conditions 
consisted of standard settings, including a regulated 
temperature of 22±2 οC and an equal distribution of dark/
light periods spanning 12 hr each.

Four groups were created, with ten animals in each group, 
including the control group, the OVA-sensitized group 
(OVA), the OVA-sensitized combined with crocin 30 mg/

kg group (OVA-Cr30), and the OVA-sensitized combined 
with crocin 60 mg/kg group (OVA-Cr60). The doses and 
administration forms of crocin were derived from previous 
reports (22). Crocin (purity assay of ≥ 98%) was purchased 
from Sigma (Sigma, 17204). 

Animals ovalbumin sensitization
On days 0, 7, and 14, a solution of ovalbumin (10 µg) with 

Al (OH)3 (2 mg) was injected intraperitoneally to sensitize 
with OVA. Once the animals reached the 28th day, they were 
placed within a closed chamber (50 cm × 35 cm × 35 cm in 
size) and exposed to an aerosol of OVA at a concentration of 
1% for 25 min using a nebulizer (CX3, Omron Health Care 
Europe B.V., the Netherlands) (23, 24). In the intervention 
groups, an intraperitoneal injection of crocin with a 
predetermined concentration was administered one hour 
before the ovalbumin challenge. Instead of using OVA, only 
saline was utilized for the control group during the same 
procedure (Figure 1). Animal handling was approved by 
the Ethical Committee of Ardabil University of Medical 
Sciences (IR.ARUMS.REC.1400.078).

Determination of total WBC and differential inflammatory 
cells in BALF

Following the completion of the study, the animals were 
given ketamine (80 mg/kg, IP) and xylazine (10 mg/kg, IP) 
for anesthesia and then underwent tracheal cannulation 
using a catheter. The process of collecting the bronchoalveolar 
lavage fluid (BALF) involved injecting and aspirating 0.5 ml 
of phosphate buffer saline (PBS) into the lung (3 to 5 times), 
followed by the extraction of 1.5 to 2 ml of liquid. The 
centrifuged BALF sample (for 10 min at 4ο C at 2500 rpm) 
and the prepared supernatant were used for total white blood 
cell (WBC) and differential cell counting (25).

Figure 1. Experimental design flow chart and treatment with saline and crocin in male BALB/C mice (last 5 days of the model)
OVA: Ovalbumin; IP: Intraperitoneally

 

1 
 

Gene Forward Reverse 

Nrf2 GCCCACATTCCCAAACAAGA TCTCTGCCAAAAGCTGCATAC 

HO-1 ATGCCCCAGGATTTGTCTGA AGCATTCTCGGCTTGGATGT 

IL-17 AGCAGCGATCATCCCTCAAA GAAGTCCTTGGCCTCAGTGT 

NF-kB GGGAAGGATTTGGGGACTTT CCTCCGAAGCTGAACAAACAC 

GAPDH ATGGTGAAGGTCGGTGTGAA GAGGTCAATGAAGGGGTCGT 

 

 

 

  

Table 1. Sequences of forward and reverse primer sets in mice

Nrf2: Nuclear erythroid 2-related factor 2; HO: Heme oxygenase-1; IL: Interleukin; NF-kB: Nuclear factor kappa B; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase
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Total WBCs were counted using a hemocytometer and 
Wright-Giemsa staining technique, whereas differential cell 
counts followed a standard procedure of examining 200 
cells per slide (×400 light microscope).

Real-time polymerase chain reaction
As previously reviewed in detail (26), we employed the 

real-time PCR methodology to measure the expression 
of Nrf2, HO-1, IL-17, and NF-kB mRNA levels. Table 1 
displays the sequences of forward and reverse primer sets. 
The PCR products were normalized using the GAPDH gene, 
and the fold changes of gene expressions were calculated by 
the ΔΔCT method.

Tissue sampling and ELISA and western blot assay
Following the administration of anesthesia and 

euthanizing the animals, the lung tissue was isolated and 
promptly frozen in liquid nitrogen. It was then transferred 
to -70 οC until the expression of NF-kB, HO-1, and Nrf2 
proteins were measured. 

After homogenizing lung tissue in PBS (pH 7.2-7.4), 
the OVA-specific IgE protein level was determined by 
centrifugation at 4 °C with 3000 rpm for 20 min. The 
supernatant was prepared using a mouse ELISA kit 
(according to Crystal Day’s manufacturer’s instructions).

For western blot assay, in order to create tissue 
homogenate, RIPA lysate was introduced into the samples 
while immersing them in an ice bath. To clarify the lysates, 
the samples underwent centrifugation at 13,300 g for 20 
min at 4 °C. Protein concentration of the supernatant 
was measured using the BCA Protein Kit. Equal amounts 
of protein were separated using gel electrophoresis with 
sodium dodecyl lauryl sulfate. Afterward, the proteins were 
transferred onto membranes made of polyvinyl difluoride 
and then incubated with a 5% non-fat dry milk solution 
for two hours at room temperature in order to inhibit non-
specific binding sites (27).

Primary antibodies against Nrf2 (SANTA CRUZ: sc-
365949; 1:100), HO-1 (Abcam; ab13243; 1:2000), NF-kB 
(Abcam; ab16502; 1:1000), and β-actin (SANTA CRUZ: sc-
47778; 1:1000) were added and incubated overnight at 4 °C. 
An advanced chemiluminescence (ECL) detection reagent 
was used to develop electrochemiluminescence.

Histopathological assessment
Once taken out, the lungs underwent fixation in 10% 

neutral buffered formalin and were subsequently embedded 
in paraffin blocks. Examination under a light microscope 
was conducted after cutting the tissue to 5-μm thickness 
and staining it with hematoxylin-eosin. The pathological 
criteria under investigation include epithelial destruction 
of airways, pulmonary fibrosis, lymphocyte cell infiltration, 
and hyperemia. Evaluating lung histopathological changes 

involved the following scoring process: 0 = normal; 1 = patchy 
injury, 2 = local injuries, and 3 = scattered injuries (28).

Statistical analysis
The results were reported as a mean (± SD). ANOVA test 

and Tukey-Kramer post hoc test were utilized to compare 
groups. The test significance criterion was P<0.05. GraphPad 
Prism 7 was used to draw the graph, and statistical tests 
were performed using SPSS (version 21).

Results
Total WBC count in BALF 

A notable increase in total WBCs occurred in OVA-
sensitized mice after sensitization with ovalbumin 
(P<0.001). Both concentrations of crocin (30 and 60 mg/kg) 
displayed significant efficacy in preventing the rise in total 
WBC count, markedly with high concentrations of crocin 
(for both P<0.001) (Table 2). 

 
Comparison of differential inflammatory cells in BALF

Analysis of cell counts demonstrated a significant increase 
in the number of eosinophil, neutrophil, macrophage, and 
lymphocyte cells within the OVA-sensitized group compared 
to the control group. Both doses of crocin (30 and 60 mg/kg) 
exhibited significant efficacy in preventing the elevated levels 
of all differential inflammatory cells, with a stronger impact 
noted at the concentration of 60 mg/kg (Table 2).

Effects of crocin on OVA-specific IgE levels
In contrast to the control group, the lung tissue of the 

OVA-sensitized mice showed significantly high levels of 
OVA-specific IgE (P<0.001). Treatment with 60 mg/kg crocin 
significantly decreased the serum levels of OVA-specific 
IgE compared to the OVA group (P<0.05). There was no 
significant difference at the 30 mg/kg crocin concentration 
between the OVA and OVA-Cr 60 groups (Figure 2). 

 

2 
 

 Control OVA OVA-Cr30 OVA-Cr60 

WBC (× 105/BAL) 2.22 ± 0.19 13.62 ± 1.28*** 9.30 ± 0.52+++ 6.66 ± 0.42+++, &&& 

Eosinophil (× 105/BAL) 0.30 ± 0.02 7.97 ± 0.72*** 5.05 ± 0.24+++ 3.05 ± 0.19+++, &&& 

Neutrophils (× 105/BAL) 0.30 ± 0.02 1.06 ± 0.17*** 0.90 ± 0.08+++ 0.72 ± 0.06+++ 

Lymphocyte (× 105/BAL) 0.40 ± 0.03 1.36 ± 0.07*** 0.92 ± 0.09+++ 0.83 ± 0.05+++ 

Macrophage (× 105/BAL) 1.20 ± 0.12 3.18 ± 0.35*** 2.40 ± 0.19+++ 2.04 ± 0.20+++ 

 

 

 

 

Table 2. Bronchoalveolar lavage fluid cellularity in male BALB/C mice

Total and differential cellularity in bronchoalveolar lavage fluid. Values are represented as mean (± SD). Statistical differences between the Control and OVA group, *** P<0.001. 
Statistical differences between OVA and other groups, +++ P<0.001. Statistical differences between OVA-Cr30 and OVA-Cr60 groups, &&&: P<0.001.
OVA: Ovalbumin, Cr: Crocin, BAL: Bronchoalveolar lavage, WBC: White blood cell 

Figure 2. The protein level of OVA-specific IgE in lung tissue of male 
BALB/C mice
Data are expressed as mean ± SD. OVA: Ovalbumin, Cr: Crocin. Statistical differences 
between the Control and OVA group, $$$: P<0.001. Statistical difference between 
OVA vs other groups: +: P<0.05. Use the ANOVA test to compare between groups.
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Effects of crocin on Nrf2 and HO-1 mRNA levels
Nrf2 and HO-1 expression levels were found to be 

significantly lower in the OVA-sensitized group as opposed 
to the control group (for both P<0.001). Crocin at 60 mg/
kg significantly prevented the decrease in the expression 
of Nrf2 (P<0.01) and HO-1 (P<0.05) in the lung tissue of 
OVA-sensitized mice (Figure 3).

Effects of crocin on IL-17 and NF-kB gene expression levels 
Compared to the control group, there was a significant 

increase in the expression of IL-17 and NF-kB mRNA levels 
in the lung tissue of OVA-sensitized mice (for both P<0.01).  
Intervention with crocin 60 mg/kg significantly prevented 
the increase of IL-17 (P<0.05) and NF-kB (P<0.01) 
expression levels, while there was no significant difference 
between the concentrations of 30 mg/kg and 60 mg/kg 
crocin (Figure 4).

Effects of crocin on Nrf2, HO-1, and NF-kB protein 
expression levels

Figure 3 shows the western blot results. Significantly 
lower expression levels of Nrf2 and HO-1 proteins were 
observed in the OVA-sensitized animals (for both P<0.001). 
By utilizing crocin at concentrations of 30 (P<0.05) and 60 
mg/kg (P<0.001), the reduction in Nrf2 protein expression 
was significantly suppressed. Regarding HO-1 protein 
expression, only the concentration of 60 mg/kg of crocin 
showed inhibitory effects related to its reduction (P<0.001).

In the lung tissue of OVA-sensitized mice, there was a 
significant elevation in NF-kB protein expression levels 
compared to the control group (P<0.001). Intervention 
with both concentrations of 30 and 60 mg/kg of crocin 
significantly prevented the increase in NF-kB protein 
expression in the lung tissue of OVA-sensitized groups 
(P<0.05 and P<0.01, respectively) (Figure 5).

Lung histopathology
Ovalbumin sensitization resulted in histopathological 

changes characterized by the destruction of airway 

Figure 3. Gene expression levels of (A) Nrf2 and (B) HO-1 in lung tissue of male BALB/C mice 
Data are expressed as mean ± SD. OVA: Ovalbumin, Cr: Crocin, Nrf2: Nuclear factor erythroid 2-related factor 2, and HO-1: Heme oxygenase 1. Statistical differences between the 
Control and OVA group, $$$: P<0.001. Statistical difference between OVA vs other groups: +: P<0.05, ++: P<0.01. Use the ANOVA test to compare between groups.

Figure 4. Gene expression levels of (A) IL-17 and (B) NF-kB in lung tissue of male BALB/C mice
Data are expressed as mean ± SD. OVA: Ovalbumin, Cr: Crocin, IL: Interleukin, and NF-kB: Nuclear factor kappa B. Statistical differences between the Control and OVA group, 
$$: P<0.01. Statistical difference between OVA vs other groups: +: P<0.05, ++: P<0.01. Use the ANOVA test to compare between groups.

Figure 5.  Protein expression levels of (A) Nrf2, (B) HO-1, and (C) NF-kB 
in lung tissue of male BALB/C mice 
Data are expressed as mean ± SD. OVA: Ovalbumin, Cr: Crocin, Nrf2: Nuclear factor 
erythroid 2-related factor 2, HO-1: Heme oxygenase 1, and NF-kB: Nuclear factor 
kappa B. Statistical differences between the Control and OVA group, $$$: P<0.001. 
Statistical difference between OVA vs other groups: +: P<0.05, ++: P<0.01, +++: 
P<0.001. Use the ANOVA test to compare between groups.
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epithelium, lung fibrosis, hyperemia, and lymphocyte cell 
infiltration. By employing a semi-quantitative approach, it 
was determined that the utilization of crocin led to a notable 
reduction in tissue damage, with the most prominent effects 
observed at a concentration of 60 mg/kg (Figure 6).

Discussion
The most important findings of the current study are as 

follows:
1. The OVA-sensitized mice displayed more prominent 
histopathological changes and increased serum levels of 
OVA-sensitized Ig-E, which were subsequently modulated 
by intervention with crocin. 
2. In the OVA-sensitized animals, there was a significant 
decrease in the expression levels of both Nrf2 and HO-1 
mRNA and proteins compared to the control group.
3. IL-17 and NF-kB expression levels were notably higher in 
the OVA-sensitized group.
4. The administration of crocin in OVA-sensitized mice 
resulted in a protective impact through the NF-kB and 
Nrf2/HO-1 pathways.

Asthma is characterized by chronic inflammation of the 
airways, which is evident through leukocyte infiltration, 
especially eosinophils (29). Furthermore, findings indicate 
that patients with asthma display increased Th2 cell activity, 
leading to the generation of multiple cytokines such as IL-5, 
IL-4, and IL-13 (3). According to the findings of this study, 
a significant increase in the accumulation of eosinophils, 

neutrophils, and lymphocytes in the airways was observed 
under OVA-sensitization status, with crocin demonstrating 
preventive effects. These effects were more evident with high 
concentrations of crocin. The study’s findings revealed that 
crocin has suppressive effects on inflammatory reactions, 
aligning with previous research (30). 

With the activation of the inflammatory response in 
allergic airways and mast cells and bronchial hyperreactivity, 
it has been observed that an augmented production of IgE 
occurs, accompanied by the release of different cytokines by 
eosinophils and mast cells (31). In the current study, it was 
observed that OVA-sensitized mice had higher amounts 
of OVA-specific IgE, but the intervention with crocin 
effectively reduced these levels. It can be inferred that crocin 
has reduced airway inflammation by decreasing IgE levels, 
at least partially.

Asthma researchers have directed their attention 
towards NF-κB, a transcription factor that greatly impacts 
inflammatory reaction mechanisms. Activating NF-
kB leads to the accumulation of inflammatory cells in 
the airways and their involvement in adaptive immune 
responses (8). Generally, NF-κB is inactive in the cytoplasm 
due to binding with IκB. Upon phosphorylation of IκB, 
NF-κB is released and translocated to the nucleus, which 
can initiate various inflammatory signaling pathways (32). 
In allergic airway inflammation cases, NF-kB activation 
coincides with promoting Th2 and Th1 cytokine expression 
(32). In this regard, suppressing the NF-κB activation 

Figure 6. Histopathological evaluation in (1) lung tissue and (2) tissue damage index in male BALB/C mice
Photographs of a lung specimen in different groups (magnification for each group, 10x) (Hematoxylin-eosin staining). A: control group, B: OVA-sensitized group, C: OVA-
sensitization and crocin 30 mg/kg, and D: OVA-sensitization and crocin 60 mg/kg. Arrow: destruction of airway epithelium, 1: lung fibrosis, 2: hyperemia, and 3: lymphocyte cell 
infiltration. Statistical differences between the Control and OVA group, $: P<0.05. Statistical difference between OVA vs other groups: +: P<0.05. Use the ANOVA test to compare 
between groups.
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pathway is considered to be one of the essential therapeutic 
goals for patients with asthma. The results of the current 
study identified that crocin intervention prevented the 
augmentation of NF-kB mRNA and protein expression in 
ovalbumin-sensitized animals. Interestingly, the effects of 
crocin were observed in a dose-dependent manner. 

In animal studies focused on asthma, it has been 
discovered that Th17 cells and related cytokines (such 
as IL-17A) are involved in recruiting inflammatory cells 
to the airways, especially in cases where asthma is severe 
(33). Increased expression of IL-17A and IL-17F mRNA 
and protein has been observed in individuals with obesity-
related asthma, suggesting a unique asthma phenotype (4, 
34). In addition, Zhang et al. revealed that elevated levels of 
IL-17 were observed in O3-induced asthma (35). The results 
suggest that in severe and refractory asthma, the activation 
of Th1, Th2, and Th17 cells occurs, leading to the disease’s 
exacerbation (35). IL-17A has been recognized as a stimulus 
for neutrophil infiltration in the airways (36). In patients 
who died from asthma exacerbation, it was found that 
there were higher numbers of neutrophils than eosinophils 
(37). Findings from this study revealed a marked increase 
in IL-17 expression in OVA-sensitized mice relative to the 
control group. An interesting observation was made when 
a high dosage of crocin (60 mg/kg) was used, resulting in 
significant prevention of IL-17 elevation. The findings from 
this research provide additional evidence that crocin has 
anti-inflammatory effects in ovalbumin-sensitized animals, 
as indicated by the reduction of IL-17 expression.

Alongside inflammation, oxidative stress serves as a 
critical player in the development of asthma (38). Chronic 
lung diseases like COPD and asthma have been associated 
with disturbance in the oxidants/anti-oxidants balance (15). 
It has been observed that asthma status is associated with 
increased levels of oxidants (such as malonyl dialdehyde 
(MDA)) and reduced anti-oxidants factors (such as 
superoxide dismutase (SOD) and glutathione peroxidase 
(GPx)) (39). Furthermore, researchers have observed a 
decline in Nrf2 expression, which plays a significant role 
in maintaining cellular defenses (38). Nrf2 acts as a redox-
sensitive transcription factor that becomes activated when 
exposed to oxidative stress conditions; it then regulates 
genes and proteins responsible for anti-oxidant and anti-
inflammatory defense (40). In Nrf2 null mice, there has been 
evidence demonstrating the occurrence of exacerbation 
of AHR, mucus hypersecretion, and eosinophilia – all 
hallmarks of allergic asthma (41). Under physiological 
conditions, Nrf2 is in an inactive complex state due to 
interaction with Kelch-like epichlorohydrin-associated 
protein 1 (Keap-1) (42). Appropriate extracellular signals 
lead to the dissociation of Nrf2 from Keap-1 and translocate 
to the nucleus, interacting with the anti-oxidant-responsive 
element (ARE) to participate in the transcription of various 
genes, such as HO-1 (42, 43). HO-1, a part of the heat shock 
protein family, has anti-oxidant and anti-inflammatory 
properties (44). Numerous studies have provided evidence 
indicating that HO-1 exerts interesting effects on asthma by 
decreasing inflammation, oxidative stress, and the secretion 
of excess mucus (45). The reduced levels of Nrf2 and HO-1 
were evident in the lung tissue of OVA-sensitized mice, in 
which the intervention with crocin exerted a protective 
effect. Despite the need for further investigations, it can 
be inferred from the results that crocin exerted protective 

effects on animals with asthma, possibly through activation 
of the Nrf2/HO-1 pathway.

The anti-inflammatory and anti-oxidant effects of saffron 
and its bioactive compound, crocin, are well-documented 
in several disorders. Crocin protective effects are thought 
to be mainly mediated through the modulation of signaling 
pathways such as NF-kB, T-bet/GATA-3 ratio, miRNAs, 
signal transducer and transcription activator 6 (STAT6), 
protein kinase C (PKC), inducible nitric oxide synthase 
(iNOS), mitogen-activated protein kinases (MAPK/ERK), 
high-mobility group box 1 (HMGB-1) pathway, endoplasmic 
reticulum (ER) stress markers, Ca2+ /calmodulin-dependent 
protein kinase 4 (CAMK4), c-JNK, and phosphoinositide-
3-kinase (PI3K)/Akt (15-19, 30, 46-48).

One of the suggestions for future studies is to use cell line 
studies to investigate the possible mechanisms involved in 
the Nrf2/HO-1 pathway. Demonstrating the influence of 
crocin in asthma through the NF-κB-Nrf2/HO-1 pathway 
can be achieved by employing Nrf2 pathway inhibitors or 
activators as well. On the other hand, the limitation of the 
current study was that it did not have a positive control 
group, such as dexamethasone.

Conclusion
In general, disruption of the Nrf2/HO-1 pathway in 

asthma is accompanied by airway hyperresponsiveness, 
neutrophil and eosinophil infiltration, and increased 
mucus secretion. By reducing Nrf2, it may be possible to 
observe an increase in NF-κB activity, subsequently leading 
to the generation of NF-κB-dependent pro-inflammatory 
cytokines. The crocin intervention reduced airway 
inflammation, with its effects linked to diminished NF-κB 
activity and increased expression of Nrf2/HO-1 mRNA and 
proteins. However, additional studies are needed for a more 
detailed investigation.
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