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Forme fruste keratoconus detection with
OCT corneal topography using artificial

intelligence algorithms
EugénieMourgues,MD,Virgile Saunier,MD,David Smadja,MD,DavidTouboul,MD, PhD,Valentine Saunier,MD

Purpose: To differentiate a normal cornea from a forme fruste
keratoconus (FFKC) with the swept-source optical coherence to-
mography (SS-OCT) topography CASIA 2 using machine learning
artificial intelligence algorithms.

Setting: Monocentric, performed in CHU Bordeaux, Bordeaux,
France.

Design: Retrospective case–control.

Methods: 3 groups were included: KC group (108 eyes), FFKC
(88 eyes), and normal corneas (162 eyes). The data were analyzed
and processed using the Dataiku data science platform. Machine
learning models (random forest [RF], logistic regression [LR]) were
used to develop a multiclass classifier for automated early KC
detection. The models were trained using a training database
and tested using a test database. Then, algorithms were compared

with the Ectasia Screening Index (ESI), which is an OCT-
topography inherent screening score for ectasia.

Results: The LR and RF detected FFKC with an area under the
curve of 0.99 and 0.98, respectively. The sensitivities of LR (100%)
and RF (84%) were better than the ESI (28%) for the diagnosis of
FFKC. However, ESI has a maximum specificity (100%) compared
with the LR (100%) and 90% for RF.

Conclusions: This study identified discriminating topographic
parameters to be considered in refractive surgery screening on
SS-OCT CASIA 2. An algorithm capable of classifying normal eyes
vs FFKC cases was developed, with improved performance com-
pared with the ESI score.
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Keratoconus (KC) is a progressive degenerative dis-
ease affecting young patients in whom the cornea
assumes a conical shape because of progressive

stromal thinning.1 The significant visual impact induced by
myopia and irregular astigmatism degrades the quality of
life in these patients.2

The surge in laser vision correction has prompted the
need for a sensitive detection system to identify early signs
of KC, reducing the risk of postlaser in situ keratomileusis
(LASIK) ectasia, notably since Seiler et al. highlighted this
risk.3,4

Although the incidence of post-LASIK ectasia is very low,
ranging from 0.033% to 0.6%, it is one of the most feared
complications.5,6

There is a lack of unified criteria to define subclinical
KC and forme fruste KC (FFKC). According to Henriquez
et al., the most common subclinical KC definition used
refers to an eye with topographic signs of KC and/or
suspicious topographic findings under normal slitlamp

examination and KC in the fellow eye, and the most
common FFKC definition refers to an eye with normal
topography, normal slitlamp examination, and KC in the
fellow eye.7 The Randleman team recently named this
entity “unaffected asymmetric KC eye (AKC)” when the
topography is strictly normal (and visual acuity corrected
to 20/20) in one eye and the other eye presents with
frank KC.8

Multiple detection scores have been developed to assist in
the diagnosis of KC and FFKC, including the Belin Am-
brioso Enhanced Display or BAD-D on the Pentacam
(Oculus Optikgeräte GmbH), which is the most wide-
spread, the suspect corneas decision tree for the Galilei G4
(Ziemer Ophthalmic Systems AG) or the Score Analyzer on
the Orbscan (Bausch & Lomb, Inc.), and more recently the
Score Analyzer on the Anterion (Heidelberg Engineering
GmbH).9–13 The Scheimpflug technology with a Placido
disc is widely used; however, corneal tomography mapping
generated from optical coherence tomography (OCT)
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imaging technology has emerged as a promising alternative
owing to faster acquisition and less dependence on dry eyes
and tear film condition.14 Nevertheless, the literature is still
poor in indicating the most relevant parameters and their
cutoff values to be used for refractive surgery screening to
identify corneas at risk of ectasia.15

The objective of this study was to propose high-
performance artificial intelligence (AI)-based models to
improve the current detection system for FFKC using the
swept-source OCT (SS-OCT) topography CASIA 2 (Tomey
Corp.).

METHODS
This single-center retrospective case–control study was conducted
at the National Reference Center for Keratoconus at the University
Hospital of Bordeaux, France.
The patients included in this study were seen in consultation as

part of routine care between June 2020 and February 2023 and
completed the unit’s consent questionnaire, authorizing the use of
data for research and anonymously. The study design was ap-
proved by the Research Ethics Committee of Bordeaux University
and the hospital.

Population
Eighty-eight eyes from 88 patients were included in the FFKC
group, 108 eyes from 56 patients in the KC group, and 162 eyes
from 162 patients in the normal eye group. Demographic (age and
sex) and topo-tomographic data were collected.

Inclusion and Exclusion Criteria
Three groups were included and analyzed.

Group KC Eyes affected by a confirmed bilateral KC were
defined on the basis of elevation topography and confirmed by 2
expert physicians from the center (V.S., D.T.) according to the
Rabinowitz criteria: corneal topography with an asymmetric
bowtie pattern or localized steepening on the anterior or posterior
surface, and at least one of the following slitlamp findings: stromal
thinning, Fleischer ring greater than 2 mm arc, Vogt striae, and
corneal scarring consistent with KC.16,17 We used the topography
from the SS-OCT CASIA 2 for the diagnosis. As KC is an
asymmetrical pathology, both eyes of each patient were included
(analyses section).

FFKC Group Eye with normal topography in a patient with
proven contralateral KC or KC can be defined as unilateral. This
definition corresponds to the AKC group defined by Hwang et al.,
and the same definition was used by Saad et al., which indicates no
clinical evidence of disease, no physical findings on slitlamp
examination, no definitive abnormalities on corneal imaging, and
a corrected distance visual acuity of 20/20 or better.8,13

The topographies of this group were studied and validated by 2
experts from our center (V.S., D.T.). Some examples of FFKC
included in this study are in the supplementary materials (Sup-
plemental Figures 1–5, available at http://links.lww.com/JRS/
B223).

Normal Group Normal eyes recruited from patients coming
for a screening visit for refractive surgery, having undergone
LASIK surgery without abnormal postoperative evolution for
at least 1 year. For the study, preoperative topographies were
used as part of the analysis (examples of FFKC topographies
are in the Appendix). One eye was selected for each patient.
Eyes were considered normal when no clinical signs of KC and
no suggestive topographic patterns of suspected KC were
found, such as asymmetric bowtie with skewed radial axes,
focal or inferior steepening, central keratometry greater than
47.0 diopters, or corneas thinner than 480 m m. The exclusion
criteria for this group were previous ocular surgery, ocular

pathology, familial history of KC, and contact lens wearing in
the past week.
Patients with ocular pathologies other than KC or a history of

eye surgery (other than LASIK in the normal group) were ex-
cluded. Poor fixation or examination quality also led to exclusion.

OCT Topography
Patients from all the 3 groups underwent topography using SS-
OCT CASIA 2.18 Measurements were performed using the SS-
OCT topography of the anterior segment CASIA 2 (software v.
50.06) according to the manufacturer’s guidelines, and meas-
urements were taken by an experienced examiner. The OCT
technology uses a fast-scanning light source that emits near-
infrared light. A portion of the light reflected by the cornea is
collected using a detector. Interferometry is used to measure the
phase differences between the emitted and reflected lights. This
generates interference, which is then analyzed to reconstruct a 3D
image of the cornea.
The collected data were processed using dedicated software,

which reconstructs a 3D image of the cornea. This image rep-
resents different layers of the cornea, including the anterior and
posterior surfaces.
The infrared wavelength is 1310 nanometers, and the acqui-

sition is rapid, taking only 0.3 seconds for a topography scan, with
a scan rate of 50 000 scans-A per second. The axial resolution is
less than 10 mm, and the transverse resolution is less than 30 mm.
The corneal topography data record were (1) keratometric and

anterior surface elevation parameters, (2) keratometric and
posterior surface elevation parameters, (3) pachymetry parame-
ters, (4) Fourier decompositions and optical aberrations, and (5)
Ectasia Screening Index (ESI) (Table 1).
Standard acquisition for topography was from an axial map.

The keratometric parameters corresponded to a conventional
TMS Standard Sagittal map. As with the conventional TMS, the
paraxial calculation was performed using 1.3375 as the refractive
index of the cornea.
Fourier series analysis decomposes any circumferential fluc-

tuations of the corneal power into various components which have
clinical correlates. The spherical component and regular astig-
matism values are proportional to keratometric spherical and
astigmatic powers. Asymmetry is a tilt of the cornea about the
video–keratoscope axis. Irregular astigmatism reflects a series of
optical imperfections that degrade retinal image quality. Fourier
analysis can quantify irregular astigmatism as the sinusoidal
variation in power.19

In the keratometric data, we collected the Instantaneous Pos-
terior Index (IPI) which is a radius curvature map describing
localized changes of the corneal shape and is converted to re-
fractive power by the refractive index for conversion on the
paraxial calculation.
Elevation maps were gathered for both the anterior and pos-

terior surfaces of the cornea and indicate the difference obtained
by subtracting the height of the reference sphere (Best fit sphere)
from the height of the cornea. Elevation anterior highest (EAH)
and elevation posterior highest (EPH) are the highest points.
ESI is a parameter derived from AI, provided by the SS-OCT

CASIA 2, for which the formula and performance characteristics
are unknown. ESI is an index used to detect ectasia patterns, such
as KC, by analyzing and evaluating the anterior and posterior
surfaces of the cornea. It assesses the presence of specific patterns
indicative of ectasia. The interpretation rules are as follows: 0% to
4% indicates no ectasia pattern detected, 5% to 29% indicates
a suspicious pattern of ectasia, and 30% or more indicates
a corneal pattern compatible with ectasia. The specific compo-
sition of the parameters included in the ESI is not disclosed by the
system. However, based on Figure 1, it can be inferred that pa-
rameters such as pachymetry, Fourier analysis, axial power
keratometry, and instantaneous power posterior map are likely
included in the algorithm.
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We were unable to include epithelial mapping data in our study
because they were not accessible to the CASIA-2 software version
in our department at the time of the study.

Use of AI Algorithms for Data Analysis
The main analysis was performed with the DATAIKU software
using AI, in particular “machine learning.” Two AI-based algo-
rithms were tested in this study, logistic regression and random
forest. The different algorithms are explained as follows:
Logistic Regression In logistic regression, we worked with 2

key components: the input vector X, which encapsulates various
eye-related characteristics (N) gathered through data collection,
and the target variable Y, which we aimed to predict. In our case, Y
represented whether the eye is affected by KC or FFKC. The
primary objective was to determine a function h that operates on
input vector X (i.e., h(X)) and yields a value within the range of
0 to 1. This value signified the probability of a specific event
occurring, such as the eye being affected by FFKC.
Function h was parameterized by N parameters, which must be

fine-tuned to achieve the most accurate predictions. It is worth
noting that the sigmoid function is a crucial component of the h
function because it transforms the input vector into a probability,
ensuring that its output always falls within the 0 to 1 range.20

Random Forest Random forest is a machine-learning tech-
nique that builds a robust model by combining forest trees. Each
tree is constructed using a random subset of data through
bootstrap resampling. The best variable for each split was chosen
from a predefined set of randomly selected variables (in this study,
9 variables). Each tree contributed a “vote” to the final decision,
and classification problems used the mode, while regression used
the mean. The method also assesses variable importance to
identify key features for prediction.
Random forest has advantages, such as modeling nonlinear

class boundaries and providing variable importance. Importantly,

it addresses the issue of overfitting common in machine
learning models by building trees on different samples, en-
abling more efficient generalization and resilience to noisy or
missing data.21,22

Algorithm Validation Method A cross-validation method was
used with a fold-increase of 5. The cross-validation method
consisted of dividing the data into 5 equal subsets, then training
the model on 4 subsets and testing it on the fifth subset. This
operation was repeated 5 times so that each subset was used once
for the test and 4 times for the training.

Statistical Analyses
Metrics To assess robustness, we used metrics derived from the
confusion matrix, which provides sensitivity and specificity
(Supplemental Table 1, available at http://links.lww.com/JRS/
B222). This matrix facilitated the comparison of an algorithm’s
predictions with actual values (true labels or classes) within a test
dataset. We used recall (=sensitivity), specificity, and precision
(=positive predictive value).
To provide a comprehensive assessment of the performance of

our model, we used the F1 score, which combines both recall and
precision into a single metric. In addition to these metrics, we also
assessed the overall correctness of the model using accuracy,
which is computed as the ratio of correct classifications to the total
number of classifications: To visualize the trade-off between true
positive and false positives, we used a receiver operating char-
acteristic curve.
ESI Performance The interest of our work was to compare it

with the performance of the ESI for detecting corneal ectasia. The
sensitivity and specificity of the ESI score were calculated to assess
its ability to detect FFKC within the study population.
We compared the sensitivity and specificity of the ESI calcu-

lated on our FFKC population with those of our logistic regression
and random forest algorithm.

Table 1. Description of parameters collected with the SS-OCT CASIA 2 and submitted to the AI algorithms

Curvatures Fourier transform Elevation settings ESI Pachymetry Wavefront aberrations

Keratometry

• Ksteep, Kflat, Kmean,

axes

Posterior index

• Ksteep, Kflat, Kmean,

axes

Real

• Ksteep, Kflat, Kmean,

axes

Axial map

• Kmax 8 and 10 mm

front

• Kmax 8 and 10 mm

posterior

Tangential map

• Ksteep 6 mm and x, y

localization

• IPI 6 mm and location

x, y

Fourier index axial power

• Keratometry

◦ Sphere, regular,

asymmetry, high-order,

axes (within 3 and 6

mm)

• Anterior

◦ Sphere, regular,

asymmetry, high-order,

axes (within 3 and 6

mm)

• Posterior

◦ Sphere, regular,

asymmetry, high-order,

axes (within 3 and

6 mm)

• Real

◦ Sphere, regular,

asymmetry, high-order,

axes (within 3 and

6 mm)

• Cylinder

◦ FK cylinder, FP

cylinder, FR cylinder

and their axes in 4, 5,

and 6 mm

Anterior

• EAH BFS

• EAH in 3, 6, and 9mm

• And their location x, y

Posterior

• EPH BFS

• EPH in the 3, 6 and

9 mm

• And their location x, y

Difference

• EPH-EAH

Status

• Score %

• ESI anterior score %

• ESI score posterior

score %

Apex

• Thinnest point and its

location x, y

Anterior

• Coma, coma axis,

AS4, AS35, AS40,

AS46, HOAs, Zernike

S3, S4, S5, S6 within 4

and 6 mm

Posterior

• Coma, coma axis,

AS4, AS35, AS40,

AS46, HOAs, Zernike

S3, S4, S5, S6 within 4

and 6 mm

Total

• Coma, coma axis,

AS4, AS35, AS40,

AS46, HOAs, Zernike

S3, S4, S5, S6 within 4

and 6 mm

AI = artificial intelligence; AS3 = spherical aberration third order, same for the fourth, fifth, sixth order; AS35 = spherical aberration third order and fifth order;
AS40 = spherical aberration Z4

0; AS46 = spherical aberration fourth order and sixth order; BFS = best fit sphere; EAH = elevation anterior highest point; EPH =
elevation posterior highest point; ESI = Ectasia Screening Index; FK = Fourier keratometry; FP = Fourier posterior; FR = Fourier real; HOAs = higher-order
aberrations 3, 4, 5, and 6: It is the mean of the squares of the Zernike coefficients on orders 3, 4, 5, and 6 (RMS HOA); IPI = Instantaneous Posterior Index; K =
keratometric
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RESULTS
Population Description
The demographic and topographical characteristics of the
groups are presented in Supplemental Tables 2 and 3
(available at http://links.lww.com/JRS/B222). There were
more men in the FFKC group (70% vs 30%, P < .05), and the
patients were significantly younger (28 years vs 33,P= .1) than
those in the normal eye group (P < .05). No significant dif-
ferences in age or sex were observed between the KC and
FFKC groups. There were no statistically significant differ-
ences in keratometricmaximum (Kmax) and the keratometric
flat (Kf) between the normal and FFKC groups.
Kmax is the maximum value of axial power (keratometric)

within 10 mm area, and Kf is the flat meridian value. Corneal
thinnest point (CTP) is the thinnest part of corneal thickness.
CTP was significantly lower in the FFKC group than in

the normal group but remained above 500 mm in the FFKC
group. All topographic parameters differed significantly
between KC and FFKC groups.

AI Algorithms
In random forest and in logistic regression models, 205
variables were analyzed, and only the most discriminant

ones were retained through automated relevance selection
by the models, not by human intervention. Consequently,
some data from CASIA 2 were not used for FFKC detection.

Detection of FFKC vs Normal The 2 algorithms performed
well in detecting FFKC, as given in Table 2. The area under
the receiver operating characteristic curve for detecting
FFKC was 0.99 for logistic regression and 0.98 for the
random forest (Supplemental Figures 6 and 7, available at
http://links.lww.com/JRS/B223).
For logistic regression, the accuracy was 0.97, precision

0.93, recall 1, and F1 score 0.96.
For the random forest, the values were 0.94 and 1.0 for

accuracy and precision, respectively. The recall was 0.84,
and the F1 score was 0.91.
Logistic regression exhibited the highest diagnostic

performances.
The most discriminating variables used by the random

forest and logistic regression are the optical aberration
parameters and Fourier transform data (Figure 2). In the
random forest, we analyzed the decentering on the vertical
axis (Y-axis) of different data such as IPIy, EPHy, and
CTPy, and their importance factor in the algorithm ranged
between 4% and 11% (Figure 2).

Figure 1. The yellow square shows the parameters used in logistic regression and random forest for the diagnosis of FFKC. FFKC = forme
fruste keratoconus

Table 2. Performances of the RF and the LR for detecting FFKC and normal eyes

Parameters AUC ROC Recall Precision F1 score Accuracy

RF 0.977 0.84 1.0 0.91 0.94

LR 0.988 1.0 0.93 0.96 0.97

AUC = area under the curve; FFKC = forme fruste keratoconus; LR = logistic regression; RF = random forest; ROC = receiver operating characteristic
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The confusion matrices of random forest and logistic
regression for the diagnosis of FFKC are presented in
Supplemental Tables 4 and 5, available at http://link-
s.lww.com/JRS/B222, and the area under the curve also
Supplemental Figures 6 and 7 (available at http://link-
s.lww.com/JRS/B223).
Detection of KC vs Normal For the diagnosis of the KC vs

normal eyes, the performance was excellent. The area under
the receiver operating characteristic curve for KC detection
was 1 for logistic regression and random forest. The ac-
curacy, precision, F1 score, and recall were 1 for the random
forest and logistic regression, respectively.
ESI Performance and Comparison With Our Algorithms This

index considers 75% of corneas with FFKC as normal cor-
neas, giving a specificity of 100% and sensitivity of 28% in our
population (Table 3). By comparison, the sensitivity of the
random forest is 84% and the specificity is 90%, the logistic
regression had a better performance with 100% sensitivity
and specificity (confusion matrix of random forest and lo-
gistic regression are given in Supplemental Tables 4 and 5,
available at http://links.lww.com/JRS/B222, receiver operat-
ing characteristic curve for the ESI is depicted in Supple-
mental Figure 8, available at http://links.lww.com/JRS/B223).

DISCUSSION
OCT topography is increasingly emerging as a standard
reference, and the research community requires scoring
systems and algorithms that excel when applied to this
technology.23 The CASIA 2 OCT system offers a compre-
hensive set of 205 topographic parameters, which, however,

cannot be thoroughly examined in the context of a re-
fractive surgery screening consultation.
The CASIA algorithm, ESI, underperforms FFKC identi-

fication. It exhibited a sensitivity of only 28% and maintained
specificity of 100%. Our developed algorithms have signifi-
cantly improved detection sensitivity, as illustrated in Table 3,
achieving up to 100% sensitivity in the case of logistic re-
gression while preserving an identical specificity level.
Regardless of the algorithm used, it consistently excelled

in identifying cases of KC without detection errors.
The performances of logistic regression and random

forest for the detection of FFKC were similar to those in
other studies.24–26 The main difficulty in comparing these
studies was the lack of a consensus definition for the FFKC
and AKC groups.
The algorithm’s parameter specifics provided valuable

insights because the primary variables they rely on differ
from typical clinical practice standards. Most of the dif-
ferentiating parameters pertain to the posterior surface of
the cornea. This observation was in line with the expected
pathophysiology of both KC and FFKC.27–29

Less frequently used variables, such as Fourier transform
asymmetry, off-center position of the CTP from the vertex,
or data from the tangential map, assumed a significant role
in random forest and logistic regression models.
Individually, each of these parameters demonstrated

significance in the diagnosis of FFKC: Steinberg et al. also
found that the Fourier transform asymmetry parameter was
one of the most discriminating between normal eyes and
the subclinical form of KC, with a validity of 0.81.30 Their
study was also performed on CASIA.
In addition, Kamiya et al. found that posterior elevation

and posterior curvature showed the highest accuracy for
single-map analysis; they used anterior-segment OCT
CASIA and a neural network.31

The keratometric data are derived from the default axial
map; however, it is possible to collect these values in tangential
mode. As shown by Tummanapalli et al. and Rabinowitz, the
tangentialmap ismore sensitive than the axialmap in detecting
early KC.32,33 Usually, this mode is dedicated to contactology,

Figure 2. The histogram repre-
sents the data selected by the
random forest algorithm and their
importance in distinguishing
FFKC from a healthy eye. The
most discriminating data are
grouped in this figure.Aberr Ant =
aberration anterior; Aberr Post =
aberration posterior; CTP = cor-
neal thinnest point; EPHy = ele-
vation posterior highest offset y in
millimeters; FFKC = forme fruste
keratoconus; FIAP AP 6 = Fourier
index axial power asymmetry
posterior within 6 mm; IPI Y = in-
stantaneous posterior offset set Y
in millimeters; Pachy T = pachy-
metry temporal

Table 3. Comparison of performances of the ESI, RF, and
LR for diagnosis of FFKC

Parameters Sensitivity (%) Specificity (%)

ESI 28 100

LR 100 100

RF 84 90

ESI = Ectasia Screening Index; FFKC = forme fruste keratoconus; LR =
logistic regression; RF = random forest
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but it seems that the minimal change in the decentering of the
maximum posterior curvature is the first to be detected. The
axial mode may smooth this change, and a tangential map
should be considered for refractive surgery screening.
The robustness of our study emanated from the in-

tegration of a multitude of parameters with a deliberate
emphasis on selecting the most critical ones.
Although CASIA provides the ESI, the algorithm un-

derpinning it and the precise parameters used in its gen-
eration remain undisclosed. In the context of refractive
surgery, attaining heightened sensitivity in detecting FFKC
is paramount.
Furthermore, our study enrolled 88 FFKC cases, repre-

senting a sizable cohort. It can be inferred that ESI may not
have been trained on a substantial number of FFKC, which
could potentially diminish its sensitivity.
However, our sample size is a limitation, we have

a comparatively large number of FFKC in comparison with
previous studies, the overall patient count still falls short for
AI algorithms, which are typically engineered to handle
thousands of data entries.
Another limitation of our study is the absence of epi-

thelial mapping. Most of our data were collected before we
obtained the last update of the CASIA software, which not
allowed us to obtain an epithelial map. It would be in-
teresting to see if the mapping can discriminate FFKC, KC,
and normal eyes, as it appears in the literature.34,35

The originality of this study lied in the utilization of the
SS-OCT topography CASIA 2, which distinguished it
from most other studies that used the Pentacam.15,36–39 In
2018, the team lead by Yousefi was the first to develop an
algorithm on the CASIA: AI permitted to diagnose and
stage KC using a model based on unsupervised machine
learning, this type of machine learning is designed to
process smaller amounts of data.40 The most significant
difference from our study is the AI model; their algorithm
is unsupervised. They used unsupervised density-based
clustering in t-distributed stochastic neighbor embedding
space to identify eyes with similar corneal features and to
cluster eyes into objectively nonoverlapping groups. They
showed that cluster III (mild KC) had a higher posterior
ESI than anterior ESI, suggesting that posterior param-
eters were more discriminating. In addition, the extremity
of cluster 2 (normal and FFKC groups) had an ESI not
concordant with the unsupervised machine learning re-
sult, suggesting that some FFKCs are not diagnosed by
ESI, as in our study.
There was a lack of AI studies on topographic OCT in the

literature. Recently, the Saad team has developed an AI
model for the detection of asymmetric KC using a model
combining various parameters such as curvature, elevation,
and pachymetric indices.13 Their model was developed using
Anterion OCT, and their findings closely align with ours,
with an area under the curve of 0.954 compared with 0.99 for
logistic regression in our study. Our study was one of the few
conducted on CASIA 2 and the only 1 comparing the
performance of ESI with another AI model. Topographers
are not interchangeable, meaning that each algorithm is

designed to be used by a specific type of topographer. Al-
though the exact variables and their weightings used in
calculating the ESI are not known, there are some similarities
between the variables used in ours algorithms and those
found in the ESI tab. Variables such as IPI and its location (X,
Y), pachymetry map, and asymmetry of Fourier analysis are
present in our random and logistic regression algorithms,
indicating some overlap in the parameters considered for
ectasia screening (Figures 1 and 2).
Using AI, we highlighted new parameters relevant to SS-

OCT CASIA 2.
The random forest and logistic regression algorithms

seem to be more efficient than the ESI; thus, changes to the
variables included in the ESI may need to be considered by
the manufacturer.

WHAT WAS KNOWN
� Artificial intelligence (AI) has emerged as a promising tool in

the diagnosis of forme fruste keratoconus (FFKC) by enabling
the integration of numerous corneal parameters and en-
hancing diagnostic accuracy.

� Most of the published studies have been conducted using
Scheimpflug topographers; however, OCT technology is
emerging as a replacement due to its enhanced performance
capabilities.

WHAT THIS PAPER ADDS
� This study has led to the development of 2 high-performing AI

algorithms for diagnostic of FFKC and KC using the CASIA 2,
which can be used in routine clinical practice.

� Our diagnostic scores have demonstrated superior perfor-
mance in diagnosing FFKC comparedwith those provided by
the CASIA 2.
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