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TeOddWeibull-G (OWG) family of distributions has been discussed earlier in the literature.Tis family of distributions provides a “better
ft” in certain practical situations. In a similar fashion, the OWG family of distributions is defned in this article. A method of moments
estimator based on themaximumentropy principle is proposed for the discrimination of twomembers of theOWG family of distributions.
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1. Introduction

Tere have recently been attempts to create new families of
probability distributions to represent and understand real-
world phenomena [1–7]. Generating new distributions al-
lows researchers and practitioners to develop more accurate
models that can capture the underlying characteristics of
diferent datasets. One such illustration is a large family of
univariate distributions derived from the Weibull distri-
bution that Bourguignon, Silva, and Cordeiro [8] proposed.
Bourguignon, Silva, and Cordeiro [8] extend any continuous
baseline distribution by two additional parameters using the

T-X technique [9]. Te two additional parameters control
the skewness and the kurtosis of the distribution. For any
baseline cumulative distribution function (cdf), G(x; ζ),
which depends on a parameter vector ζ, following the no-
tation of Bourguignon, Silva, and Cordeiro [8], the cdf and
probability density function (pdf) of the Odd Weibull-G
(OWG) family of distributions is defned by

F x; β1, β2, ζ( 􏼁 � 1 − exp −β1
G(x; ζ)

G(x; ζ)
􏼢 􏼣

β2⎧⎨

⎩

⎫⎬

⎭ (1)

and

f x; β1, β2, ζ( 􏼁 � β1β2g(x; ζ)
G(x; ζ)

β2−1

G(x; ζ)
β2+1 exp −β1

G(x; ζ)

G(x; ζ)
􏼢 􏼣

β2⎧⎨

⎩

⎫⎬

⎭, (2)

respectively, where G(x; ζ) � 1 − G(x; ζ), g(x; ζ) � dG(x;

ζ)/dx, x> 0, and β1 and β2 are positive parameters. Model
(2) has the advantage that a vast family of distributions can
be formed from any continuous distribution, G(x; ζ), with
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the parameters β1 and β2 regulating the skewness and the
kurtosis. In their article, Bourguignon, Silva, and Cordeiro
[8] showed that this family of distributions provides a better
ft than other commonly used distributions. In the literature,
families of Weibull related distributions have also been
addressed, for example, the new Weibull generalized-G by
Oluyede, Sengweni, and Makubate [10]; the Weibull normal
distribution by Famoye, Akarawak, and Ekum [11]; the
Weibull exponential distribution by Oguntunde et al. [12]
and theWeibull Dagum by Tahir et al. [13]; to mention a few.
Te class of distributions for the special case of β2 � 1 is
referred to as the Odd Exponential-G (OEG) family of
distributions with cdf and pdf given by

FOWG x; β1, ζ( 􏼁 � 1 − exp −β1
G(x; ζ)

G(x; ζ)
􏼢 􏼣􏼨 􏼩 (3)

and

fOWG x; β1, ζ( 􏼁 � β1g(x; ζ)
1

G(x; ζ)
2 exp −β1

G(x; ζ)

G(x; ζ)
􏼢 􏼣􏼨 􏼩,

(4)

respectively.
Determining whether specifc data can be presumed to

have come from one of the two provided arbitrary proba-
bility distributions has been a long-standing problem in
statistics. Atkinson [14, 15], Chambers and Cox [16], Chen
[17], Cox [18, 19], Dumonceaux and Antle [20], Dyer [21],
Gupta and Kundu [22, 23], Jackson [24], Kundu et al. [25],
Lee and Max [26], and Raqab, Al-Awadhi, and Kundu [27]
all had earlier discussed and provided respective solutions
for this problem. In particular, Dumonceaux and Antle [20],
Lee and Max [26], and Gupta and Kundu [22] derived
methods of choosing between the Weibull and the log-
normal distributions, the Weibull and the gamma distri-
butions, and the Weibull and the generalized exponential
distributions, respectively.

Raqab, Al-Awadhi, and Kundu [27] considered dis-
criminating among three positively skewed models being
Weibull, log-normal and log-logistic distributions. In this
article, a method of moments estimator based on the
maximum entropy principle [28] is proposed for the

discrimination of two members of the OWG family of
distributions. A not very dissimilar idea was earlier proposed
by Zografos and Balakrishnan [29] in discriminating be-
tween beta generated models and gamma generated models,
respectively.

Due to the increasing applications of the OWG family of
distributions [11–13], in this article, special attention is given
to developing a test that would allow mathematicians to
determine whether a sample taken at random from (4) is
coming from a specifc G(x; ζ) distribution. In this research,
it is observed that the diference of the Shannon entropy [30]
of any two given members of the OWG can be used to
discriminate between the members of the family in (4). In
addition, it is possible to construct an analytical form for the
Shannon entropy of some members of the OWG family.
Earlier, Huang et al. [31], although on a diferent problem,
discussed in their article some entropy based methods.

Te paper is outlined as follows.Te Shannon entropy of
the OWG, with pdf in (4) is presented in Section 2. Te
Shannon entropies of three univariate distributions pro-
duced by model (4) will be determined in a closed form and
provided as examples. In Section 3, a procedure for dis-
criminating between members of the OWG family is pro-
posed, followed by conclusions.

2. Shannon Entropy

Shannon entropy, named after the mathematician and in-
formation theorist Claude Shannon [30], is a measure of
information content in a given set of data. It provides
a quantitative measure of the average amount of information
needed to specify an outcome from a set of possibilities.
Shannon entropy has applications in various felds, in-
cluding information theory, data compression, cryptogra-
phy, and machine learning [29]. Te Shannon entropy of
a continuous distribution with density, let us say f(x), is
defned by

S(f) � − 􏽚
∞

−∞
f(x) lnf(x)dx. (5)

Tus, the Shannon entropy of the OWG family of dis-
tributions, with pdf in (4), is given by

S fOWG( 􏼁 � −ln β1 − EOWG[ln g(x; ζ)] + 2EOWG[lnG(x; ζ)] + β1EOWG

G(x; ζ)

G(x; ζ)
􏼢 􏼣, (6)

where EOWG denotes expectation under the pdf in (4).

Lemma 1. Let the random variable X be described by the
OWG family in (4). Ten, the random variable
0<Z � G(x; ζ)/G(x; ζ)<∞ has an exponential distribution
with pdf

f z; β1( 􏼁 � β1 exp −β1z( 􏼁. (7)

Proof 1. We let Z � G(x; ζ)/1 − G(x; ζ). Tus, the Jacobian
is given by dx/dz � (1 − G(x; ζ))2/g(x; ζ). Substituting Z

into (4) and multiplying by the Jacobian yields the pdf of the
random variable Z as
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f z; β1( 􏼁 � β1 exp −β1z( 􏼁. (8)

□

Lemma 2. If G(x; ζ) and g(x; ζ) are any arbitrary con-
tinuous cdf and pdf, respectively, then

a. EOWG[G(x; ζ)/G(x; ζ)] � 1/β1;
b. EOWG[lnG(x; ζ)/G(x; ζ)] � −c − ln β1;
c. EOWG[lnG(x; ζ)] � −eβ1Ei(1, β1);
d. EOWG[ln g(x; ζ)] � EZ[lng(G−1[z/(1 + z)])],

where Z has an exponential distribution with the rate
parameter β1, EOWG denotes expectation under the pdf in (4),
c ≈ 0.5772 is the Euler–Mascheoni constant, and

Ei 1, β1( 􏼁 � 􏽚
∞

β1
ln

z

β1
􏼠 􏼡e

−z
dz<∞. (9)

Proof 2. To verify Parts (a), (b), (c), and (d), we let Z �

G(x; ζ)/1 − G(x; ζ) to obtain

EOWG

G(x; ζ)

G(x; ζ)
􏼢 􏼣 � EZ[z] �

1
β1

, (10)

EOWG ln
G(x; ζ)

G(x; ζ)
􏼢 􏼣 � β1 􏽚

∞

0
ln(z)e

−β1z
dz � −c − ln β1, (11)

EOWG[lnG(x; ζ)] � β1 􏽚
∞

0
ln

1
1 + z

􏼒 􏼓e
−β1z

dz � −e
β1Ei 1, β1( 􏼁, (12)

EOWG[lng(x; ζ)] � 􏽚
∞

0
lng G

−1 z

(1 + z)
􏼢 􏼣􏼠 􏼡β1 exp −β1( 􏼁dz

EZ lng G
−1 z

(1 + z)
􏼢 􏼣􏼠 􏼡􏼢 􏼣.

(13)

□
Lemma  . Te Shannon entropy of the OWG distribution
with pdf in (4) is given by

S fOWG( 􏼁 � 1 − ln β1 − 2e
β1Ei 1, β1( 􏼁

− EZ lng G
−1 z

(1 + z)
􏼢 􏼣􏼠 􏼡􏼢 􏼣.

(14)

where Z has an exponential distribution with the rate pa-
rameter β1, and

Ei(1, β) � 􏽚
∞

β1
ln z/β1( 􏼁e

−z
dz. (15)

Proof 3. It is readily obtained by applying Lemma 2 into
equation (6). □

Lemma 4. Te pdf of OWG defned in (4) is the unique
solution of the optimization problem

fOWG(x) � argmax
f

S(f), (16)

under the constraints

1. Ef[G(x; ζ)/G(x; ζ)] � 1/β1;
2. Ef[lnG(x; ζ)] � −eβ1Ei(1, β1);
3. Ef[ln g(x; ζ)] � EZ[ln g(G−1[z/(1 + z)])],

where Z has an exponential distribution with the rate pa-
rameter β1, and

Ei 1, β1( 􏼁 � 􏽚
∞

β1
ln z/β1( 􏼁e

−z
dz. (17)

Proof 4. Let f be a pdf satisfying the requirements 1 − 3.Te
Kullback–Leibler divergence between f and fOWG is given
by

0≤D f, fOWG( 􏼁 � 􏽚
∞

−∞
f(x) ln

f(x)

fOWG(x)
dx

� 􏽚
∞

−∞
f(x) lnf(x)dx

− 􏽚
∞

−∞
f(x) lnfOWG(x)dx

� −S(f) − 􏽚
∞

−∞
f(x) lnfOWG(x)dx.

(18)

For more details regarding Kullback–Leibler divergence
between two arbitrary distributions, the reader is referred to
Zografos and Balakrishnan [29] and references contained in
it. Using the defnition of the fOWG as given in (4) and based
on the constraints (1)–(3) yields
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􏽚
∞

−∞
f(x) lnfOWG(x)dx � ln β1 + Ef[lng(x; ζ)] − 2Ef[lnG(x; ζ)] − β1Ef

G(x; ζ)

G(x; ζ)
􏼢 􏼣

� ln β1 + EZ lng G
−1

[z/(1 + z)]􏼐 􏼑􏽨 􏽩 + 2e
β1Ei 1, β1( 􏼁 − 1

� −S fOWG( 􏼁.

(19)

Substituting (19) into (18) yields

0≤D f, fOWG( 􏼁 � −S(f) + S fOWG( 􏼁, (20)

with equality if and only if D(f, fOWG) � 0, that is, if
f � fOWG, which was to be proved.

As demonstrated by Lemma 3, the Shannon entropy of
the OWG family in (4) is divided into two components. Te
frst component is tied to the parameter β1 of the Weibull
distribution, whereas the second part is entirely related to
the arbitrary distribution G(x; ζ). Moreover, all members of
the family in (4) share the frst component and they are
distinguished from each other solely by EZ[lng(G−1[z/(1
+ z)])]. Hence, the term EZ[lng(G−1[z/(1 + z)])] can be
used to distinguish between themembers of the family in (4).
It is possible, in some cases, to obtain an analytic form for the
Shannon entropy of the family in (4), as shown in the
following examples. □

Example 1. Consider the oddWeibull uniform (OWU).Te
cdf and pdf of the uniform distribution is G(x; η) � x/η and
g(x; η) � 1/η, respectively, where 0<x< η. As a result
EZ[lng(G−1[z/(1 + z)])] � −ln η. Tus, using Lemma 3,
Te Shannon entropy of the OWU is given by

S fOWU( 􏼁 � 1 − ln β1 − 2e
β1Ei 1, β1( 􏼁 + ln η. (21)

Example 2. As a second example, let us consider the odd
Weibull exponential (OWE). Te cdf and pdf of the expo-
nential distribution is G(x; λ) � 1 − e−λx, and
g(x; λ) � λe−λx, respectively, for 0< x<∞ and λ> 0. Con-
sequently, Ez[ln g(G−1[z/(1 + z)])] � ln λ − eβ1Ei(1, β1).
Tus using Lemma 3, the Shannon entropy of the OWE is
given by

S fOWE( 􏼁 � 1 − ln β1 − e
β1Ei 1, β1( 􏼁 − ln λ. (22)

Example 3. Consider the odd Weibull logistic (OWL). Tis
is obtained from (4) when the baseline distribution is the
logistic distribution with cdf and pdf G(x) � 1/1 + e−λx and
g(x) � λe−λx/(1 + e−λx)2, for x ∈ R, λ> 0, respectively.
Ten, G−1[z/(1 + z)] � ln(z)/λ and g(G−1 z( /(1 + z))

� λz/(1 + z)2. Consequently,

EZ lng G
−1 z

(1 + z)
􏼢 􏼣􏼠 􏼡􏼢 􏼣 � ln λ − c − ln β1 − 2e

β1Ei 1, β1( 􏼁.

(23)

Tus, the Shannon entropy of the OWL distribution is
simply

S(f) � 1 + c − ln λ. (24)

Similarly, the Shannon entropy of other members of the
family described in (4), including but not limited to, odd
Weibull Pareto (OWP), odd Weibull half logistic (OWHL),
odd Weibull power function (OWPF), and Odd Weibull
Weibull (OWW) could be easily obtained via Lemma 3.

3. Discrimination Process

Consider a random sample X1, X2, . . . , Xn of size n from the
OWG distribution with pdf in (4). Te goal is to determine
which model from the OWG family of distributions best fts
a given dataset. To achieve this, we require a method for
diferentiating between various models within the OWG
family. According to the maximum entropy principle, the
most appropriate model to describe the data is the one with
the distribution function G � G(x; ζ) that maximizes the
corresponding Shannon entropy. In view of Lemma 3, to
discriminate between two candidate models, with arbitrary
cdfs G1 and G2 and respective pdfs g1 and g2, we use the
following test statistic:

M1,2 �
1
n

􏽘

n

i�1
ln

g2 G
−1
2 z

(2)
i / 1 + z

(2)
i􏼐 􏼑􏽨 􏽩􏼐 􏼑

g1 G
−1
1 z

(1)
i / 1 + z

(1)
i􏼐 􏼑􏽨 􏽩􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦, (25)

where

• Zi � Gj(xi)/1 − Gj(xi), for i � 1, 2, . . . , n, and for ar-
bitrary cdf Gj (where j � 1, 2).

3.1. Interpretation of Results

• IfM1,2 is positive, the test supports the model OWG1.
• IfM1,2 is negative, the test supports the model OWG2.

Tis procedure efectively discriminates between two
models within the OWG family based on their respective
cdfs G1 and G2.

3.2. Hypothesis Testing. To decide between the hypotheses:

• H0: parent distribution is G2

• H1: parent distribution is G1,

We use the statistic M1,2. Te null hypothesis H0 is
rejected at a signifcance level α if

M1,2 ≥yα, (26)

where yα represents the upper 100 × α% point of the dis-
tribution of M1,2, under the null hypothesis H0.
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4. Conclusions

In this article, the problem of discriminating between two
members of the OWG family was considered. Tis dis-
criminating process, using the method based on the max-
imum entropy principle, allows us to objectively decide
which distribution from the OWG family best represents the
data. It provides a robust statistical method for comparing
two potential parent distributions by evaluating the entropy
associated with each candidate.
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