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Abstract

Background: Congenital heart surgery (CHS) encompasses a heterogenous population of 

patients and surgeries. Risk standardization models that adjust for patient and procedural 

characteristics can allow for collective study of these disparate patients and procedures.

Objectives: We sought to develop a risk adjustment model for CHS using the newly developed 

Risk Stratification for Congenital Heart Surgery for ICD-10 Administrative Data (RACHS-2) 

methodology.

Methods: Within the Kids’ Inpatient Database (KID) 2019, we identified all CHS that could 

be assigned a RACHS-2 score. Hierarchical logistic regression (clustered on hospital) was used 

to identify patient and procedural characteristics associated with in-hospital mortality. Model 

validation was performed using data from 24 State Inpatient Databases (SID) during 2017.

Results: Of 5,902,538 total weighted hospital discharges in KID 2019, 22,310 pediatric cardiac 

surgeries were identified and assigned a RACHS-2 score. In-hospital mortality occurred in 543 

(2.4%) of cases. Using only RACHS-2, the mortality mode had a C-statistic of 0.81 that improved 

to 0.83 with the addition of age. A final multivariable model inclusive of RACHS-2, age, payor, 

and presence of a complex chronic condition outside of congenital heart disease further improved 

model discrimination to 0.87 (p<0.001). Discrimination in the validation cohort was also very 

good with C-statistic of 0.83.
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Conclusions: We created and validated a risk adjustment model for CHS that accounts 

for patient and procedural characteristics associated with in-hospital mortality available in 

administrative data, including the newly developed RACHS-2. Our risk model will be critical 

for use in health services research and quality improvement initiatives.

Condensed Abstract:

Risk-adjustment is critical for congenital heart surgery (CHS) where patients and surgeries are 

heterogenous. The Risk Stratification for Congenital Heart Surgery for ICD-10 Administrative 

Data (RACHS-2) methodology is a newly developed stratification system for CHS. Our objective 

was to build a full risk-adjustment model for use in ICD-10 administrative data that incorporates 

RACHS-2 in addition to other important clinical characteristics. We developed a risk model that 

adjusts for RACHS-2, age, payor, and presence of a complex chronic condition. Our risk-model 

has excellent discrimination with C-statistic of 0.87 and 0.83 in the derivation and validation 

cohorts, respectively.
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Introduction

Congenital heart disease (CHD) is the most common type of congenital anomaly, occurring 

in ~1% of all live births.1 Despite improvement in survival over time,2 CHD remains a 

significant cause of morbidity, mortality, and expense, with hospital costs estimated at more 

than $1.4 billion.3 The burden of disease and associated costs highlight the importance of 

identifying ways to improve the care for this vulnerable population of patients.

Health services and outcomes research and quality improvement initiatives represent 

important mechanisms to identify deficiencies in care, variability in outcomes across centers, 

and potential targets for quality improvement for congenital heart surgery (CHS) patients. 

These types of initiatives are most effective through use of pooled data across centers by 

way of multicenter clinical or administrative datasets that allow for larger patient samples 

and more fully represent the spectrum of cardiovascular care. However, accurate analysis 

and interpretation of data from multicenter registries is contingent upon methods to account 

for the heterogeneity of patients treated and various CHS procedures across hospitals. Risk 

adjustment methodology, therefore, has become a critical component of CHS research.

Over the past two decades, various risk adjustment models for CHS have been created 

both for use in clinical and administrative data. The Risk Adjustment for Congenital 

Heart Surgery (RACHS-1) methodology created a consensus based tool to classify CHS 

procedures based upon perceived risk of the surgery and could be used in administrative 

and clinical data.4 While a valuable tool for performing risk stratification, the transition 

from ICD-9 to ICD-10 in 2015—which included a wholesale redesign of cardiac surgical 

diagnostic and procedural codes, with limited 1-to-1 correlations— precluded use of 

RACHS-1 within administrative data after 2015. Most recently, the Risk Adjustment 

for Congenital Heart Surgery for ICD-10 Administrative data (RACHS-2) stratification 
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methodology was developed and validated for classifying CHS procedures by ICD-10 

codes.5,6 This classification tool was found to predict mortality as well as stratification 

tools developed for use in clinical registry data.7,8 However, RACHS-2 incorporated only 

surgical procedure and age and was not inclusive of other potential patient factors that 

may predict in-hospital mortality. As was seen in other CHS risk adjustment models, the 

addition of patient characteristics beyond surgical procedure and age can improve model 

discrimination.9,10 To this end, we sought to develop and validate a full CHS risk adjustment 

model for use in administrative data that incorporates the RACHS-2 stratification system and 

other patient characteristics associated with in-hospital mortality.

Methods

Study Population

Model development was performed using the 2019 Kids’ Inpatient Database (KID).11 

The KID is one of several databases that are part of the Healthcare Cost and Utilization 

Project (HCUP). The KID was developed through a Federal-State-Industry partnership 

sponsored by the Agency for Healthcare Research and Quality and is a component of 

the Healthcare Cost and Utilization Project (HCUP). The KID includes administrative data 

abstracted by hospitals for billing purposes and is the largest publicly available all-payor 

pediatric inpatient dataset in the US. The KID is released every 3 years and is a sample of 

approximately 3 million pediatric discharges from 48 states plus the District of Columbia. 

The KID includes a sample of pediatric discharges (defined as less than 21 years of age) 

and samples ≈10% of healthy newborn discharges and ≈80% of other pediatric inpatient 

discharges. The data set includes a weight variable for each observation so that weighted 

analysis can produce national estimates of total US discharges for specific diagnoses and 

procedures. Discharge weights are developed using the American Hospital Association 

(AHA) reference of community, non-rehabilitation hospitals as the standard. To develop the 

weights, hospitals are stratified on six characteristics (hospital ownership, bed size, teaching 

status, rural/urban location, US region, and a stratum for freestanding children’s hospitals). 

Discharge weights are created within each stratum and reflect the proportion of AHA 

newborns for newborn discharges and the proportion of (non-newborn) AHA discharges for 

non-newborn discharges. Data elements available in the KID include patient demographics, 

primary and secondary diagnoses and procedures, discharge status, length of stay, expected 

payment source, total hospital charges, comorbidity measures, and hospital characteristics.

Model validation was performed using 2017 data from 24 State Inpatient Databases (SID).12 

The SID is another component of the HCUP set of databases. Data content is similar to 

variables collected within the KID, but unlike the KID, is not a sample of discharges. HCUP 

data from each year and data source is subject to standard procedures for ensuring data 

quality and consistency (https://hcup-us.ahrq.gov/db/quality.pdf).

Study Outcome

The primary outcome was in-hospital mortality defined as any death occurring following a 

RACHS-2 surgery (see predictor variables below for more details) and occurring prior to 

hospital discharge. Operative mortality (deaths occurring during hospitalization or within 
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30 days of the procedure, if discharged prior to 30 days) while often used in CHS, is 

not available in this dataset, as the data do not follow patients post-discharge. Records 

were excluded if they were missing data on hospital disposition. These instances were rare 

comprising only 5 unweighted (8 weighted) encounters.

Patient and Procedural Risk Factors

We considered a number of candidate variables for inclusion in the full risk-adjustment 

model. These variables were identified among those contained within the HCUP data and 

those with potential prognostic importance based upon clinical experience or prior literature. 

RACHS-2 was the primary predictor variable we included in our risk-adjustment model. 

Details regarding RACHS-2 development and validation have been previously published.5,6 

In brief, RACHS-2 is a recently developed methodology for categorizing CHS within 

administrative data that uses ICD-10 codes to identify CHS and place them into groups 

based upon empirically derived risk of mortality (5 groups: category 1=least risk; category 

5=most risk). RACHS-2 combined with patient age was found to have discrimination similar 

to STS and the European Association for Cardio-Thoracic Surgery (EACTS) Congenital 

Heart Surgery Mortality Categories for risk stratification (STAT Mortality Categories) when 

the STAT Mortality Categories were applied to linked clinical registry data.

Other predictor variables included patient age (categorized as neonates [<30 days], 

infants [≥30 days to ≤1 year], toddlers [1–4 years], younger children [5–9 years], older 

children [10–14 years] and young adults [15–20 years]. Payor was another candidate 

variable considered for model inclusion (government vs. private insurance vs. other). We 

also considered patient medical non-cardiac co-morbidities as captured by the pediatric 

complex conditions classification (CCC) system. Briefly, the CCC classification system 

was originally developed in 2000 and was created to identify medical conditions that 

could be “reasonably expected to last at least 12 months (unless death intervenes) and 

to involve either several different organ systems or 1 organ system severely enough to 

require specialty pediatric care and probably some period of hospitalization in a tertiary care 

center.” 13,14 CCCs include ten broad categories (neuromuscular, cardiovascular, respiratory, 

renal, gastrointestinal, hematologic or immunologic, metabolic, other congenital or genetic 

defect, malignancy, and premature and neonatal). CCCs also include a domain indicating 

that the patient has undergone transplantation and a domain indicating reliance on a medical 

technology or device.

Statistical Analysis

Baseline characteristics of patients experiencing in-hospital mortality were compared to 

characteristics of those not experiencing mortality using chi-square tests for categorical 

variables. Characteristics of the derivation and validation cohorts were also compared using 

this same methodology to compare baseline similarities.

Hierarchical multivariable logistic regression with backwards elimination was used to 

identify characteristics predictive of in-hospital mortality while accounting for the clustered 

nature of the data (patients treated at different hospitals)15 and consistent with outlined 

standards for the creation of risk-adjustment models.16 Hierarchical models allow for 
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assessment of hospital variation in mortality rates after accounting for patient case mix 

by estimating the log-odds of mortality as a function of demographic and clinical variables 

(fixed effects) and a random effect for each hospital. For our analysis, we first constructed 

hierarchical models inclusive of only RACHS-2 score. We then sequentially added clinical 

variables to assess the incremental change in model discrimination after addition of 

these variables. A C-statistic was used to assess model discrimination in the derivation 

and validation cohorts.17 While changes in C-statistics can be challenging to interpret 

from a clinical perspective, in general, even small increases in the C-statistic represent 

significant improvements in models’ ability to predict outcomes, with a C-statistic ≥0.7 and 

<0.8 indicating acceptable discrimination. A C-statistic ≥0.8 and <0.9 indicating excellent 

discrimination, and a C-statistic ≥0.9 considered outstanding discrimination.18 Calibration 

was assessed in the validation cohort (e.g., agreement between observed outcomes and 

predictions) and depicted graphically by plotting predicted rates on the x-axis and observed 

rates on the y-axis. Perfect predictions would be along the 45 degree line. A slop in 

the calibration plot >1 suggests underestimation in the high risk and overestimation in 

the low risk. A slope <1 denotes underestimation in the low risk and overestimation 

in the high risk.19 The intercept of the calibration plot represents the overall degree of 

calibration and indicates the extent to which the predictions are systematically too low 

or too high.20 An intercept of zero suggests good calibration, an intercept >0 denotes an 

average underestimation, and an intercept <0 denotes an average overestimation.19 All study 

analyses were performed with SAS 9.4 (SAS Institute, Cary, NC).

The study was conducted using de-identified administrative data and did not meet criteria 

for requirement of informed consent. Institutional Review Board approval was not required 

given that this de-identified dataset did not qualify as human subjects research.

Results

In KID 2019, there are a total of 3,089,283 unweighted and 5,902,538 weighted discharges. 

Using RACHS-2, we identified 16,630 unweighted encounters for congenital heart surgery 

from 323 hospitals resulting in a weighted estimate of 22,310 congenital heart surgeries 

for model development. Of the 323 hospitals, 207 were from hospitals with less than 10 

sampled cases. Therefore, 16,242 (97.7%) of the unweighted encounters were from the 116 

hospitals with at least 10 sampled cases. We identified 7,467 RACHS-2 congenital heart 

surgery cases from 99 hospitals within the included SIDs for our validation analysis.

Within the derivation cohort, approximately one-half (51.7%) of the study population was 

identified as White, 14% were Black, 21.4% Hispanic, 4.1% Asian or Pacific Islander, 

0.7% Native American, and 8% of other races. There were slightly more males than 

females (55.5% vs. 45.5%). Approximately one in five patients were neonates (22.2%) 

and toddlers (20.2%), one-third were infants, with relatively equal proportion of younger 

children (9.4%), older children (7.7%), and young adults (8.5%). RACHS-2 categories 1 

and 2 were most common, comprising 31.1% and 35.4% of all procedures, respectively. 

These were performed at 51% and 82% of hospitals, respectively. Only 5% of cases were 

RACHS-2 category 5, performed at 28% of hospitals. Almost half of patients (46.6%) had a 

CCC outside of their CHD.
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Table 1 provides a comparison of characteristics between the derivation and validation 

cohorts. While there were some statistically significant differences between baseline 

characteristics of the derivation and validation cohort, clinically these differences were 

small. For example, those identifying as Hispanic comprised 21.4% of the derivation cohort 

(KID) and 15.5% of the validation cohort (SID). Neonates comprised 22.2% of the study 

population in the KID vs. 25% in the SID.

Of all 22,310 RACHS-2 cases in the derivation cohort, 543 (2.4%) resulted in in-hospital 

death. Table 2 provides a comparison of characteristics for those patients with in-hospital 

mortality vs. those without. Patients with private insurance were less likely to experience 

in-hospital mortality compared to those with government or other insurance (1.9% vs. 2.8% 

vs. 2.9%, p<0.001). Neonates had higher rates of in-hospital mortality than infants, toddlers, 

younger children, older children, and young adults (6.9% of all neonates, infants 1.4%, 

toddlers 0.9%, younger children 0.9%, older children 0.9%, young adults 1.4%, p<0.001). 

As expected, mortality increased with higher RACHS-2 score (category 1 of 0.5%, category 

2 of 1.3%, category 3 of 3.1%, category 4 of 5.9%, category 5 of 12.3%, p<0.001). 

The in-hospital mortality rate incrementally increased with greater number of non-cardiac 

CCCs. For patients without non-cardiac CCC, mortality was 0.8%, 2.9% for those with one 

additional CCC, 6.1% for those with 2–3 additional CCC, and 7.5% with four or more CCC.

Three separate multivariable hierarchical logistic regression models were created to evaluate 

the association between RACHS-2 score and in-hospital mortality accounting for patient and 

procedural characteristics. A base model adjusting for RACHS-2 category alone yielded a 

C-statistic of 0.81 [95% confidence interval (CI): 0.78, 0.83) with C-statistic in validation 

cohort of 0.75(95% CI: 0.71, 0.78). The addition of age to the multivariable model further 

improved model discrimination, resulting in a model C-statistic of 0.83 (95% CI: 0.81, 

0.85) and validation C-statistic of 0.78 (95% CI: 0.75, 0.81). The final multivariable model 

inclusive of RACHS-2 category, patient age, insurance provider, and complex chronic 

condition category showed excellent discrimination with a model C-statistic of 0.87 (95% 

CI: 0.86, 0.89) (Central Illustration), an improvement of 0.04 (95% CI: 0.03, 0.05, p<.001) 

over the model including RACHS-2 and age. Discrimination in the validation cohort was 

similar with a C-statistic of 0.83 (95% CI: 0.80, 0.85). The full risk model including model 

coefficients is included in Supplemental Table 1.

A calibration plot in the validation cohort was also constructed. The calibration plot had 

a slope of 0.98 (standard error [SE] 0.05; p-value [for difference from 1]= 0.68) and an 

intercept of 0.003 (SE 0.002; p-value [for difference from 0]= 0.28) (Figure 1).

Discussion

Using two large, administrative datasets, we developed and validated a risk-adjustment 

model for CHS for use in ICD-10 administrative data that incorporates the newly developed 

classification system for CHS operations (RACHS-2) in addition to other important patient 

variables. Our final model, inclusive of demographic, socioeconomic, and clinical variables 

in addition to RACHS-2 has excellent discrimination and can be used to adjust for patient 

and procedural characteristics placing patients at higher risk of in-hospital mortality. This 
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tool will be instrumental for CHS research and quality improvement initiatives using ICD-10 

administrative data.

Efforts to perform risk adjustment for CHS date back two decades and began with the 

RACHS-1 methodology and Aristotle Basic Complexity scoring system (ABC).4,21 Given 

that case volumes for some CHS are low and given how this could affect empirically 

derived estimates of risk, these seminal initiatives categorized CHS procedures based upon 

perceived risk as determined by a committee of national and international experts. For 

RACHS-1, the group created six risk groups based upon expert opinion, although adjusted 

groupings when empirically derived risk estimates differed from expert opinion. Empiric 

data were then used to identify other clinical variables, outside of the specific surgery being 

performed, that were included in the final multivariable model. In the ABC scoring system, 

the expert panel divided CHS procedures into four groups based upon expert opinion 

regarding risk of morbidity, mortality, and technical complexity. These methodologies 

demonstrated that grouping surgeries based upon risk was a meaningful way to study the 

collective outcomes of CHS procedures without being limited by the small case numbers 

for some surgeries. Moreover, these risk-stratification systems demonstrated how, when 

combined with clinical characteristics, the full risk-adjustment models could be used to 

evaluate hospital performance22 and to evaluate for other patient characteristics that could be 

associated with surgical outcomes.23,24

Following the development of RACHS-1 and ABS, other important CHS risk-adjustment 

tools were developed. As a combined initiative, the Society of Thoracic Surgeons (STS) 

and the European Association for Cardiothoracic Surgery (EACTS) engaged in a similar 

effort aimed at grouping CHS surgeries by risk.7,8 In contrast to the earlier expert consensus 

based groupings, the STS-EACTS initiative assessed surgical risk (defined as operative 

mortality) based largely on empiric data. These ‘STAT’ scores and categories were then used 

to develop a full risk-adjustment model for the STS-CHS database (STS-CHSD), inclusive 

of both patient and procedural factors.9,10 Through this work, the investigators determined 

that despite the predictive ability of the STAT scores, inclusion of patient-level factors, in 

addition to procedure-specific factors, improved model predictive ability. The STS-CHSD 

risk-adjustment model has become an integral part of research and quality improvement 

efforts using clinical registry data.

The present work represents a critical next step in our efforts to continue with research 

and quality improvement initiatives that can improve care for CHD patients. Through 

RACHS-1 and ABC, it became apparent that risk stratification of CHS is possible. The 

creation of STAT mortality categories established that use of empiric data and a more 

inclusive array of operations can improve predictive validity when compared to expert 

consensus. In 2015, the transition from ICD-9 to ICD-10—which included a wholesale 

redesign of cardiac surgical diagnostic and procedural codes, with limited 1-to-1 correlations

—resulted in a need to build upon these efforts and create a risk-stratification system for 

CHS that could be used for ICD-10 data. RACHS-2 was then empirically created and 

allowed for risk-stratifying CHS procedures using ICD-10 administrative data including the 

full complement of surgeries in the STAT Mortality Categories.5,6 However, recognizing the 

need to incorporate other important clinical factors, beyond the specific surgery performed, 
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we have created a risk-adjustment model for use in ICD-10 that incorporates RACHS-2 

category in addition to other clinical and sociodemographic factors. We believe that our 

inclusion of both procedural factors (RACHS-category) and other patient characteristics, 

including medical co-morbidities (presence of a CCC), is of particular importance. Prior 

work has demonstrated that an increasing number of patients undergoing CHS have medical 

co-morbidities.25 Creation of a risk-adjustment model that accounts for the increasing 

complexity of our patient population over time is critically important to ensure that we are 

accurately characterizing the medical complexity of the patients undergoing CHS. Though 

we found that surgical procedure, as determined by RACHS-2 category, was the variable 

most significantly associated with in-hospital mortality, we found that the addition of patient 

characteristics, including presence of a CCC, significantly improved the ability to predict 

in-hospital mortality. Our model performance is excellent, with C-statistics of 0.87 and 

0.83 in the derivation and validation cohorts, respectively, a predictive ability similar to the 

predictive ability of the STS-CHSD clinical risk models9,10.

The field of CHD encompasses a broad spectrum of disease ranging from relatively simple 

defects and surgeries of low operative risk, to complex CHD requiring repair or palliation 

that introduces heterogeneity and high risk. Given this heterogeneity, evaluating differences 

in outcomes between centers can be challenging. The implementation of various risk-

adjustment strategies has facilitated these comparisons and allowed the CHD community to 

identify variations in outcomes between surgeons, centers26–28 and work towards improving 

care when variability is found. At present a risk-adjustment model for use in clinical registry 

data is readily available9,10 but a full risk-adjustment model for use in ICD-10 administrative 

data is not. While CHD research using clinical registry data provides critical insights into the 

care and outcomes of these patients, administrative data provides information that is directly 

relevant to policy initiatives, is more nationally comprehensive than clinical data and thus 

critical to the understanding of population-based health. While clinical registries like the 

STS-CHSD encompass data from many centers nationally performing CHS, participation 

is voluntary and not all centers performing CHS contribute data. Low volume centers are 

particularly lacking. In fact, prior studies using administrative data have identified over 150 

centers performing CHS in contrast to the ~115 centers contributing data to the STS and in 

contrast to the 323 hospitals that were identified in our study.26,29 Moreover, clinical registry 

data may not be as readily accessible as administrative data, owing to the high costs and time 

associated with clinical registry multisite data access. For these reasons, our work represents 

an important contribution to the CHS community, particularly for health services researchers 

and hospital administration using administrative data sources.

Limitations

Our study has limitations. First, given the lack of direct patient identifiers, we were 

unable to link this de-identified administrative data to clinical data as was done in prior 

work.5 However, given that RACHS-2 has already been validated and case capture between 

administrative and clinical registry data already compared as part of prior work5, we have 

no reason to be believe that case capture for the current study would be insufficient. Second, 

as was noted as a limitation in the initial work detailing development of RACHS-2, not 

all ICD-10 codes map with precision and RACHS-2 does not always differentiate subtypes 

Jayaram et al. Page 8

J Am Coll Cardiol. Author manuscript; available in PMC 2024 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of specific operations (Ross vs. Ross-Konno; Fontan vs. Fontan revision, etc.). While this 

limitation should be noted by investigators using RACHS-2, the intent of RACHS-2 was to 

capture CHS procedures using ICD-10 administrative data and stratify them by predicted 

risk of mortality. The excellent discrimination of RACHS-2 suggests that the aggregation 

of procedural subtypes did not negatively impact the model’s predictive ability. Third, our 

study accounts for clinical characteristics measurable within administrative data and lumped 

into large groupings. This does not account for clinically meaningful but difficult to measure 

differences (such as valve morphology), or even differences between genetic syndromes. 

Since it is known that some centers make decisions to accept or not accept patients based 

on these unmeasured confounders, our model should not be used to rank centers. Lastly, 

our study accounts for some social determinants of health including payor. There is growing 

evidence that patient outcomes also differ by the neighborhoods in which patients live 

in ways not sufficiently captured by hospital.30 Further studies are needed to explore the 

impacts of neighborhood on outcomes.

Conclusions

Using a large multicenter database, we created a risk-adjustment model that can be used for 

ICD-10 administrative data and one that incorporates empirically derived estimates of risk. 

Our model has excellent predictive ability that is comparable to risk models using clinical 

registry data. Our work can be used to study the population-based outcomes of patients with 

a spectrum of CHD and undergoing all types of CHS operations. By adjusting for patient 

clinical factors and comorbidities, social determinants of health, and risk of the specific CHS 

being performed, our model can be applied to study outcomes for these patients and identify 

targets for quality or process improvement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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congenital heart disease

CHS
congenital heart surgery
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International Classification of Diseases
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RACHS
Risk Adjustment for Congenital Heart Surgery

RACHS-2
Risk Adjustment for Congenital Heart Surgery for ICD-10

KID
Kids’ Inpatient Database

SID
State Inpatient Database

AHA
American Hospital Association

HCUP
Healthcare Cost and Utilization Project

STAT Mortality Categories
Society of Thoracic Surgeons and the European Association for Cardio-Thoracic Surgery 

Congenital Heart Surgery Mortality Categories

CCC
complex chronic condition

CI
confidence interval

SE
standard error

ABC
Aristotle Basic Complexity

STS-CHSD
Society of Thoracic Surgeons Congenital Heart Surgery Database
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Core Clinical Competencies

Competency in Systems-Based Practice:

This validated risk-adjustment model accounts for characteristics including patient 

age, co-morbid conditions, socioeconomic status, and type of congenital heart surgery 

being performed. Applying this risk model to administrative data allows for equitable 

between hospital comparisons for those engaged in health services research and quality 

improvement initiatives.

Translational Outlook 1:

Future studies applying this risk model are needed to understand factors contributing to 

differences in outcomes across centers and how best to improve care across all centers.

Jayaram et al. Page 13

J Am Coll Cardiol. Author manuscript; available in PMC 2024 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Calibration Plot in the Validation Cohort.
Calibration was assessed in the validation cohort (e.g., agreement between observed 

outcomes and predictions). The plot had a slope of 0.98 (standard error [SE] 0.05; p-value 

[for difference from 1]= 0.68) and an intercept of 0.003 (SE 0.002; p-value [for difference 

from 0]= 0.28).
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Central Illustration. Predictors of In-Hospital Mortality and Receiver Operating Characteristic 
Curve for the Final Multivariable Model.
The final multivariable model inclusive of RACHS-2 category, patient age, insurance 

provider, and complex chronic condition category showed excellent discrimination with a 

model C-statistic of 0.87 (95% CI: 0.86, 0.89).
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Table 1.

Comparison of Baseline Characteristics Between the Derivation and Validation Cohort

Variable SID KID p-value

n=7,467 N=22, 310

Race—no. (%)*

 White 3,160 (54.1) 10,551 (51.7) <0.001

 Black 821 (14.1) 2,848 (14)

 Hispanic 3 906 (15.5) 4,362 (21.4)

 Asian or Pacific Islander 297 (5.1) 842 (4.1)

 Native American 71 (1.2) 151 (0.7)

 Other 586 (10.0) 1,638 (8.0)

Sex—no. (%)

 Male 4,030 (54.0) 12,371 (55.5) 0.026

 Female 3,437 (46.0) 9,938 (44.5)

Primary expected payer—no. (%)

 Government 3,750 (50.2) 10,728 (48.1) <0.001

 Private 3,407 (45.6) 9,772 (43.8)

 Other 310 (4.2) 1,810 (8.1)

Region

 Northeast 1,425 (19.1) 3,597 (16.1) <0.001

 Midwest 2,122 (28.4) 5,109 (22.9)

 South 2,076 (27.8) 8,652 (38.8)

 West 1,844 (24.7) 4,952 (22.2)

Age—no. (%)

 Neonates (0–28 days) 1,870 (25.0) 4,943 (22.2) <0.001

 Infants (29–364 days) 2,400 (32.1) 7,158 (32.1)

 Toddlers (1–4 years) 1,372 (18.4) 4,500 (20.2)

 Younger children (5–9 years) 640 (8.6) 2,103 (9.4)

 Older children (10–14 years) 565 (7.6) 1,715 (7.7)

 Young adults (15–20 years) 620 (8.3) 1,891 (8.5)

RACHS-2 category —no. (%)

 1 2,319 (31.1) 6,938 (31.1) 0.064

 2 2,771 (37.1) 7,908 (35.4)

 3 1,197 (16) 3,734 (16.7)

 4 827 (11.1) 2,605 (11.7)

 5 353 (4.7) 1,125 (5.0)

CCC—no. (%)

 Neurologic/Neuromuscular

  Yes 377 (5.0) 1,191 (5.3) 0.332
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Variable SID KID p-value

n=7,467 N=22, 310

 Cardiovascular

  Yes 6,696 (89.7) 20,438 (91.6) <0.001

 Respiratory

  Yes 519 (7.0) 1,814 (8.1) 0.001

 Renal and Urologic

  Yes 548 (7.3) 1,823 (8.2) 0.022

 Gastrointestinal

  Yes 986 (13.2) 3,282 (14.7) 0.001

 Hematologic/Immunologic

  Yes 351 (4.7) 1,071 (4.8) 0.729

 Metabolic

  Yes 355 (4.8) 1,010 (4.5) 0.418

 Other Congenital/Genetic Defect

  Yes 1,199 (16.1) 3,812 (17.1) 0.040

 Malignancy

  Yes 59 (0.8) 190 (0.9) 0.603

 Premature/Neonatal

  Yes 1,143 (15.3) 2,891 (13.0) <0.001

 Technology Dependence

  Yes 1,538 (20.6) 5,179 (23.2) <0.001

 Transplant

  Yes 159 (2.1) 647 (2.9) <0.001

 Number of non-cardiovascular CCC

  0 4,074 (54.6) 11,906 (53.4) 0.238

  1 1,998 (26.8) 6,024 (27.0)

  2–3 1,227 (16.4) 3,858 (17.3)

  4+ 168 (2.2) 522 (2.3)

Abbreviations: RACHS, Risk Adjustment for Congenital Heart Surgery; CCC, complex chronic condition; SID, State Inpatient Database; KID, 
Kids’ Inpatient Database

*
1,918 KID patients missing data on race; 1,626 SID patients missing data on race
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Table 2.

Baseline patient characteristics of those experiencing in-hospital mortality vs. those who did not

Variable Total Survived Died p-value

N=22,310 n=21,766 n=544

Race—no. (%)*

 White 10,551 (51.7) 10,329 (51.9) 222 (44.0) 0.001

 Black 2,848 (14.0) 2,750 (13.8) 98 (19.4)

 Hispanic 4,362 (21.4) 4,246 (21.4) 115 (22.8)

 Asian or Pacific Islander 842 (4.1) 824 (4.14) 19 (3.8)

 Native American 151 (0.7) 150 (0.8) 1 (0.2)

 Other 1,638 (8.0) 1,588 (8.0) 49 (9.7)

Sex—no. (%)

 Male 12,371 (55.5) 12,056 (55.3) 315 (57.9) 0.249

 Female 9,938 (44.5) 9,709 (44.6) 229 (42.1)

Primary expected payer—no. (%)

 Government 10,728 (48.1) 10,424 (47.9) 304 (55.9) <0.001

 Private 9,772 (43.8) 9,585 (44.0) 187 (34.4)

 Other 1,810 (8.1) 1,757 (8.1) 52 (9.6)

Region—no. (%)

 Northeast 3,597 (16.1) 3,525 (16.2) 72 (13.2) 0.019

 Midwest 5,109 (22.9) 4,968 (22.8) 141 (25.9)

 South 8,652 (38.8) 8,461 (38.9) 192 (35.3)

 West 4,952 (22.2) 4,813 (22.1) 140 (25.7)

Age—no. (%)

 Neonates (0–28 days) 4,943 (22.2) 4,602 (21.1) 341 (62.7) <0.001

 Infants (29–364 days) 7,158 (32.1) 7,058 (32.4) 100 (18.4)

 Toddlers (1–4 years) 4,500 (20.2) 4,458 (20.5) 42 (7.7)

 Younger children (5–9 years) 2,103 (9.4) 2,084 (9.6) 19 (3.5)

 Older children (10–14 years) 1,715 (7.7) 1,700 (7.8) 15 (2.8)

 Young adults (15–20 years) 1,891 (8.5) 1,864 (8.6) 27 (5.0)

RACHS-2 category —no. (%)

 1 6,938 (31.1) 6,906 (31.7) 32 (5.9) <0.001

 2 7,908 (35.4) 7,802 (35.8) 106 (19.5)

 3 3,734 (16.7) 3,620 (16.6) 115 (21.1)

 4 2,605 (11.7) 2,452 (11.3) 153 (28.1)

 5 1,125 (5.0) 987 (4.5) 138 (25.4)

CCC—no. (%)

 Neurologic/Neuromuscular

  Yes 1,191 (5.3) 1,077 (4.9) 114 (21.0) <0.001
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Variable Total Survived Died p-value

N=22,310 n=21,766 n=544

 Cardiovascular

  Yes 20,438 (91.6) 19,916 (91.5) 521 (95.8) <0.001

 Respiratory

  Yes 1,814 (8.1) 1,692 (7.8) 122 (22.4) <0.001

 Renal and Urologic

  Yes 1,823 (8.2) 1,696 (7.8) 126 (23.2) <0.001

 Gastrointestinal

  Yes 3,282 (14.7) 3,155 (14.5) 128 (23.5) <0.001

 Hematologic/Immunologic

  Yes 1,071 (4.8) 1,009 (4.6) 61 (11.2) <0.001

 Metabolic

  Yes 1,010 (4.5) 971 (4.5) 39 (7.2) 0.003

 Other congenital/genetic defect

  Yes 3,812 (17.1) 3,711 (17.0) 101 (18.6) 0.35

 Malignancy

  Yes 190 (0.9) 184 (0.8) 7 (1.3) 0.349

 Premature/Neonatal

  Yes 2,891 (13.0) 2,677 (12.3) 214 (39.3) <0.001

 Technology Dependence

  Yes 5,179 (23.2) 4,949 (22.7) 230 (42.3) <0.001

 Transplantation

  Yes 647 (2.9) 624 (2.9) 23 (4.2) 0.056

 Number of non-cardiovascular CCC—no. (%)

  0 11,906 (53.4) 11,813 (54.3) 94 (17.3) <0.001

  1 6,024 (27.0) 5,850 (26.9) 174 (32.0)

  2–3 3,858 (17.3) 3,621 (16.6) 237 (43.6)

  4+ 522 (2.3) 483 (2.2) 39 (7.2)

Abbreviations: RACHS, Risk Adjustment for Congenital Heart Surgery; CCC, complex chronic condition

*
1,918 patients missing data for race (1,879 who died and 40 who did not die)
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