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Introduction: Lung cancer is a leading cause of cancer-related deaths, with its

incidence continuing to rise. Chromatin remodeling, a crucial process in gene

expression regulation, plays a significant role in the development and

progression of malignant tumors. However, the role of chromatin regulators

(CRs) in lung adenocarcinoma (LUAD) remains underexplored.

Methods: This study developed a chromatin regulator-related signature (CRRS)

using a 429-combination machine learning approach to predict survival

outcomes in LUAD patients. The CRRS model was validated across multiple

independent datasets. We also investigated the impact of CRRS on the immune

microenvironment, focusing on immune cell infiltration. To identify potential

therapeutic targets, TFF1, a chromatin regulator, was knocked down using siRNA

in LUAD cells. We assessed its impact through apoptosis analysis, proliferation

assays, and in vivo tumor growth studies. Additional validation was performed

using Ki67 expression and TUNEL assays.

Results: The CRRS accurately predicted survival outcomes and was shown to

modulate immune cell infiltration in the tumor microenvironment. High-risk

patients demonstrated increased activity in cell cycle regulation and DNA repair

pathways, along with distinct mutation profiles and immune responses

compared to low-risk patients. TFF1 emerged as a key therapeutic target.

Knockdown of TFF1 significantly inhibited LUAD cell proliferation, induced

apoptosis, and suppressed in vivo tumor growth. Ki67 and TUNEL assays

confirmed the role of TFF1 in regulating tumor growth and cell death.
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Discussion: These findings highlight the potential of chromatin regulators in

prognostic modeling and immune modulation in LUAD. TFF1 was identified as a

promising therapeutic target, suggesting that targeting TFF1 could provide new

treatment strategies. Further research is warranted to explore its full potential and

therapeutic applicability.
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Introduction

Lung adenocarcinoma (LUAD) represents a significant global

health challenge, with its incidence steadily increasing (1, 2). While

traditional treatments such as surgery and chemotherapy remain

key options, recent advances in molecular biology and technology

have provided new opportunities to identify molecular targets and

develop targeted therapies for LUAD (3–5). Some patients with

LUAD have specific genetic mutations, such as alterations in EGFR,

ALK, and HER2, which allow them to benefit from targeted

therapies (6, 7). Despite significant progress in innovative

therapies, the overall survival rate post-diagnosis remains below

5%, driving continuous efforts to find more effective treatments and

early detection methods (6, 8). However, despite advancements in

treatment, the overall survival rate for LUAD remains below 5%,

prompting ongoing research efforts to discover more effective

therapies and improve early detection6,8. Resistance to current

treatments is widespread, further emphasizing the need for the

development and validation of new therapeutic strategies (9–11).

The advent of immunotherapy has been a breakthrough in cancer

treatment, yielding promising results (12, 13). However, not all

patients respond equally to immunotherapy, and understanding

this variability is a key challenge (14).

Epigenetics, first defined by Waddington in 1942 as the study of

heritable changes that do not involve alterations to the DNA

sequence (15, 16). Epigenetic processes primarily involve changes

surrounding nuclear material, including the regulation of

chromatin structure, nucleosome posit ioning, histone

modifications, DNA methylation and demethylation, and

interactions between enhancers and promoters (17–19).

Epigenetic regulation is mediated by chromatin regulators (CRs),

which are categorized into three main groups: DNA methylation

regulators, histone modification regulators, and chromatin

remodeling factors. Each group plays an indispensable role in

epigenetic control (20, 21). In the realms of DNA methylation

and histone modifications, CRs are further classified as readers,

writers, and erasers. Readers recognize specific modifications on

DNA or histones through unique domain structures, while writers

and erasers are responsible for adding and removing these

modifications, such as acetylation or deacetylation (22, 23).
02
Chromatin remodeling functions include repositioning, ejecting,

or altering the state of nucleosomes. The cumulative effects of CR-

mediated epigenetic activities regulate DNA accessibility, influence

polymerase transcriptional utilization, and thereby affect gene

expression levels (24).

CRs are involved in numerous biological processes, including

inflammation, memory, apoptosis, autophagy, and cancer

development (25). By modulating chromatin structure, CRs can

respond to both internal and external signals to regulate gene

expression epigenetically. When CRs are mutated or misexpressed,

they can cause widespread changes in the epigenetic landscape, leading

to various diseases, including cancer (26, 27). Althoughmuch is known

about the role of CRs in general cancer biology, their specific functions

in LUAD and their impact on immunotherapy outcomes remain

poorly understood, necessitating further research. A deeper

understanding of CRs could lead to new insights into LUAD

progression and novel therapeutic opportunities (28–30).

In this study, we employed an innovative artificial intelligence

framework using 429 machine learning algorithms (31) and ten-

fold cross-validation to develop a chromatin regulator-related

signature (CRRS) based on TCGA-LUAD data. This CRRS was

evaluated through analysis of both intrinsic and extrinsic immune

landscapes using integrated multi-omics data, focusing on the

expression patterns and prognostic significance of CRs in LUAD.

We successfully constructed and validated a prognostic model

based on 29 CRs, which accurately predicted survival outcomes

for LUAD patients in both internal and external datasets, as well as

pan-cancer analyses. Importantly, experimental validation

demonstrated that silencing the CR TFF1 inhibited tumor growth

and reduced the malignant behavior of LUAD cells in vitro and in

vivo, indicating that TFF1 may be a promising therapeutic target for

lung cancer treatment.
Material and methods

Data acquisition

Multi-omics data and clinical information relevant to LUAD

were obtained from The Cancer Genome Atlas (TCGA) database
frontiersin.org
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(https://portal.gdc.cancer.gov), encompassing RNA sequencing

data, mutational profiles, and survival outcomes. For the purpose

of validating our model, an additional six datasets were procured

from the Gene Expression Omnibus (GEO) database, including

GSE42127, GSE31210, GSE30219 (32), GSE29016 (33), GSE26939

(34) and GSE13213 (35) (http://www.ncbi.nlm.nih.gov/geo).

A dataset, comprising normalized transcriptomic and genome

across 33 The Cancer Genome Atlas (TCGA) cohorts, was obtained

from the University of California Santa Cruz (UCSC) Xena database

(https://xenabrowser.net) to identify the predictive ability of our

signature for pan-cancer.

To maintain consistency in data formatting from the onset of

analysis, all datasets were subjected to log2 transformation. In order

to address the possibility of batch effects, the ‘ComBat’ function

within the ‘sva’ package for R was employed (36).
Different expression and
enrichment analysis

Chromatin-related genes are derived from FACER database

(37). The ‘limma’ package was utilized to identify differentially

expressed chromatin regulators (DECRs) between LUAD

specimens and normal lung tissue, applying a significance

criterion of P. adjust < 0.05 and an absolute log2 fold change

(log2FC) of 1 or greater. To decipher the biological implications of

the DECRs, we performed Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) enrichment analyses

with the aid of the ‘clusterProfiler’ package in R (38).
Development of signatures using an
artificial intelligence network

We endeavored to establish a precise and robust CRRS for the

prognostication of LUAD patient outcomes. To accomplish this, we

orchestrated an extensive artificial intelligence framework

comprising 429 combined algorithms, incorporating 27 varied

algorithms from domains of traditional regression, machine

learning, and deep learning. These algorithms included stepwise

Cox, random survival forest (RSF), gradient boosting machine

(GBM), supervised principal components (SuperPC), oblique

random survival forests (obliqueRSF), conditional random forests

(CForest), gradient boosting with component-wise linear models

(GLMBoost), gradient boosting with regression trees (BlackBoost),

recursive partitioning and regression trees (Rpart), parametric

survival model (Survreg), Ranger, conditional inference trees

(Ctree), least absolute shrinkage and selection operator (LASSO),

partial least squares regression for Cox (plsRcox), survival support

vector machine (survival-SVM), Ridge, elastic network (Enet),

deephit survival neural network (DeepHit), deepsurv survival

neural network (DeepSurv), cox-time survival neural network

(CoxTime), extreme gradient boosting (XGBoost), Boruta,

logistic-hazard survival neural network (Logistic-Hazard), PC-

hazard survival neural network (PC-hazard), akritas conditional

non-parametric survival estimator (Akritas), Coxboost, and
Frontiers in Immunology 03
variable select ion oriented LASSO bagging algorithm

(VSOLassoBag). Within the TCGA dataset, we harnessed these

429 distinctive algorithmic combinations to create predictive

models, evaluating the predictive performance of each

combination through the concordance index (C-index) across all

cohorts. The selection of the supremely algorithmic combination

was determined by yielding the highest average C-index. The source

code and specific parameters for the artificial intelligence network

are available at the following GitHub repository: https://

github.com/Xulab2024/ML.
Functional annotation of the CRRS

Gene set variation analysis (GSVA) and gene set enrichment

analysis (GSEA) were conducted leveraging the Molecular

Signatures Database (MSigDB) (39). These analyses were

facilitated by employing the ‘GSVA’ and ‘clusterProfiler’ packages

in R (40). Additionally, Metascape was utilized for further

enrichment analysis (41).
Immune infiltration analysis

Based on the CRRS scores, divide the samples into high-risk and

low-risk groups. Collect and organize RNA-seq expression data

from TCGA-LUAD and other relevant datasets. Estimate immune

cell infiltration using tools such as CIBERSORT, xCell, and EPIC.

Combine the estimation results into a comprehensive immune cell

infiltration matrix and visualize it using the “ComplexHeatmap”

package. We also acquired 29 classical immune signatures from the

work of He et al. (42). The cytolytic activity scores (CYTs) were

estimated using the geometric mean of GZMA and PRF1 (43).

Aneuploidy scores were defined as the sum total of the amplified or

deleted (collectively, “altered”) arms (44). TCR diversity scores

(Shannon entropy and richness) and BCR diversity scores

(Shannon entropy and richness) were inferred from cancer RNA-

seq data (44).
Cell culture

LEWIS and TE1 cell lines were obtained from the American

Tissue Culture Collection (ATCC). Both LEWIS and TE1 cell lines

were maintained in RPMI 1640 medium supplemented with 10%

Fetal Bovine Serum (FBS) (Gibco, USA) and 1% penicillin/

streptomycin solution. All cells were cultured at 37°C with 5% CO2.
Cell Counting Kit-8

Seed the test cells at a density of 3000 cells per well in a 96-well

plate and incubate at 37°C with 5% CO2 for 24 hours to allow cell

adhesion. At 0h, 24h, 48h, and 72h, add 10 µL of CCK-8 solution to

each well. After incubating for 2 hours, measure the absorbance at

450 nm using a microplate reader to assess cell proliferation.
frontiersin.org

https://portal.gdc.cancer.gov
http://www.ncbi.nlm.nih.gov/geo
https://xenabrowser.net
https://github.com/Xulab2024/ML
https://github.com/Xulab2024/ML
https://doi.org/10.3389/fimmu.2024.1481753
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fan et al. 10.3389/fimmu.2024.1481753
Compare the absorbance values with the control group for data

analysis. Ensure the entire process is conducted under sterile

conditions to guarantee the accuracy of the results.
SiRNA transfection

Seed cells in a 6-well plate, aiming for 70% confluence at the

time of transfection. Dilute the siRNA and transfection reagent

separately in serum-free medium, mix them, and incubate for 10-20

minutes to form the complex. Add the complex to the cell culture

medium, gently swirl to ensure even distribution, and incubate

overnight at 37°C with 5% CO2. After transfection, replace with

serum-containing medium and continue to incubate for 24-72

hours. Perform qPCR to evaluate gene knockdown efficiency. The

target sequences are listed in Appendix 2.
Colony formation assay

Seed the test cells at a density of 500 cells per well or dish in a 6-

well plate or 10 cm culture dish, gently swirl to ensure even

distribution, and incubate at 37°C with 5% CO2 for 14 days until

visible colonies form. After incubation, discard the medium, gently

wash the cells with PBS 2-3 times, fix the cells with 4%

paraformaldehyde for 20 minutes, and then stain with crystal

violet for 30 minutes. Rinse with running water to remove excess

stain, and once the background is clear, count the number

of colonies.
Qrt-PCR

Total RNA was extracted using TRIzol reagent (Invitrogen)

according to the manufacturer’s instructions. RNA concentration

and pur i ty were measured us ing a NanoDrop 2000

spectrophotometer (Thermo Scientific). Genomic DNA

contamination was removed by DNase I treatment (Invitrogen).

One microgram of total RNA was reverse-transcribed into cDNA

using the PrimeScript RT Reagent Kit (Takara). qRT-PCR was

performed using SYBR Premix Ex Taq (Takara) on an ABI 7500

Fast Real-Time PCR System (Applied Biosystems) with the

following cycling conditions: 95°C for 30 seconds for initial

denaturation, followed by 40 cycles of 95°C for 5 seconds, 60°C

for 34 seconds for annealing and extension. Gene expression for

each sample was normalized to the internal control gene (e.g.,

GAPDH), and data were analyzed using the 2^(-DDCt) method.

The primer sequences used are listed in Supplementary Table S1.
Flow cytometry for apoptosis detection

After digesting and collecting the cells for analysis, wash them

once with sterile, pre-cooled PBS. Then stain the cells with Annexin

V and 7-AAD, incubating in the dark for 20 minutes. Subsequently,
Frontiers in Immunology 04
perform detection using a flow cytometer, and finally, analyze the

data using FlowJo software.
Subcutaneous tumor model in mice

Animal experiments were approved by the Ethics Committee of

the Affiliated Huai’an Hospital of Xuzhou Medical University.

Lewis cells were cultured and resuspended in serum-free medium,

adjusting the cell concentration to 5×105 cells/100 µL. Using a

sterile syringe, 100 µL of the cell suspension was injected

subcutaneously into the right dorsal flank of 6-8 weeks-old female

C57BL/6 mice. After injection, the mice were monitored for health

status, and tumor volume was measured regularly until the

experimental endpoint, at which point the mice were euthanized

by cervical dislocation.
Immunohistochemical staining for Ki67

Tissue sections were first deparaffinized and rehydrated through

a graded series of alcohols. Antigen retrieval was then performed

using a suitable buffer, followed by blocking with a serum to reduce

non-specific binding. The sections were incubated with a primary

antibody against Ki67 overnight at 4°C. After washing, a secondary

antibody conjugated to an enzyme was applied, followed by a

chromogenic substrate to visualize the staining. The sections were

then counterstained with hematoxylin, dehydrated, and mounted

for microscopic examination. The presence of Ki67-positive cells

was evaluated as an indicator of cell proliferation.
Fluorescent TUNEL staining on
paraffin sections

First, paraffin sections are deparaffinized and rehydrated. Next,

antigen retrieval is performed using proteinase K treatment. According

to the TUNEL assay kit instructions, the TUNEL reaction mixture is

then applied to the sections, followed by incubation to label DNA

breaks. After staining, the results are observed under a fluorescence

microscope, with positive signals indicating apoptosis.
Statistical analysis

All data are expressed as mean ± standard error of the mean

(SEM). Statistical analysis was performed using GraphPad Prism

8.0 and R 4.2.0 software. Comparisons between groups were made

using one-way analysis of variance (ANOVA) or t-test, depending

on the specific experimental design. When data followed a normal

distribution, a t-test was used; for multiple group comparisons,

ANOVA was employed. Statistical significance was determined

by the P-value, with P < 0.05 considered significant. Significance

levels are indicated by asterisks: *P < 0.05, **P < 0.01, ***P < 0.001,

****P < 0.0001.
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Results

Variant landscape of chromatin regulator
genes in LUAD patients

Within the TCGA-LUAD cohort, our study identified 134

differentially expressed genes (DEGs), all meeting the criteria of

adjusted P < 0.05, and absolute log2 fold change (log2FC) exceeding

1. Of these, 116 genes were found to be upregulated, while 18 were

downregulated in the LUAD group compared to non-tumor tissues.

The standardized RNA expression levels of these DEGs are depicted

as heatmaps in Figure 1A. Additionally, Figure 1B delineates the

chromosomal locations of each DEG. Moreover, enrichment

analyses conducted using Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) revealed the

implication of these DEGs in a spectrum of biological pathways,

notably cell cycle, polycomb repressive complex, histone

modification, chromatin remodeling (Figures 1C, D). We also

scrutinized chromatin regulator gene alterations in LUAD

patients within the TCGA cohort, uncovering that approximately

80.43% (485 out of 603) of the individuals harbored mutations in

these genes. The top 15 mutations within chromatin regulator genes

are outlined, with TP53 registering the highest mutation frequency

at 51%, and the remaining fourteen variations ranging between 7%

and 17% in prevalence (Figure 1E).
CRRS construction and validation

We collated and analyzed survival data of LUAD patients,

applying univariate Cox regression analysis to initially screen for

genes associated with survival. Within the TCGA-LUAD cohort, we

identified 29 genes that satisfied the significance threshold of P <

0.05. Following this, we explored 429 algorithmic combinations

within the TCGA-LUAD cohort and computed the concordance

index (C-index) for each model across the respective cohorts. The

integration of RSF and GBM produced the most exemplary average

C-index of 0.673. This led us to adopt this integrated approach as

our finalized CRRS (Figure 2A). Employing the optimal cut-off for

the CRRS enabled the stratification of LUAD patients into distinct

high- and low-risk groups. Observations pointed to a notable

disparity in survival, with high-risk patients demonstrating

significantly poorer overall survival (OS) in comparison to their

low-risk counterparts across all cohorts (P < 0.05), as evidenced by

Figures 2B–G. Furthermore, the application of time-dependent

Receiver Operating Characteristic (ROC) analyses validated the

prognostic accuracy of our scoring method consistently across all

patient cohorts (illustrated in Figure 2B).
Comparison of CRRS with other
clinical features

Initially, CRRS was compared with other clinical features (age,

gender, EGFR status, KRAS status, p53 status, stage, T staging,
Frontiers in Immunology 05
smoking status). The results revealed that the C-index values of

CRRS were higher than those of other clinical features, consistently

across in the validation cohorts (Figure 3A). Subsequently, SRS was

compared with 101 predictive signatures from published studies,

and the results demonstrated that the SRS exhibited the best

predictive performance across all seven datasets (Figure 3B).

The C-index (Concordance Index) is a metric used to evaluate

the predictive accuracy of a survival model, where values closer to 1

indicate better model performance. Next, we analyzed the

expression patterns of CRRS across different clinical features.

The C-index (Concordance Index) is a metric used to evaluate

the predictive accuracy of a survival model, where values closer to 1

indicate better model performance. As shown in Figure 4A, we used

the C-index to assess the predictive accuracy of the CRRS model.

Several clinical features, including CRRS, age, gender, stage, T stage,

and N stage, exhibited high C-index values exceeding 0.6, indicating

that these features have good predictive performance. Next, we used

a heatmap to illustrate the expression profiles of CRRS utilized for

modeling in high-risk and low-risk groups (Figure 4B). The gene

expression profiles of high-risk patients are distinct from those of

low-risk patients, indicating the potential of these genes as

biomarkers for risk stratification in cancer prognosis.

Subsequently, PCA plots were employed to display the

distribution of high-risk and low-risk groups in the principal

component space (Figure 4C). The high-risk and low-risk groups

formed distinct clusters, demonstrating that the principal

components effectively captured the differences between these

groups. The consistent clustering patterns across different

principal component analyses further validate the robustness of

the CRRS model in risk stratification.
The expression profile of CRRS across
different cancer types

To assess and enhance the predictive capability of CRRS, we

evaluated its survival prediction power across various cancer types.

We analyzed the expression patterns of CRRS in different cancers, the

enrichment of related signaling pathways, and its impact on patient

survival. The ring chart in Figure 5A shows the expression levels of

CRRS across various cancer types. Significant differences in CRRS

expression levels were observed among different cancer types,

suggesting that CRRS may play diverse roles in the occurrence and

development of these cancers. The GSEA enrichment analysis of pan-

cancer results (Figure 5B) indicate that CRRS may be involved in

several key signaling pathways, including the MYC-TARGETS,

G2M_CHEC KPOINT, E2F TARGETS etc, potentially influencing

cancer progression. Furthermore, Kaplan-Meier survival curves

(Figure 5C) demonstrate that in multiple cancer types, patients in

the high-risk group have significantly lower survival rates compared

to those in the low-risk group (such as UVM, THCA, SKCM, PRAD,

etc.). This finding further validates the importance of CRRS in

prognosis evaluation. These comprehensive analyses highlight the

potential of CRRS as a prognostic biomarker across various cancers,

providing crucial insights for clinical diagnosis and treatment.
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CRRS involvement in remodeling the LUAD
immune microenvironment

To explore the impact of CRRS on the LUAD immune

microenvironment, we utilized seven algorithms—TIMER,

CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER,

XCELL, and EPIC—to calculate the effect of CRRS on the tumor
Frontiers in Immunology 06
microenvironment (TME) of LUAD patients in high-risk and low-

risk groups. As shown in Figure 6A, the heatmap displays the

expression levels of various immune cell types, immune-related

genes, and scores across high-risk and low-risk groups of LUAD

patients. Significant differences in the expression of immune cell

types, including T cells, B cells, macrophages, dendritic cells, and

other immune cell subsets, were observed between the two groups.
FIGURE 1

Expression profiles of CRs in LUAD. (A) Heatmap of differentially expressed CRs between cancerous and adjacent tissues in LUAD patients.
(B) Circular plot of genomic variations. The circular plot illustrates gene variations across different chromosomes. (C, D) Gene function enrichment
analysis. The upper part shows KEGG pathway analysis results, highlighting the main pathways enriched for CRs. (E) Gene mutation profile. It shows
the mutation types and frequencies of CRs in 603 LUAD samples.
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Additionally, the expression levels of immune-related genes also

varied significantly between high-risk and low-risk patients. These

genes are categorized into core surface molecules, ligands, receptors,

cell antigens, and other categories, indicating distinct immune

landscape characteristics between the two groups. Additionally,
Frontiers in Immunology 07
Figure 6B represents the expression levels of immune-related

genes, specifically immune checkpoints. These genes are

categorized into core surface molecules, ligands, receptors, cell

antigens, and other categories. The variations in their expression

levels between high-risk and low-risk patients indicate distinct
FIGURE 2

CRRS was developed and validated using multiple machine learning algorithms. (A) Using a 10-fold cross-validation framework, a total of 429
combinations of machine learning algorithms were employed, and the c-index for each model was calculated. (B–G) Kaplan-Meier survival analysis
and time-dependent ROC curves for 1-year, 3-year, and 5-year OS in the high- and low-risk groups based on the optimal cut-off value of CRRS in
the GSE42127, GSE31210, GSE30219, GSE29016, GSE26939, and GSE13213 datasets.
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immune landscape characteristics, with significant differences in

immune checkpoint expression.

Moreover, the Figure 6C show the distribution of various

immune scores, including immune score, stromal score, and
Frontiers in Immunology 08
microenvironment score, demonstrating distinct differences

between high-risk and low-risk patients. Figure 6D illustrate the

distribution of immune diversity scores such as CYT score, TCR

richness, TCR Shannon, BCR richness, BCR Shannon, and
FIGURE 3

The significance of CRRS across various datasets and analyses. (A) The importance scores of the 29 CRRS-related genes used in the model. The
horizontal axis represents gene names, and the vertical axis represents importance scores. PBK has the highest importance score, followed by TFF1,
AR3BP1, and others. These genes have high predictive ability and discriminatory power in the prediction model. (B) C-index of CRRS in TCGA-LUAD
and multiple GEO datasets (including GSE42127, GSE31210, GSE30219, GSE29016, GSE26639, GSE13213). In each dataset’s scatter plot, the
horizontal axis represents the C-index value, and the vertical axis represents the PMID number of the cited literature.
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Aneuploidy score, further supporting the differential immune profiles

between the two groups. These results collectively demonstrate that

CRRS significantly contributes to the remodeling of the immune

microenvironment in LUAD, particularly affecting the expression of

immune checkpoints, and potentially influencing the immune

response and disease progression.
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Comprehensive analysis of CRRS and
molecular pathways in LUAD

Next, we conducted a more comprehensive analysis of the impact

of CRRS on the biological behavior of LUAD. This analysis focused

on the Cancer Risk-Related Score (CRRS) and its association with
FIGURE 4

Expression patterns of CRRS under different clinical characteristics and their impact on the model’s predictive ability. (A) A bar chart of the C-index
for clinical characteristics. The horizontal axis represents different clinical characteristics, and the vertical axis represents C-index values, which are
used to assess the accuracy of the model’s predictive ability. (B) Heatmap of CRRS expression in high- and low-risk groups with clinical
characteristics annotations. The heatmap shows the expression levels of CRRS genes across different samples. The annotation bar at the top
indicates the clinical characteristics of the samples, including risk level, age, gender, stage, T stage, and M stage. (C) Principal Component Analysis
(PCA) scatter plot. It shows the distribution of high-risk and low-risk group samples on the first two principal components (PC1 and PC2).
*p < 0.05, ***p < 0.001.
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various molecular characteristics and biological pathways. The goal

was to elucidate the pathways and processes significantly altered in

high/low-risk LUAD patients, thereby providing insights into

potential therapeutic targets and prognostic markers. The GSVA

enrichment analysis displayed a heatmap of the differential

expression of various molecular modules between high-risk and
Frontiers in Immunology 10
low-risk tumor samples. The categories on the right denote distinct

functional modules. This heatmap reveals significant differences in

the expression profiles of these modules, highlighting the molecular

heterogeneity associated with tumor risk (Figure 7A).

Subsequently, we utilized KEGG and Reactome enrichment

analyses to visualize the correlation between CRRS and risk
FIGURE 5

CRRS predicts pan-cancer patient survival and impacts potential biological pathways. (A) Pan-cancer CRRS Score Circle Plot: The circular plot
illustrates the CRRS scores across different cancer types. (B) Pan-cancer Gene Set Enrichment Analysis (GSEA) Bubble Plot. (C) Survival Analysis
Curves for Different Cancer Types: Kaplan-Meier curves display the overall survival rates of patients in high-risk and low-risk groups.
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stratification in LUAD patients, presenting these findings in t-SNE

plots (Figure 7B). Figure 7C shows a network representation of

biological processes and functional modules, with node colors

representing different functional categories. This network illustrates
Frontiers in Immunology 11
the complex interactions and regulatory mechanisms involved in

LUAD, emphasizing the interconnected nature of biological pathways.

To quantify the importance of these biological processes,

Figure 7D features a bar graph depicting the results of gene
FIGURE 6

CRRS involvement in impacting the immune microenvironment of LUAD. (A) Heatmap of Differential Immune Cell Infiltration. This heatmap shows
the expression levels of different immune cell types in high-risk and low-risk group samples. Immune cell types listed include T cells, B cells,
macrophages, dendritic cells, and others. (B) Heatmap of Immune-Related Gene Expression. This heatmap displays the expression levels of immune-
related genes in high-risk and low-risk group samples, including core cell surface molecules (Core-fab), ligands, receptors, cell antigens, and others.
(C) Box Plot of Immune Scores. This box plot shows the distribution of various immune scores in high-risk and low-risk groups, including the
immune score, stroma score, and microenvironment score. (D) Box Plot of Immune Diversity Scores. This box plot shows the distribution of various
immune diversity scores in high-risk and low-risk group samples, including CYT score, TCR richness, TCR diversity (TCR Shannon), BCR richness,
BCR diversity (BCR Shannon), and aneuploidy score. *p < 0.05, **p < 0.01, ***p < 0.001.
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function enrichment analysis. This analysis highlights significant

biological processes such as the mitotic cell cycle process and c,

GSEosome segregation regulation, which are crucial for tumor

development and progression. The Gene Set Enrichment Analysis

(GSEA) results for high-risk samples identified significant

enrichment in pathways related to DNA Replication, Cell Cycle,

Cytokine-Cytokine Receptor Interaction, Th17 Cell Differentiation,

and B Cell Receptor Signaling Pathway (Figure 7E). These findings

suggest that pathways associated with the cell cycle and DNA

replication are markedly active in high-risk samples and imply

potential roles for cytokine and immune-related pathways.

Overall, these analyses reveal that CRRS is involved in

regulating molecular and pathway changes associated with

LUAD, providing a foundation for further research into targeted

therapies and prognostic indicators.
In vitro and in vivo experiments validated
that TFF1 knockdown inhibits the
malignant phenotype of lung cancer cells

Based on a comprehensive literature review and model C-index

scoring, the TFF1 gene emerged as one of the top candidates, with

an “Importance” score second only to PBK, underscoring its critical

role in the model’s predictive outcomes. TFF1 has been documented

to play a pivotal role in the progression of certain cancer types,

including pancreatic cancer and gastric neoplasia, with its

expression levels closely associated with tumor progression (45–

48). Consequently, we selected TFF1 for experimental validation.

Using SiRNA interference technology, we successfully knocked

down TFF1 in murine-derived lung cancer cells (LEWIS) and

human lung cancer cells (TE1) (Figures 8A, B). The results

demonstrated that TFF1 knockdown significantly inhibited cell

viability (Figures 8C, D) and colony formation (Figures 8E–G) in

both cell lines. Moreover, flow cytometry analysis revealed a marked

increase in apoptosis rates in TFF1 knockdown cells compared to

controls (Figures 8H–J), further confirming the essential role of

TFF1 in maintaining the malignant phenotype of lung cancer cells.

In the established subcutaneous tumor model in C57BL/6 mice,

we further evaluated the impact of TFF1 knockdown on tumor

growth. As shown in the figures, subcutaneous tumors formed in

mice injected with TFF1-knockdown LEWIS cells were significantly

smaller than those in the control group (Figures 9A, D), and the

tumor weight was also markedly reduced (Figure 9C). Additionally,

the survival rate of mice in the TFF1 knockdown group was notably

higher (Figure 9B), indicating that TFF1 knockdown significantly

prolongs survival. Immunohistochemical analysis showed a

substantial reduction in the proportion of Ki67-positive cells in

tumors from the TFF1 knockdown group (Figures 9E, G),

suggesting that the proliferative capacity of the tumor cells was

suppressed. TUNEL staining results indicated a significant increase

in the proportion of apoptotic cells in the TFF1 knockdown group

(Figures 9F, H), further corroborating the critical role of TFF1 in

tumor cell survival. These findings indicate that TFF1 knockdown

not only suppresses the malignant phenotype of lung cancer cells in
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vitro but also significantly inhibits tumor growth and progression in

vivo, highlighting its potential therapeutic value.
Discussion

Malignant tumors are characterized by extensive global

reprogramming of epigenetic patterns, including the gain or loss

of DNA methylation and alterations in histone marks (49).

Elucidating the network of epigenetic factors aids in

understanding the mechanisms of interaction between genetic

and epigenetic changes, thereby offering new therapeutic

strategies for malignant tumors (50, 51).

Identifying tumor-driving cancer genes is crucial for

understanding the pathways and gene functions in both normal

and cancerous tissues (52–55). This identification is also a necessary

prerequisite for developing cancer biomarkers and targeted

therapies (49, 56). Epigenetic changes are considered one of the

key hallmarks of tumors, driven by chromatin regulators (CRs) (21,

57). Chromatin remodeling refers to the dynamic changes in

chromatin structure involved in genetic and epigenetic regulation,

which impact gene expression (58). This remodeling can be

achieved through modifications such as histone acetylation and

methylation (4, 59, 60). Chromatin remodeling proteins alter the

interactions between DNA and histone octamers on nucleosomes,

facilitating the movement, rearrangement, and reorganization of

chromatin fibers. Consequently, this changes the chromatin’s

compaction and three-dimensional structure, thereby influencing

gene expression (61–63).

Growing evidence underscores the critical role of epigenetic

modifications in the initiation and progression of various cancers,

including lung adenocarcinoma (LUAD) (64, 65). However, the

significance of chromatin remodeling-related genes and their

impact on lung cancer remains unclear. Our study employed a

novel artificial intelligence framework comprising 429 machine

learning algorithms and used a 10-fold cross-validation

framework. We integrated multiple algorithms, including random

survival forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise

Cox, CoxBoost, partial least squares regression for Cox (plsRcox),

supervised principal components (SuperPC), generalized boosted

regression modeling (GBM), and survival support vector machine

(survival-SVM). By combining these algorithms with differentially

expressed chromatin remodeling genes in cancerous and adjacent

non-cancerous tissues of LUAD patients, we constructed a

prognostic signature called CRRS. Using the optimal cut-off value

for CRRS, we divided LUAD patients into high- and low-risk

groups and employed Kaplan-Meier survival analysis to evaluate

the predictive ability of CRRS on patient survival. The results

demonstrated that the constructed CRRS effectively predicted the

survival of LUAD patients. This finding was reliably validated

across external datasets, including GSE42127, GSE31210,

GSE30219, GSE29016, GSE26939, and GSE13213.

Subsequently, we used the C-index to evaluate the model’s

performance. We validated the significance and expression levels of

the 29 CR-related modeling genes in the CRRS across TCGA-
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1481753
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fan et al. 10.3389/fimmu.2024.1481753
FIGURE 7

Analysis of the role of CRRS in regulating LUAD-related biological pathways. (A) GSVA Enrichment Analysis Heatmap. This heatmap shows the
enrichment of different gene sets in high-risk and low-risk groups. (B) This tSNE plot shows the distribution of high-risk and low-risk group samples
across different signaling pathways, including KEGG glioma, cell cycle, colorectal cancer, p53 signaling pathway, WNT signaling pathway, prostate
cancer, TGF-b signaling pathway, and others. (C) Co-expression network related to the cell cycle and chromatin remodeling processes regulated by
CRRS. (D) Bar chart of gene enrichment in biological processes and signaling pathways regulated by CRRS in LUAD. (E) Gene Set Enrichment
Analysis (GSEA) Mountain Plot. This plot shows the enrichment of highly expressed genes in high- and low-risk groups across gene sets such as DNA
replication, cell cycle, cytokine-cytokine receptor interaction, Th17 cell differentiation, and B cell receptor signaling pathway. ***p < 0.001.
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LUAD and multiple GEO datasets (GSE42127, GSE31210,

GSE30219, GSE29016, GSE26939, and GSE13213), with

references verified using PMID numbers. The C-index results

indicated that our model has good predictive performance.

Principal component analysis further showed clear stratification

between high- and low-risk LUAD patients (Figure 4C).

To explore the generalizability of CRRS ’s predictive

performance, we conducted clinical prognosis analyses using the

TCGA database on various tumor samples, including UVM, THCA,

SKCM, SARC, PRAD, PCPG, and PAAD. The results demonstrated
Frontiers in Immunology 14
that CRRS not only predicts the clinical prognosis of LUAD patients

but also performs well in other cancers. Enrichment analysis of

differential expression between high and low-risk groups revealed

that CRRS might be involved in biological processes such as G2M

checkpoint, E2F targets, MYC targets V2/V1, and DNA repair.

Additionally, using immune infiltration analysis algorithms such

as TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,

MCPCOUNTER, XCELL, and EPIC, we found that there are

differences in immune cell infiltration between high and low-risk

CRRS groups. These differences include T cells, B cells, myeloid
FIGURE 8

Effects of TFF1 knockdown on proliferation and apoptosis in TE1 and Lewis cell lines. (A, B) Relative TFF1 mRNA expression levels in TE1 (A) and
Lewis (B) cell lines were measured by qRT-PCR after knockdown with two different siRNAs (si1 and si2), with siNC as the negative control. (C, D) Cell
proliferation in TE1 (C) and Lewis (D) cells was assessed using the CCK-8 assay. (E) Colony formation assay showed a significant reduction in colony-
forming ability in TE1 and Lewis cells after TFF1 knockdown. (F, G) Quantification of colony numbers in TE1 (F) and Lewis (G) cells. (H) Flow
cytometry analysis of apoptosis in TE1 and Lewis cells stained with Annexin V-FITC and 7-AAD. (I, J) Quantification of the percentage of apoptotic
cells in TE1 (I) and Lewis (J) cells. Data are presented as mean ± standard deviation. **p < 0.01, ***p < 0.001, ****p < 0.0001 indicate statistically
significant differences compared to the siNC group.
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dendritic cells, macrophage M1, and macrophage M2. Further

analysis of costimulatory and coinhibitory molecules (Co-stm and

Co-inb), ligands and receptors involved in intercellular

communication (e.g., TNFSF9, TNFRSF18), cell adhesion

molecules, and antigen presentation molecules (e.g., ITGB2, HLA-

DRB5) revealed differential expression between high and low-risk

groups. These findings suggest potential differences in immune

checkpoint inhibitors between CRRS high and low-risk patients,
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providing a foundation for further research into the mechanisms of

immune checkpoint inhibitors and the identification of new

therapeutic targets.

Furthermore, enrichment analysis results revealed that certain

gene sets are significantly enriched in high-risk patients, such as

MMD4_TARGETS_NEUROEPITHELIUM_DN, mitotic cell cycle

process, and cell cycle. In contrast, other gene sets, like

HP_ABNORMALITY_OF_THE_AXILLARY_HAIR, are enriched
FIGURE 9

Effects of TFF1 knockdown on tumor growth, survival, and apoptosis in a subcutaneous tumor model in mice. (A) Subcutaneous tumors after injection of
siTFF1-1 and siNC. (B) Kaplan-Meier survival curves show that the survival rate of mice in the siTFF1-1 group was significantly higher than that in the
control group (siNC). (C) Tumor weight was significantly reduced after TFF1 knockdown. (D) TFF1 knockdown significantly inhibited the increase in
tumor volume. (E) Ki67 immunohistochemical staining shows that cell proliferation was significantly reduced in the siTFF1-1 group compared to the
control group. (F) TUNEL fluorescent staining shows a significantly higher proportion of apoptotic cells in the siTFF1-1 group compared to the control
group. (G, H) Quantified percentages of Ki67-positive (G) and TUNEL-positive (H) cells per field. Data are presented as mean ± standard deviation.
**p < 0.01, ***p < 0.001, ****p < 0.0001 indicate statistically significant differences compared to the siNC group.
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in low-risk patients. Specific functional categories, such as mitotic

cell cycle process and cell cycle, were notably enriched in the

network, underscoring their importance in prognosis. These

findings suggest that these gene sets may play a crucial role in

prognosis. This knowledge contributes to a better understanding of

the molecular mechanisms of LUAD and provides a reference for

clinical prognosis evaluation and treatment strategies.

Finally, our experimental results suggest that TFF1, one of the

modeling genes, may serve as a potential therapeutic target for

LUAD. Knockdown of TFF1 inhibited the proliferation of lung

cancer cells, reduced colony formation efficiency, and increased

apoptosis rates. In vivo studies further demonstrated that TFF1

knockdown slowed subcutaneous tumor growth in mice, decreased

the proportion of Ki67-positive cells, and increased the number of

TUNEL-positive cells. These findings suggest that TFF1 could be a

promising target for lung cancer treatment and provide a

foundation for further research.

However, there are some limitations to the current study that

need to be addressed. First, the algorithms used in constructing the

CRRS were based entirely on publicly available datasets, such as

TCGA-LUAD, which may introduce biases related to data

collection and curation. While these datasets are robust and

widely used, the lack of direct validation using experimental or

clinical data from our institution limits the broader applicability of

our findings. Future studies should focus on validating the CRRS in

larger, more diverse cohorts, including patient-derived datasets, to

ensure its generalizability across populations with varying clinical

and genetic backgrounds.

Overall, this study explores the global reprogramming of

epigenetic patterns in malignant tumors, with a particular focus

on the role of chromatin remodeling in lung adenocarcinoma

(LUAD). By utilizing a novel artificial intelligence framework and

multiple machine learning algorithms, the research constructed a

prognostic signature, CRRS, comprising 429 algorithms, which

was validated using multi-omics data. The results showed that

CRRS could effectively predict the survival of LUAD patients and

was validated across several independent datasets. Further analysis

indicated that high-risk patients are significantly enriched in

biological processes such as the cell cycle and DNA repair, and

there are differences in immune cell infiltration and responses to

immune checkpoint inhibitors. This study highlights the

importance of chromatin remodeling-related genes in the

prognosis of LUAD, providing a foundation for understanding

its molecular mechanisms and developing new therapeutic

strategies. However, there are limitations, as the current

algorithms are based on public data and require further

validation with self-tested data.
Conclusion

This study explores the global reprogramming of epigenetic

patterns in malignant tumors, with a particular focus on the role
Frontiers in Immunology 16
of chromatin remodeling in lung adenocarcinoma (LUAD). By

utilizing a novel artificial intelligence framework and multiple

machine learning algorithms, the research constructed a

prognostic signature, CRRS, comprising 429 algorithms, which

was validated using multi-omics data. While the CRRS model

holds promise for improving patient stratification and guiding

treatment decisions, it is important to acknowledge its

limitations. The reliance on publicly available datasets for

algorithm training introduces potential biases, and further

validation with self-generated clinical data is needed to confirm

its broader applicability. Future research should focus on

expanding the validation of CRRS in diverse patient cohorts

and exploring the therapeutic potential of TFF1 in clinical

settings. In conclusion, this study highlights the importance of

chromatin remodeling in LUAD prognosis and identifies TFF1 as

a promising therapeutic target. These findings provide a

foundation for the development of more personalized treatment

strategies and open new directions for research into chromatin

regulator-related therapies.
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