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Patient-specific prostate tumour
growth simulation: a first step
towards the digital twin
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María José Gómez-Benito and María Ángeles Pérez*

Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research
(I3A), University of Zaragoza, Zaragoza, Spain

Prostate cancer (PCa) is a major world-wide health concern. Current diagnostic
methods involve Prostate-Specific Antigen (PSA) blood tests, biopsies, and
Magnetic Resonance Imaging (MRI) to assess cancer aggressiveness and guide
treatment decisions. MRI aligns with in silicomedicine, as patient-specific image
biomarkers can be obtained, contributing towards the development of digital
twins for clinical practice. This work presents a novel framework to create a
personalized PCa model by integrating clinical MRI data, such as the prostate
and tumour geometry, the initial distribution of cells and the vasculature, so a full
representationofthewholeprostate isobtained.Ontopofthepersonalizedmodel
construction, our approach simulates and predicts temporal tumour growth in
theprostate throughtheFiniteElementMethod,coupling thedynamicsof tumour
growth and the transport of oxygen, and incorporating cellular processes such
as proliferation, differentiation, and apoptosis. In addition, our approach includes
the simulation of the PSA dynamics, which allows to evaluate tumour growth
throughthePSApatient’s levels.Toobtainthemodelparameters,amulti-objective
optimization process is performed to adjust the best parameters for two patients
simultaneously. This framework is validated by means of data from four patients
with several MRI follow-ups. The diagnosis MRI allows the model creation and
initialization, while subsequent MRI-based data provide additional information
to validate computational predictions. The model predicts prostate and tumour
volumes growth, alongwith serum PSA levels. This work represents a preliminary
step towards the creation of digital twins for PCa patients, providing personalized
insights into tumour growth.

KEYWORDS

prostate cancer, in-silico model, patient-specific, imaging biomarkers, computational
oncology, finite element method (FEM)

1 Introduction

Prostate cancer (PCa) is a major health concern world-wide, being the most common
cancer and the third leading cause of cancer-related deaths in men after lung and colorectal
cancers. Projections indicate that by 2040 in Europe, the incidence rate of PCa is expected
to rise by 27.6%, with mortality increasing by 53.2%, according to the World Health
Organization (WHO).

The routinemethods employed for the diagnosis of the PCa generally include blood tests
tomeasure the Prostate-Specific Antigen (PSA) level, digital rectal examinations, transrectal
ultrasounds, prostate biopsies, and/or imaging techniques likeMagnetic Resonance Imaging
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(MRI) (Phan et al., 2020; Lorenzo et al., 2016; Visschere, 2018).
Clinicians assign a level of aggressiveness of the cancer with
these methods and establish the course of treatment to be
considered (Rebello et al., 2021). Pathologists assess biopsy samples
and assign a primary Gleason Score (GS), which represents
the predominant histological pattern, and a secondary grade for
the highest observed pattern. Both grades are assigned on a
scale ranging from 1 to 5, based on microscopic architectural
features and cellular characteristics. Clinicians have traditionally
categorized PCa diagnoses into low, intermediate, and high-risk
categories, considering a combination of Gleason patterns, PSA
levels, and clinical stage (Litwin and Tan, 2017). From MRI,
risk is assigned according to the PiRADs v2 protocol based on
the textures of the images, the location of the tumour and its
volume (Andrés et al., 2017; Weinreb et al., 2016). Specialized
image acquisitions techniques can be incorporated in order to
help assessing the cancer. Multiparametric MRI (mpMRI) typically
includes diffusion-weighted (DWI) and dynamic contrast-enhanced
imaging (DCE), in addition to T2-weighted imaging (T2w) (Litwin
and Tan, 2017). Upon confirming the presence of a tumour,
clinicians select the most appropriate treatment based on the
patient’s risk group. Common treatments for PCa include radical
prostatectomy, radiotherapy (RT), hormone therapy (HT), and
active surveillance (AS). The PSA blood test plays a crucial role in
various stages of PCa management, including screening, assessing
future risk, detecting recurrent disease after local therapy, and
managing advanced disease (Pezaro et al., 2014). AS is activated only
in low-risk and some intermediate risk patients.

The integration of advanced medical imaging techniques like
MRI is in line with the principles of in silicomedicine (Rebello et al.,
2021), which utilizes personalized digital models to improve disease
prevention, diagnosis, prognosis, and treatment. In addition, it
is possible to derive quantifiable parameters from these imaging
techniques. The Apparent Diffusion Coefficient (ADC), derived
from DWI, quantifies the diffusion of water molecules within
tissue and it has been shown that it inversely correlates with
the tissue cellularity (Atuegwu et al., 2013). Moreover, DCE-
MRI sequences are employed to estimate tumour vascularization
using pharmacokinetic models. The Standard Tofts Model (STM)
can be applied to characterize tissue vascularization, considering
two compartments: the extravascular extracellular space (ve) and
the intravascular space (vp). The exchange of substances between
these compartments is modeled through the KTrans variable, which
represents the extravasation rate and depends on blood flow,
vascular surface area, and vascular permeability, thereby providing
an overview of vascularization (Langer et al., 2010) that is closely
related to oxygen levels and nutrients. Therefore, thanks to these
images and different segmentation techniques, it is possible to create
digital replicas of the desired organs that incorporate the vascular
and cellular characteristics of each individual patient (Chase et al.,
2018). This enables the potential development of patient-specific
models for clinical uses, incorporating their unique parameters,
which significantly enhances the comprehension of the intricate and
diverse nature of these diseases (Hassanzadeh et al., 2017; Litwin and
Tan, 2017; Epstein et al., 2016; Viceconti, 2015; Chase et al., 2018).

Mathematical modeling in cancer research is amultifaceted field
that involves critical decisions on the framework and scale ofmodels,
balancing biological accuracy with computational feasibility. Bull

and Byrne (2022) identified six key mathematical hallmarks or
decisions: single versus hybrid frameworks, homogeneity versus
heterogeneity, spatially averaged versus spatially resolved, single-
scale versus multi-scale, deterministic versus stochastic, and
continuum versus discrete. Different mathematical models of
cancer combine these hallmarks in different ways, leading to
models that may include more biological complexity but are more
challenging to analyze and/or parameterize (Greene et al. (2015);
Agosti et al. (2018); Protopapa et al. (2018); Suzuki et al. (2021).
For an accurate representation of tumour growth, it is essential to
consider the surrounding tumour microenvironment. This includes
various factors that may promote or inhibit growth. Modeling
these influences often involves transport equations that account for
substances like oxygen (Mpekris et al., 2015). Moreover, the model
can incorporate various treatment modalities, from traditional
methods like chemotherapy to cutting-edge approaches involving
nanoparticles, to predict their impact on tumour progression
(Dogra et al., 2019). Furthermore, the process of angiogenesis, where
new blood vessels form to supply nutrients to growing tumours, is
key to modeling substance delivery. Therefore, in silico models of
tumour-induced angiogenesis are crucial for understanding and
optimizing drug delivery. Moreover, angiogenesis models can be
informed and tuned using routinely-acquired imaging data, e.g.,
angiography images, ultrasound, elastography data, or magnetic
resonance images of the tumour anatomy (Hadjicharalambous et al.,
2021). However, translating these models from research to clinical
practice faces significant hurdles, such as parameter specification,
mirroring in-vivo conditions, and the need for extensive validation
data to ensure accuracy and reliability. Overcoming these challenges
is essential for these models to enhance cancer treatment and
patient outcomes (Hadjicharalambous et al., 2021).

Recent advances in PCa modeling have focused on integrating
cutting-edge technologies to improve diagnosis and treatment
strategies. Current models aim to describe the complex interactions
between tumoral cells and their microenvironment (Phan et al.,
2020). A key feature of many of these models is the inclusion of PSA
as a primary indicator of PCa progression. For instance, studies by
Lorenzo et al. (2016) and Mohammadi et al. (2021) used the phase-
fieldmethod to account for the dynamics and co-existence of healthy
and cancerous cells, as well as their interaction with nutrients, using
partial differential equations (PDEs). These models are capable of
predicting not only tumour growth but also PSA dynamics. Notably,
Lorenzo et al. (2016) incorporated real prostate geometries extracted
from CT images, enhancing the model’s personalized accuracy.
Efforts have also been made to model treatment responses. Lorenzo
and collaborators (2020) extended their previous work to predict
tumour shrinkage under HT and Jain et al. (2011) studied the
response of cancer cells under intermittent HT to predict treatment
failure also taking into account PSA. In addition, PSA response to
RT, factoring in tumour population and radiation-induced damage,
was modeled by Lorenzo et al. (2019b).

While these works represent significant advances in PCa
modeling, they still have the potential to benefit from more
comprehensive clinical data obtained from routine practices,
such as MRI, biopsies, and biochemical analyses. In a more
recent study, Lorenzo et al. (2024) implemented a spatio-temporal
mechanisticmodel informed by patient-specific data, using T2w and
DWI MRI biomarkers to characterize tumour growth under AS.
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Although this is a robust and complex model, it could be further
enhanced by incorporating patient-specific parameters from DCE
MRI to evaluate prostate vascularization.Therefore, a more accurate
representation of PCa can be obtained through mpMRI, being able
not only to get an idea of the cellularity, but also of the vascularity
of the prostate, a key feature in the development and treatment of
this tumour.

In this work, a patient-specific model of prostate tumour
growth is proposed, integrating individualisedMRI-derived imaging
biomarkers with a biomechanical computational model, using the
ADC, as a measure of cellularity and the KTrans, as a parameter that
definesvascularizationcharacteristics.Thiscombinedandintegrative
approach aims to enhance the ability to predict tumour growth,
understand its interactions within the prostate, and forecast PSA
evolution under AS conditions. A multispecies model of partial
differential reaction-advection-diffusion equations coupled with the
mechanics of continuous media is here presented. Additionally, we
included the dynamics of PSA with cancer development. This may
help to establish a connection between patient-specific PSA levels
and the aggressiveness of the cancer. In this way, the growth of the
tumour can be predicted and therefore help to determine the best
possible stage to apply an alternative treatment in case it is necessary.
ThisworkrepresentsapreliminarystepofaPCamodel that ina future
may contribute to the creation of a digital twin for PCa.Theapproach
presentedherederived fromaprevious tumourgrowthmodelcreated
for neuroblastoma developed by Hervas-Raluy et al. (2024).

2 Materials and methods

2.1 Patient-specific image biomarkers from
MRI

2.1.1 Patient-specific data
A retrospective study of PCa patients was conducted at the

Hospital Universitario y Politécnico de La Fe de Valencia (from
now on HULAFE) between 2015 and 2020, within the ProCanAid
research project (PLEC 2021-007709). To be included in the study,
the following criteria should be met: patients should be men over
18 years of age with a confirmed diagnosis through a positive
biopsy, should have received treatment at the specified hospital,
should have undergone at least two mpMRI, and should possess the
necessary clinical information (GS, biopsy data, etc.). In this study,
we focus on modeling tumour growth in patients under AS. A total
of six patients (N = 6) meet these criteria and are included in the
study. Detailed imaging acquisition information for each patient is
provided in the Supplementary Material.

All patients included in this study have been diagnosedwith PCa
via biopsy or had a biopsy performed close to the time of their initial
mpMRI scan. Each patient has a GS of (3 + 3) 6. Information on the
tumour burdenwas obtained from the biopsy samples, providing the
average percentage of tumour cells present in each biopsy cylinder
for each patient. In addition, these patients have been clinically
monitored with PSA measurements to track disease progression.

2.1.2 mpMRI data pre-processing
Image pre-processing is performed using QP-Prostate®(Quibim

S.L.) software. This software’s processing chain includes spatial

smoothing, motion correction, and intra-series registration of the
dynamic volumes of DWI and DCE, followed by inter-series
registration of DWI and DCE to the T2W sequence. From the
smoothed and motion-corrected DWI, ADC maps are calculated
for each slice of the sequence. Similarly, the smoothed and motion-
corrected DCE undergoes pharmacokinetic analysis (Jimenez-
Pastor et al., 2023) (Figure 1). Specifically, the Standard Tofts Model
(STM) is applied to the DCE and fitted using the least squares
method (LSM). Among the parameters obtained, we focus onKTrans,
which measures the combination of bloodflow, vessel permeability
and vessel surface on each voxel, i.e., it provides useful insight into
the vascularisation of the prostate (Sainz-DeMena et al., 2024).

The ADC is a measure of the magnitude of diffusion (of water
molecules) within tissue. It have been shown that it inversely
correlates with the tissue cellularity so a quantification of the
cellularity present in the tissue can be obtained by means of the
Equation 1 (Atuegwu et al., 2013):

cellularity =
ADCw −ADC (x)
ADCw −ADCmin

(1)

where ADCw is the ADC value of free water molecules [ADCw =
3 ⋅ 10−3mm2/s (Atuegwu et al., 2013)] and ADCmin is the minimun
ADC value captured. In this study, to ensure consistency of
cellularity values between different patients and different follow-up
MRIs, the ADCmin is standardized to 0.

2.1.3 Prostate and tumour segmentations
The prostate gland is automatically segmented in the T2w

sequence with QP-Prostate®(Quibim S.L.) software. This software
utilizes an artificial intelligence (AI) algorithm founded on
Convolutional Neural Networks (CNNs).

Conversely, radiologists at HULAFE perform manual
segmentation of the tumoral lesions, ascertaining the quantity of
lesions discernible in the T2w sequence. In the patients selected for
the study, only one lesion was found for each T2w image.

2.1.4 Mesh generation and interpolation of the
data

ThePython library im2mesh (Sainz-DeMena et al., 2022) is used
to reconstruct the 3D geometry of the different prostates and to
generate the volumetric FE mesh needed for the later simulations.
Im2mesh library takes prostate and tumour segmentations, makes
an estimation of intermediate and missing slices, reconstruct the
surface and generate a volumetric mesh. Then, the cellularity and
the KTrans are automatically interpolated into the integration point
of each element of the FE mesh to obtain the initial parameters of
the model. Through lesion segmentation, a binary mask is created,
corresponding to the number of elements within the mesh. Each
element is assigned a value of 1 if located within the tumour region,
and 0 otherwise.This procedure is termed interpolation, as it entails
the transference of data from the lesion segmentation onto the finite
element mesh representing the prostate (Figure 1).

2.1.5 Integration of the data into the model
To integrate the image biomarkers into the model presented

in the Section 2.2, additional calculations are needed. The ADC
values provide a quantification of the cellularity in each element.
In elements where both healthy cells and tumour cells coexist (i.e.,
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FIGURE 1
Model initialization scheme towards the digital twin: Patient-specific data is collected from an mpMRI study, along with biopsy and biochemical
reports. MRIs are analyzed using QP-Prostate®software to obtain prostate segmentation from T2w-sequences, ADC maps from DWI sequences, and
KTrans maps from DCE sequences. The tumour is manually segmented by radiologists. The ADC provides an estimate of cellularity, while KTrans offers
insights into the vascularization of the prostate. The Python library im2mesh (Sainz-DeMena et al., 2022) is employed to reconstruct the 3D geometry
of the prostate and generate the volumetric FE mesh. Subsequently, cellularity and KTrans values are interpolated to the integration point of each
element in the mesh to obtain the initial parameters of the model. Additionally, a mask is derived from nosological segmentations to identify mesh
elements containing tumour cells. The Gleason Score, obtained from biopsies, provides information on the degree of cell differentiation and the overall
percentage of tumour cells in each cylinder. With this data, the model is initialized for computational simulations, which are subsequently validated
with clinical data.The model considerate multiple constituents (healthy, tumoural cells and stroma) and the transport of oxygen, thus the growth or
shrinkage is given by proliferation or death of healthy and tumoral cells and production or remodellation of stroma. All this processes are defined by
reaction-advection-diffusion equations.

where the tumour mask is 1), it is essential to distinguish the
percentage of cellularity between these 2 cell types. This distinction
is made using biopsy data on tumour load, which indicates the
percentage of cellularity corresponding to tumour cells (pt). For
stroma density, it is assumed that the fraction not occupied by cells is
filled by stroma.This cellularity is physiologically unfeasible to reach
a value of 1, as such a measure would imply the complete absence of
stroma, which is not possible for the cells to survive. Subsequently,
to calculate cell densities, it is assumed that the carrying capacity
(ρic) represents the maximal cell population within a fully saturated
element (Equation 2). This capacity varies between healthy and
tumoural tissues, with the latter assumed to possess a greater
capacity due to the cells’ propensity to deformandfill luminal spaces.
The carrying capacity was determined following the methodology
outlined by Atuegwu et al. (2013), assuming the number of cells that
would fit in an element of 1mm3 volume (Table 1).

ρt = cellularity ⋅ pt ⋅ ρ
t
c

ρh = cellularity ⋅ (1− pt) ⋅ ρ
h
c

ρs = (1− cellularity) ⋅ ρsc

(2)

where ρt, ρh and ρs are the population densities for tumoral cells,
healthy cells and stroma.

2.2 Mathematical model

A multispecies PDE reaction-advection-diffusion model coupled
withcontinuousmediamechanics ispresented for thesimulationofPCa
growth, encompassing both tumour growth dynamics and its impact
on the entire prostate gland.This multispecies model aims to represent
the phenomenological behaviour of PCa and its cellular processes,
including proliferation, differentiation and apoptosis. Based on these
processes, the model simulates the growth of the prostate and tumour
geometry and the dynamics of PSA.

2.2.1 Constituents
Theprostate consistsmainly of glandular epithelial cells (luminal

and basal cells) and stroma, which are organised into lumens and
ducts for the secretion of prostatic fluid. On the one hand, when
these cells undergomutations, they lose their healthy properties and
their proliferative capacity increases, thus disrupting the formation
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TABLE 1 Parameters of the model.

Symbol Parameter Value Units References

kg Proliferation rate 4.03⋅10−3 day−1 Optimised

k Carrying capacity corrected 0.57 - Optimised

ρtc Tissue tumour cell carrying capacity 100⋅103 cells ⋅mm−3 Atuegwu et al. (2013)

ρhc Tissue healthy cell carrying capacity 75⋅103 cells ⋅mm−3 Atuegwu et al. (2013)

ρsc Tissue stroma carrying capacity 1.50 g ⋅mm−3 Agosti et al. (2018)

kd Death rate 0.02 day−1 Lorenzo et al. (2016)

θtp Proliferation oxygen threshold tumoral cells 3500 pmol McKeown (2014)

θtd Necrosis oxygen threshold tumoral cells 3000 pmol McKeown (2014); Sosa-Marrero et al. (2021)

θhp Proliferation oxygen threshold healthy cells 4000 pmol McKeown (2014)

θhd Necrosis oxygen threshold healthy cells 3300 pmol McKeown (2014); Sosa-Marrero et al. (2021)

θsp Oxygen threshold of stroma production 4000 pmol McKeown (2014)

θsd Necrosis oxygen threshold stroma 3900 pmol McKeown (2014); Sosa-Marrero et al. (2021)

At
o Maximum oxygen consumption rate 25.50 pmol ⋅ s−1 Mpekris et al. (2015)

kto Oxygen concentration at one-half of the total consumption term 4.64 pmol ⋅ s−1 Mpekris et al. (2015)

Ah
o Oxygen uptake of healthy cells 25.50 pmol ⋅ s−1 Mpekris et al. (2015)

kho Oxygen uptake of healthy cells 4.64 pmol ⋅ s−1 Mpekris et al. (2015)

ρob Blood oxygen concentration 4124 pmol Mpekris et al. (2015)

Kstiffness Stiffness of prostate surroundings 14 kPa Optimised

Et Young’s modulus of tumoral cells 3 kPa Faria et al. (2008); Lekka et al. (2012)

Eh Young’s modulus of healthy cells 5 kPa Faria et al. (2008); Lekka et al. (2012)

Es Young’s modulus of stroma 30 kPa Bharatha et al. (2001)

ν Poisson’s ratio 0.40 - Lorenzo et al. (2019a)

kv1 Maximum growth rate 0.95 - Optimised

kv2 Incremental growth factor 0.1 - Optimised

kd1 Shrinking rate 3 - Hervas-Raluy et al. (2024)

αt PSA production rate of tumoral cells 0.96 ng ⋅mL−1 ⋅ day−1 Optimised

αh PSA production rate of healthy cells 8.02⋅10−3 ng ⋅mL−1 ⋅ day−1 Optimised

γ Tissue PSA decay rate 2.17⋅10−4 day−1 Optimised

γs Blood PSA decay rate 1.44⋅10−4 day−1 Optimised

of the glandular structure (Henry et al., 2018; Rebello et al.,
2021). On the other hand, the stroma plays an essential role
in the interaction between cells and the microenvironment, and
its mechanical properties have been shown to play an important

role in tumour growth and response (Niu and Xia, 2009). The
environmental and mechanical conditions surrounding cells are
essential in the control of cell populations. An example of such
environmental factors would be oxygen and nutrients, normally
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supplied by blood vessels via diffusion (Vaupel and Kelleher, 2013;
Mpekris et al., 2015; Kay, 1983). In this model, for simplicity, oxygen
is considered as the only factor. This model considers mainly three
constituents: healthy cells, tumoral cells and stroma; thus, each
of these constituents is defined by its density (ρi). The dynamics
governing the evolution of population densities are governed by
the principles of mass conservation, given by advection-reaction-
diffusion (Equation 3):

∂ρi

∂t
−▽ ⋅ (D▽ρi) +▽(ρi ∂u

∂t
) = ρikg

1
1+ βi
(
kρic − ρ

i

kρic
)H(ρo − θip)

− ρikdH(θid − ρ
o) (3)

where i are the three constituents (t = tumoral cells; h = healthy cells;
and s = stroma).The terms in the left side of the equation correspond
to the temporal rate of change of the i-th population density, the
diffusive term and the convective term and the ones in the right
side correspond to the proliferation and the death term, respectively.
The proliferation term depends on kg, which is the proliferation rate,
ρic, which is the tissue carrying capacity, k, which is the corrected
carrying capacity, that acts as a constraint to prevent cells unlimited
cell proliferation, and βi, which is the cell dependent parameter
being 1 for healthy cells and 0 for tumoral cells. kg is uniformly
applied across all constituents, based on the premise that βi plays
a crucial role in modulating growth by diminishing the proliferation
rate within healthy tissue. The kd constant defines the process of
death due to hypoxia. This parameter can be defined according
to the aggressiveness of the cancer (Lorenzo et al., 2016). As this
work is focused on low to intermediate risk patients, the chosen
parameter is selected in Table 1. Both cell proliferation and cell death
processes are given by the Heaviside function H, depending on
the oxygen concentration ρo, where θip and θid represent the oxygen
concentration threshold of proliferation and death, respectively,
of each constituent i. Spatial saturation is also limited by the k
parameter. This parameter ensures that the concentration of the
constituents never exceeds 1. It also preserves necessary space for
stroma, preventing cellular overpopulation, which is vital for cell
survival. The species displacement, u, results from both tumour
growth and its deformation as it interacts with the surrounding
tissues and organs at position x and time t. As our model focuses
on predicting the tumour growth in a confinedmanner, the diffusive
term (D), i.e., cellmigration, is underestimated in these equations for
simplicity, as both healthy and tumoral cell migration is assumed to
be low compared to other cell processes (Pienta and Loberg, 2005).

2.2.2 Oxygen transport
For the sake of simplicity, only oxygen and PSA (see

Section 2.2.3) transport has been considered. The model can
be expanded to integrate additional factors such as glucose or
other nutrients. However, due to the complexity of modeling all
mechanisms involved in tumour growth, oxygen has been selected as
a representative factor for all these nutrients. Oxygen concentration
is mainly determined by its exchange with blood, which depends
specifically on prostate vascularisation represented by KTrans, and a
negative term accounting for cell consumption. Transport equation
is defined as (Equation 4).

∂ρo

∂t
−▽ ⋅ (Do▽ρo) = KTrans (ρob − ρ

o) −
h,t

∑
i

Ai
oρ

o

kio + ρo
ρi

ρic
(4)

where KTrans is the oxygen extravasation parameter, which defines
the supply rate; and ρob is the oxygen concentration in blood.
The coefficients Ai

o and kio (where i = h, t) represent the oxygen
consumption of the different constituents of the model. More
specifcally, Ai

o is the maximum species consumption rate and kio
is the species concentration at which the total consumption term
is one-half of the total consumption term. These parameters are
considered equal for both healthy and tumoral cells (Table 1),
as a first simplified approach that aids in the development and
analysis of the model. Although there are metabolic differences
between these cell types, a single parameter is a reasonable
approximation for studies primarily focused on tumour growth
dynamics. Since themodel’s predictions are not significantly affected
by variations in this parameter, this simplification is beneficial
in reducing complexity and computational cost without greatly
impacting the model’s accuracy. While it is widely recognized that
diffusion influences the distribution of species such as oxygen
within a tumour (Greenspan, 1972; Wang et al., 2015), in well-
vascularised tissue active transport through blood vessels may limit
diffusion (Hervas-Raluy et al., 2024). Furthermore, it is crucial
to acknowledge the considerable computational resources required
to compute the diffusion process. According to our calculations,
the associated costs are estimated to be around twenty times
higher in cost.

2.2.3 PSA simulation
The normal prostate architecture keeps PSA tightly confined,

so that only a small proportion leaks into the circulatory system
and a major part is delivered to the urethra (Sävblom et al., 2005).
However, in the presence of cancer, this structure disrupts, as
abnormal proliferation of tumoral cells occurs and obstructs the
lumens and ducts through which PSA is secreted. Consequently, the
PSA produced cannot reach the urethra, accumulating in the tissue,
and leading to increased leakage into the bloodstream (Lilja et al.,
2008). As a first approach, the model considers the elevation of
PSA in the tissue as a consequence of the lumen disruption and
leakage by tumoral cells. Therefore, the increase of PSA in the
tissue is mainly proportional to the concentration of tumoral and
healthy cells with different effects.The intravasation fromPSA tissue
to blood depends on the prostate vascularization. Thus, KTrans is
considered the principal physical property driving this exchange,
depending on the difference in concentration between PSA in the
tissue and in blood. Equation 5 andEquation 6 describe the dynamic
of PSA tissue (P) and PSA serum in blood (Ps), respectively.

∂P
∂t
= αh

ρh

ρhc
+ αt

ρt

ρtc
−KTrans (P− Ps) − γP (5)

dPs
dt
= ∫ K̃Trans (P− Ps)dv− γsPs (6)

where αt and αh are the production ratio of PSA by tumoral and
healthy cells respectively, being αt larger than αh. γ and γs are
the natural decay parameters of PSA in the tissue and in blood
respectively. SerumPSA in blood is the sumof the exchange between
tissue and blood in each infinitesimal part of the prostate (dv), and
K̃Trans is KTrans per unit volume (K̃Trans = KTrans

dv
).
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2.3 Kinematics of growth

Let Ω be the prostate in a three-dimensional space, so that a
movement φ:Ω0→Ωt maps a material or reference configuration
Ω0 point to a current configuration Ωt by means of Equation 7.

x (X, t) = φ (X, t) (7)

The model assumes that a mechanical body consist of i− th
constituents that are characterised by their density and share each
differential volume element. This implies that these constituents
deform together, presenting the same deformation gradient tensor
F. The deformation gradient tensor in the theory of continuous
non-linear mechanics maps a material point X from the reference
configuration (Ω0) to an spatial point x in the current configuration
(Ωt) at any given time t (Equation 8).

F = ∂x
∂X

(8)

Additionally, the multiplicative decomposition of the
deformation tensor is used to describe the kinematics of growth
(Equation 9).

F = Fie ⋅ Fig (9)

where the total deformation gradient tensor F is accounted for by
an elastic deformation gradient tensor (Fie), related to the stress
response of the material, and an inelastic deformation gradient
tensor (Fig), connected to the volumetric growth.Therefore, to attain
the current configuration Ωt from the reference configuration Ω0,
an intermediate configuration related to volumetric growth is first
calculated (Ωg). This intermediate configuration is not a physical
state actually experienced by the tissue, it is usually an incompatible
configuration (Comellas et al., 2018). The current configuration is
then reached through the elastic deformation gradient component
Fe, which defines the mechanical response of the tissue (Figure 2).

The growth component Fig is set to be homogeneous and
isotropic so that Equation 10.

Fig = λigI (10)

where λig is the growth stretch ratio of every ith constituent. This
factor governs inelastic deformation, which is assumed to be due
to changes in mass production over the tissue corrected carrying
capacity (ρic), in such a way that the growth takes place if ρig > ρ

i
0

and, on the contrary, resorption if ρig < ρ
i
0 [Equation 11 (Hervas-

Raluy et al., 2024)], being ρi0 and ρig the constituent densities in the
reference and incompatible configuration, respectively.

λig =

{{{{{{
{{{{{{
{

1+ kd1(
ρig − ρ

i

ρi
)  i f  ρig ≤ ρ

i
0

kv1 +
kv2

1+ exp(−
ρig
kρic
)
  i f  ρig > ρ

i
0

(11)

where kv1 and kv2 are constants defining the growth rate and kd1
governs the change of volume due to mass resorption.

The consideration of mass change is essential for accurately
establishing stress-strain relations to replicate tumour growth.As the
mass need to be conserved from Ωg to Ωt, the formulations for the

densities of the grownmass (mi) concerning different configurations
are expressed in Equation 12 and Equation 13.

dmi = ρigdv
i
g (12)

dmi = ρidv (13)

where vig is the volume in Ωg and v the volume in Ωt. Therefore,
ρig can be rewritten as in Equation 14, where Jie is the volume
ratio given by Equation 15.

ρig = ρ
iJie (14)

Jie = detF
i
e =

dv
dvig

(15)

All the constituents are assumed to be linear elastic and
the properties of each element (j) are estimated by the rule
of mixtures (Equation 16).

Ej =∑Ei
ρi

ρic
(16)

2.4 Implementation

2.4.1 Numerical strategy
The proposed model is solved using the FE method. The

mechanical analysis is evaluated decoupled from the biological
one assuming growth incompatibility. Therefore, the growth tensor
is programmed in Python 3.7.12, while the elastic contribution
is computed in the commercial FE software Ansys®Academic
Research Mechanical, Release 19.2, implemented by means of an
ANSYS APDL (Figure 3). The thermoelastic expansion equations
are used as an analogy governing volumetric changes in expansion
and contraction processes to simulate tumour or prostate growth
or shrinkage (Vujošević and Lubarda, 2002), so the growth or
degrowthwould be indicated in theANSYSAPDLfile as a increment
of temperature positive or negative, respectively (Jig = (1+ αΔT)3,
being α a coefficient expansion ratio of 1 and ΔT the increment of
temperature) (Hervas-Raluy et al., 2024). By neglecting diffusion
and decoupling the convective term, Equation 3 can be simplified
by transforming the PDE into an ordinary differential equation
(ODE), which is solved by the explicit Euler method programmed
in Python. On the other hand, the Newton-Raphson method with
an implicit iterative method is used to solve the growth modulus by
means of Ansys® .

It is assumed that each volume element contains a mixture of
two structurally significant components, namely, the cells and the
stroma, so that the interaction between cells and stroma ismodelled.
The cell populations are categorized into healthy and tumour cells,
coexisting within the tumour, while the remainder of the prostate
consists solely of healthy cells. Therefore, the model operates on
the assumption that cellular and stromal-based matrix support the
samemechanical strains, therefore as they have differentmechanical
properties they present different stresses. Consequently, the total
stress supported by the prostate is considered the sum of both
cellular and stromal contributions. To represent this, the prostate
volume is discretised into two overlapping meshes with the same
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FIGURE 2
Schematic representation of the multiplicative decomposition applied to the deformation gradient F within a continuous framework to characterise
growth: The transition from the reference configuration Ω0 to the current configuration Ωt involves the initial calculation of an intermediate
configuration (Ωg) through Fg associated with volumetric growth. This intermediate configuration is not a physically experienced state by the tissue;
rather, it represents an incompatible configuration. Subsequently, the current configuration is attained through the elastic component Fe, which
characterizes the mechanical response of the tissue.

number of elements and sharing nodes. The mesh is composed
of three-dimensional linear tetrahedral linear elements generated
using im2mesh Pyhton library (Sainz-DeMena et al., 2022). The
average size element is 2.5 mm for all the patients and a time step
of 10 days is set.

The prostate is assumed to be located in the space bounded
by the surrounding organs, mainly rectum and bladder. These
organs undergo daily fluctuations due to their normal functioning,
which alter their physical characteristics and make it challenging
to select a material stiffness that precisely mimics the surrounding
anatomical conditions. However, for this purpose, the material
behaviour of these organs can be simplified to follow elastic
behaviour (Dall et al., 1993; Chai et al., 2011).Therefore, to replicate
the stiffness of these surrounding tissues, springs (Kstiffness) are set in
the direction normal to the prostate as contour conditions.

2.4.2 Multiscale temporal implementation
Cellular processes such as proliferation or death occur over a

broader time span than other phenomena such as the transport
of substances like oxygen and the leakage of PSA into the blood.
Therefore, in order to fully integrate all these phenomena and the
interaction between the cells and these substances, a multiscale
temporal algorithm has been modelled. For both oxygen transport
and PSA leakage, it is assumed that the equilibrium state of these

substances is reached before the time increment (Δt) given for each
iteration of the simulation.

First, the arrival of oxygen is simulated until an equilibrium
state is reached (Figure 3, step 1). By removing the diffusion term
fromEquation 4, an immediate equilibrium between concentrations
would theoretically be attained. Nonetheless, a small time interval,
denoted as Δtd, is required for this exchange to transpire in practice.
Once equilibrium is established, cellular processes are calculated and
population densities are updated. The resolution of this equation
employs the 8th-order explicit Runge-Kutta numerical method
for ODEs. The initialisation of the oxygen concentration begins
with the application of the transport equation (Equation 4), which
assumes that the initial oxygen concentration in the prostate is zero.
This premise facilitates the modelling of oxygen transfer from the
vasculature to the tissue at the beginning of the first step.

To address the multiscale temporal problem associated with
PSA dynamics, it is also assumed that the equilibrium between
PSA tissue concentration and PSA serum in blood is achieved well
before the completion of the time increment Δt, resulting in a
stationary state (Figure 3). To achieve this, the total amount of PSA
produced or decayed (P

∗
) in that time increment Δt is first estimated

(Equation 17). Subsequently, the PSA serum concentration in the
blood at the point of stationary state is calculated based on the
assumed P

∗
(Equation 18). Finally, the PSA level required in the

tissue to attain the specified serum PSA level in the blood and
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FIGURE 3
Schematic of the implementation of the model in one iteration Δt. First, the resulting oxygen concentration in each element at the beginning of the
iteration is calculated with the transport equation for a Δtd (1). Since Δtd is much smaller than Δt, it is assumed that a stationary state is reached that lasts
until the end of the iteration. Subsequently, the biological growth of each of the i constituents in Δt is updated taking into account the previously
calculated oxygen concentration, reaching the intermediate incompatible configuration (Ωg) (2). To solve the mechanical problem (3), the software

Ansys®Academic Research Mechanical, Release 19.2 is used, thus reaching the current configuration (Ωt). Finally, once the population densities in Δt
are known, the PSA in tissue and blood are estimated (4). The cells in the figure represent the typical structure formed by glandular cells in the prostate,
which are arranged to form lumens that secrete prostatic fluid to fulfill their glandular function. However, tumour cells proliferate, occupying and
obstructing these lumens (darker cells in the figure), thereby preventing the secretion of PSA into the seminal ducts and causing a larger portion of PSA
to leak into the blood. To calculate PSA dynamics, the total PSA production or decay (P

∗
) during the time increment Δt (4.1) is first estimated. Then, the

serum PSA concentration in the blood (Ps) is calculated at the stationary state (4.2). Eventually, the required tissue PSA level for equilibrium with the
specified serum PSA level is recalculated (P) (4.3). When the iteration has been completed, it is checked if the final time (tfinal) of the simulation has
been reached, in which case the results will be obtained. If not, a new iteration is restarted, taking as initial data the final data of the previous iteration.

maintain equilibrium is recalculated (Equation 19). In this way,
the computation can be simplified by using the explicit Euler
method for ODEs.

ΔP∗

Δt
= αh

ρh

ρhc
+ αt

ρt

ρtc
− γP (17)

ΔPs
Δt
=∑KTrans (P∗ − Ps) − γsPs = 0 (18)

ΔP
Δt
= αh

ρh

ρhc
+ αt

ρt

ρtc
−KTrans (P− Ps) − γP = 0 (19)

Although the implementation assumes an equilibrium between
blood and tissue, this does not imply that the values of P and
Ps are equal at equilibrium, as there are multiple factors that
influence this equilibrium. These equations are proposed on the
basis of heterogeneity in KTrans, which reflects the premise that the
exchange between tissue and blood is heterogeneous and vascular-
dependent. The KTrans parameter summarises this idea, indicating

that elevated KTrans values correspond to an enhanced exchange
capacity of substances within a specific region.The initial tissue PSA
is computed using Equation 19 which recalculates the tissue PSA
from the serumPSA concentration. PSA serum values, derived from
biochemical analyses for all patients, are adjusted via an exponential
curve. The initial tissue PSA is determined by the PSA serum value
on the fitted exponential curve corresponding to the date of the first
MRI. This approach guarantees consistency and accurate reflection
of the serum PSA measurements in the initial tissue PSA values.

2.5 Acquisition of model parameters

The parameters used in the model are summarised in Table 1.
Most of these parameters are taken from the literature. Nevertheless,
certain parameters, like the proliferation rate (kg), the corrected
carrying capacity (k), the incremental growth factor (kv2), the
stiffness of the surrounding tissue (Kstiffness) or those related

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2024.1421591
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Pérez-Benito et al. 10.3389/fphys.2024.1421591

with PSA dynamics, are particularly specific to the model or
display considerable variability across existing research, making
difficult to assign definitive values. To address this, an optimization
process is performed by means of the Python Optuna library
(Akiba et al., 2019). Optuna is a widely-used hyperparameter
optimization framework that leverages advanced techniques to
optimize machine learning models. It primarily employs the
Tree-structured Parzen Estimator (TPE) as its default sampler,
utilizing a Bayesian optimization algorithm (Akiba et al., 2019).
A multi-objective optimization process is chosen as it allows for
adjusting the best parameters for several patients simultaneously,
balancing the objective functions. Following examples from
Optuna’s documentation, the optimization algorithm is developed
in Python.This algorithm runs the tumour growthmodel a specified
number of times, referring to each iteration as a trial. In each trial,
the parameters to be adjusted are varied within a defined space,
and the model is run for each patient with that set of parameters.
Therefore, the final objective is to find the set of parameters that
minimize simultaneously an objective function for each patient.
Furthermore, Optuna inherently performs a sensitivity analysis
throughout the optimization process, utilizing the Functional
ANOVA evaluator (Akiba et al., 2019). As it adjusts parameters
across trials, Optuna evaluates how variations in each parameter
influence the objective function, providing insights into parameter
importance.

Two optimization processes are performed to comprehensively
refine the model. Initially, parameters governing PCa growth
undergo optimization with the objective of minimizing the
disparities between the MRI data and computational outcomes in
prostate volume, tumour volume, mean prostate cellularity, and
mean tumour cellularity. Following the acquisition of optimal
values, a secondary optimization is conducted to determine
parameters that most accurately align with PSA dynamics.

2.5.1 PCa growth model parameters optimization
The parameters to optimise are the proliferation rate (kg),

the corrected carrying capacity (k), the incremental growth factor
(kv2) and the stiffness of the surrounding tissue (Kstiffness). Table 2
shows the ranges within which these parameters are optimized.
kg range is derived from a study in male Sprague Dawley rats
where the proliferation rate of tumour cells was calculated as a
function of the concentration of testosterone-activated androgen
receptor (AR) (Jain et al., 2011). The k range is determined
by considering the upper limit of cellularity permissible within
a biological context for a given element. This ensures that the
element’s cellularity remains within a physiologically realistic
range. The estimation of kv2 is conducted by defining the growth
threshold of an element, which is directly influenced by the
density of its constituent components. This approach ensures
that the element’s expansion is quantitatively aligned with its
internal density parameters. Furthermore, the bladder and rectum,
which are adjacent to the prostate, undergo daily fluctuations
in their states. This alters their physical characteristics, posing a
challenge in selecting a material stiffness that precisely mimics the
surrounding anatomical conditions. The ranges given are obtained
from (Dall et al., 1993; Chai et al., 2011).

MRI patient data serve as the basis for model calibration,
encompassing measurements such as prostate volume, tumour

volume,mean prostate cellularity, andmean tumour cellularity from
MRI follow-ups. The simulation results are then compared with
these data, being the objective minimize any disparities between
them. To facilitate this, the relative error is chosen as the objective
function for minimization, as it accommodates errors measured in
different units, calculated according to Equation 20.

E = 1
n

n

∑
i=1
|
(εio − ε

i
c)

εio
| (20)

where i are the target values (prostate volume, tumour volume,mean
prostate cellularity, and mean tumour cellularity for each follow up
MRI), εio is the objective value from clinical measurements and εic is
the computational result of each trial.

2.5.2 PSA dynamics parameters optimization
After determining the optimal parameters for the PCa growth

model, the subsequent stage involves optimizing the PSA dynamics.
The parameters to optimise are the PSA production rate of tumoural
cells (αt), PSA production rate of healthy cells (αh), the tissue
PSA decay rate (γ) and the blood PSA decay rate (γs). Table 2
shows the ranges within which these parameters are optimized.
A reduced range for PSA production rates is selected for healthy
cells, predicated on the premise that in a healthy state, PSA is
predominantly discharged into the prostate’s lumens and ducts,
with minimal leakage into the surrounding tissue. Conversely, the
proliferation of tumour cells leads to the occupation of lumen spaces,
impeding the usual secretion pathways and resulting in increased
PSA leakage into the tissue. Consequently, it is assumed that a
small fraction of the PSA generated by healthy cells escapes into
the tissue. The ranges for decay parameters γ and γs were chosen
through an iterative process to optimize themodel’s fitwith observed
PSA dynamics.

Clinical measurements obtained through biochemical analysis
of serum PSA in blood are used for optimizing the PSA dynamics
parameters. Given the variability of these measurements due to
various patient and environmental factors, the mean absolute error
(MAE) is selected as the objective function for minimization, owing
to its robustness against outliers (Equation 21).

MAE = 1
n

n

∑
i=1
|(εio − εic)| (21)

where i are the different time points with PSA measurements, εio
is the objective clinical value and εic is the computational result of
each trial.

3 Results

3.1 Patient-specific data

This section introduces the patients who satisfy the study criteria
detailed in Section 2.1.1.

Patient A (Figure 4) was diagnosed at the age of 60 years. He had
no previous medical history of any other type of cancer and no close
family members have had PCa. 199 days after biopsy diagnosis, he
underwent an MRI scan which according to the PI-RADS report
indicated a lesion in themedial posterior peripheral zone of the apex

Frontiers in Physiology 10 frontiersin.org

https://doi.org/10.3389/fphys.2024.1421591
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Pérez-Benito et al. 10.3389/fphys.2024.1421591

TABLE 2 Combined parameters for optimization.

Symbol Parameter Range Units References

kg Proliferation rate [1 ⋅ 10−3 − 0.1] day−1 Jain et al. (2011)

k Carrying capacity corrected [0.5− 0.9] - Estimated

Kstiffness Stiffness of prostate surroundings [10− 20] kPa Boubaker et al. (2009)

kv2 Incremental growth factor [0.05− 0.1] - Estimated

αt PSA production rate of tumoral cells [1 ⋅ 10−2 − 1] ng ⋅mL−1 ⋅ day−1 Estimated

αh PSA production rate of healthy cells [0− 9 ⋅ 10−3] ng ⋅mL−1 ⋅ day−1 Lorenzo et al. (2016); Jain et al. (2011)

γ Tissue PSA decay rate [9 ⋅ 10−4 − 9 ⋅ 10−2] day−1 Estimated

γs Blood PSA decay rate [9 ⋅ 10−4 − 9 ⋅ 10−2] day−1 Estimated

of the prostate with a grade 4. The biopsy analysis indicated a GS
(3 + 3) 6 with an overall mean percentage of tumour volume of the
extracted cylinders of 2%.Hewas not treated in the first instance and
was included in AS with regular PSA blood tests. A follow up MRI
was performed 710 days after diagnosis MRI, and finally, as clear
growth was observed, he underwent radical prostatectomy surgery.

Patient B (Figure 4) was diagnosed at the age of 68 years. His
clinical record also does not indicate the existence of any other
cancer or that any family members have had PCa. Diagnosis MRI,
taken 121 days after biopsy diagnosis, shows a grade 5 PI-RADS
lesion in the medial posterior peripheral zone of the mid and base
of the prostate. The diagnostic biopsy showed a GS of (3 + 3) 6
and an overall mean tumour volume percentage of the extracted
cylinders of 3%. This patient was under active follow up with
biochemical analysis of PSA in the blood for approximately 2.5 years
until he underwent radical prostatectomy surgery. During this time,
he underwent three follow upMRI scans.This patient also exhibited
extraprostatic invasion and infiltration into the seminal vesicles,
indicative of a more aggressive form of cancer.Therefore, in order to
eliminate any possible remaining traces of cancer cells, subsequent
to the prostatectomy, he also underwent HT and RT.

Patient C (Figure 5) was diagnosed at the age of 65 years.
Subsequent reviews of his medical history revealed no personal or
family history of cancer. An MRI conducted 43 days prior to the
biopsy pinpointed a PI-RADS grade 5 lesion located in both the mid
and base sections of the peripheral zone, affecting posterior lateral
and medial aspects. The biopsy returned a GS of 6 (3 + 3), with
the tumorous tissue averaging 3.5% of the sampled cores’ volume.
Initially opting not to undergo immediate treatment, Patient D was
enrolled in AS, which included routine PSA monitoring. After a
period of 666 days from the diagnosis biopsy, a subsequent follow-
upMRI scanwas performed showed significant tumour progression,
leading to the decision for a radical prostatectomy at day 770.

Patient D (Figure 5) was diagnosed at the age of 56 years.
Subsequent reviews of his medical history revealed no personal
or familial history of cancer. An MRI conducted 932 days prior
to the biopsy pinpointed a PI-RADS grade 5 lesion located in the
mid medial section of the peripheral zone. The biopsy returned
a GS of 6 (3 + 3), with the tumorous tissue averaging 13.6%

of the sampled cores’ volume. Initially opting not to undergo
immediate treatment, Patient D was enrolled in AS, which included
routine PSA monitoring. A follow up MRI was performed 710 days
after diagnosis MRI, and finally, as clear growth was observed, he
underwent radical prostatectomy surgery.

Patients E and F are presented in the Supplementary Material
file. All six patients share the experience of undergoing AS as their
principal treatment strategy. They each have GS of 6 (3 + 3), have
been subject to twoormoreMRI scans, andhave had their PSA levels
measured in blood tests before and after these imaging procedures.
PSA levels exhibit significant variability, yet their trajectory can
be accurately characterized by an exponential curve (Karnes et al.,
2018; Siebinga et al., 2024) (Figures 4, 5). In this work, two patients
were chosen to fine-tune the model parameters for accurate tumour
prediction (Patient A and B), while another four were utilized to
validate the model’s outcomes (Patient C, D, E, and F). A mesh
refinement study was performed and, to yield a good trade off
between computational efficiency and accuracy, a mesh of 17833
linear tetrahedral elements and 3829 nodes was identified for the
patient A, 20,572 elements and 4274 nodes for patient B, 9185
elements and 2079 nodes for patient C and 18,262 elements and 3900
nodes for patient D. Patient E was meshed with 8804 elements and
1997 nodes and patient F with 55715 elements 10848 nodes.

3.2 Optimization results

To perform the optimization presented in Section 2.5, patients
A and B are selected.

For the optimization of the growth model, 60 trials are
conducted, wherein parameters are adjusted iteratively for each
patient tominimize the error function (Supplementary Figure S1A).
The Optuna optimizer identifies the best trials based on those
that achieve the lowest error. In this case, the optimizer did
not find a single set of parameters that minimized the error
for both patients simultaneously. Therefore the trial that gives
an error of 0.0887 for patient A and 0.108 is selected (further
information is provided in the Supplementary Material). Parameter
k emerges as the most influential, particularly impactful for patient
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FIGURE 4
Patient A and B clinical history: Patient A, diagnosed at 60 with grade 4 PI-RADS, had a Gleason Score of 6 (3 + 3) and 2% tumour volume; underwent
prostatectomy 1349 days post-diagnosis following a single follow-up MRI at day 909. Patient B, diagnosed at 68 with grade 5 PI-RADS, had a Gleason
Score of 6 (3 + 3) and 3% tumour volume; received three MRIs on days 514, 703, and 907, and due to cancer’s progression, had a radical prostatectomy
on day 989, followed by HT and RT. On the right, PSA measurements for both patients are displayed alongside their fitted exponential growth curves.
Bellow the timeline, the FE mesh digital reconstructions of the prostate and tumours at diagnosis and follow-up MRIs is showed. The diagnosis MRI is
utilized for the initialization of the model, while the subsequent follow up MRI serves for optimization.

B. For patient A, both k and kg exhibit significant relevance
in model performance, whereas the stiffness of the environment
and kv2 demonstrate comparatively lesser effects on the overall
model ensemble (Supplementary Figure S1B).

For the optimization of the parameters of PSA dynamics,
30 tests are conducted, wherein parameters are adjusted
iteratively for each patient to minimize the error function

(Supplementary Figure S2A). The minimal absolute error obtained
is 0.85 ng/mL for patient A and 0.82 ng/mL for patient B.
Parameter γ emerges as the most influential, representing the
decay of tissue PSA. The production of PSA of healthy cells is
also significantly important (αh), followed by the production
of tumoral cells (αt) and the serum PSA decay in blood
(γs) (Supplementary Figure S3).
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FIGURE 5
Patient C and D clinical history: Patient C, diagnosed at 65 with grade 5 PI-RADS, had a Gleason Score of 6 (3 + 3) and 3.5% tumour volume; underwent
prostatectomy 770 days post-diagnosis following a single follow-up MRI at day 666. Patient D, diagnosed at 56 with grade 5 PI-RADS, had a Gleason
Score of 6 (3 + 3) and 3% tumour volume; he underwent 2 MRI, one prediagnosis at day −932 and another for diagnosis at day −323, and due to
cancer’s progression, had a radical prostatectomy on day 501. On the right, PSA measurements for both patients are displayed alongside their fitted
exponential growth curves. Bellow the timeline, the FE mesh digital reconstructions of the prostate and tumours at diagnosis and follow-up MRIs is
showed. The first MRI taken for each patient are used for the initialization of the model, while the subsequent MRI serves for validation.

The parameters optimised for the model are those listed in
Table 1. The results of the optimization, achieved with this specific
combination of parameters that yield a better fit, are illustrated in
Figures 6, 7.

The outcomes of the computational analysis applied to patient
A are described. These outcomes include the geometry of the
prostate and tumour compared to one obtained from the MRI data
(Figure 6A), as well as graphical representations (Figures 6B–F).
Regarding volume growth the simulated prostate and tumour

volumes are compared to the segmented fromMRI (Figure 6B).The
simulated prostate exhibits an initial rapid growth within the initial
days, followed by a stabilization phase, ultimately attaining a volume
of 55.14 cm3 by the first follow up.This closely approximates theMRI
observed volume of 56.36 cm3 at the corresponding time point with
a relative error of 2.97% (Figure 6C). Similarly, the simulated tumour
volume experiences an initial rapid increase over the first two
hundred days, after which the growth rate decelerates. By the time
of the first follow up, the simulated tumour volume reaches 358.36
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FIGURE 6
Patient A optimization results: (A) shows the simulated geometries of the prostate and the tumour compared to the MRI ones. In (B) the growth of the
prostate and tumour volume are represented and compared to the MRI segmented volumes. In (C) and (D), these volumes have been represented with
a bar chart for follow up 1 in order to make a clearer comparison, for the prostate and tumour, respectively. (E) represents the overall cellularity in the
prostate observed in MRI as opposed to computational outcome. Beside, the cellularity in the tumour area is shown, also comparing the MRI data and
computational outcome. Finally, in (F), the simulated serum PSA is compared to the clinical observations.

mm3, in close agreement with the MRI observed volume of 410.15
mm3. This translates into a relative error of 15.74% (Figure 6D).
Moreover, the overall cellularity in the prostate and the tumour
obtained computationally is compared to that observed clinically
(Figure 6E). The numerical outcome demonstrate a commendable
alignment with clinical observations, with a relative error of 12.97%
in the prostate and 5.66% in the tumour. The mean cellularity in the
entire prostate, both clinically and computationally, hovers around

50%, while in the tumour area, it increases to approximately 60%.
Even so, this correlation is rationalized by the nature of the healthy
prostate, characterized as glandular tissue with numerous lumens.
As tumour cells proliferate, these lumens are occupied, resulting
in an elevated concentration within the tumour region. As for the
PSA dynamics observed (Figure 6F), while the computational curve
exhibits a slower rate of growth compared to the clinical curve, the
MAE achieved is relatively low, at 0.45 ng/mL. This indicates that,
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FIGURE 7
Patient B optimization results: (A) shows the simulated geometries of the prostate and the tumour compared to the MRI ones. In (B) the growth of the
prostate and tumour volume are represented and compared to the MRI segmented volumes. In (C) and (D), these volumes have been represented with
a bar chart for each follow up in order to make a clearer comparison, for the prostate and tumour, respectively. (E) represents the overall cellularity in
the prostate observed in MRI as opposed to computational outcome. Beside, the cellularity in the tumour area is shown, also comparing the MRI data
and computational outcome. Finally, in (F), the simulated serum PSA is compared to the clinical observations.

despite the differences in growth rates, the computational model
maintains a close approximation to the clinical data.

Patient B underwent three follow up MRI scans prior to radical
prostatectomy, which provided a valuable additional insight into
the dynamics of cancer growth. As for patient A, the outcomes
of the computational analysis applied to patient B are described.
These outcomes include the geometry of the prostate and tumour
compared to one obtained from the MRI data for each follow-
up time point (Figure 7A), as well as graphical representations
(Figures 7B–F). Regarding volume growth the simulated prostate

and tumour volumes are compared to the ones segmented from
MRI (Figure 7B). Similar to the scenario with patient A, the prostate
volume for patient B experiences amore rapid growth approximately
in the initial 300 days, eventually reaching a plateau by the first
follow up. This growth pattern aligns with the observed MRI
volumes, emphasizing substantial enlargement from the diagnostic
image to follow up 1, obtaining relative errors of 2.76%, 4.09%,
and 6.83% for follow up 1, 2, and 3, respectively. In contrast,
the growth from follow up 1 to 3 exhibits a less pronounced
trend. The evolution of tumour growth follows a sigmoidal pattern,
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characterized by gradual expansion in the initial phase, acceleration
around day 350, and subsequent stabilization around day 800. This
trend agrees with MRI data observations, reflecting an 70% increase
in tumour size by follow-up 3 compared to its original dimensions,
obtaining relative errors of 4.58%, 3.64%, and 5.52% for follow
up 1, 2, and 3, respectively. Regarding cellularity (Figure 7E), MRI
data observations reveal a relatively stable cellularity in the prostate
across the clinical history, whereas the tumorous region experiences
a gradual increase over time. Similarly, computational results depict
a stabilized cellularity across the prostate, albeit with a lesser degree
of variability, achieving relative errors of 25.01%, 25.25%, and
16.67% for follow up 1, 2, and 3, respectively. Notably, the cellularity
in the computational tumour exhibits a more restrained growth
compared to its MRI data counterpart. The results yielded relative
errors of 13.52% for the follow up 1, 4.50% for the follow up 2,
and 4.55% for the follow up 3. The dynamics of clinical and serum
PSA are also depicted (Figure 7F). In this simulation, the PSA levels
increasedmore rapidly than the exponential curve fitting the clinical
data. Nevertheless, a MAE of 0.25 ng/mL was achieved.

3.3 Validation of the model

The results of the application of the model to the patients
outlined in the previous section are here presented (Figures 8, 9).

The outcomes of the computational analysis applied to patient C
are described following the same pattern as in previous subsection.
These outcomes include the geometry of the prostate and tumour
compared to one obtained from theMRI data (Figure 8A), as well as
graphical representations (Figures 8B–F). Regarding volume growth
the simulated prostate and tumour volumes are compared to the
clinical ones (Figure 8B). The MRI prostate volume exhibits no
significant increase, whereas the simulated volume demonstrates
a slight initial growth before quickly stabilizing, resulting in a
relative error of 3.39% during the first follow-up (Figure 8C).
Conversely, the simulated tumour volume displays an initial
decrease, followed by a rapid increase, eventually aligning with the
MRI tumour volume with a relative error of 7.65% (Figure 8D).
Additionally, the cellularity within the prostate and the tumour,
as determined computationally, is corroborated by MRI data
observations (Figure 8E). The numerical analysis yields a close
approximation to the empirical data, with a relative error of 2.56%
for the prostate and 11.40% for the tumour. A higher variability in
the simulated cellularity is noted for the tumour compared to that
detected inMRI. Regarding the observed PSAdynamics (Figure 8F),
the computational model delineates a more gradual increase in
PSA levels when contrasted with the clinical trajectory, evidenced
by a MAE of 1.3 ng/mL. The model demonstrates limitations in
replicating the swift escalation observed in PSA concentrations.

The outcomes of the computational analysis applied to patient
D are described. These outcomes include the geometry of the
prostate and tumour compared to one obtained from the MRI data
(Figure 8A), as well as graphical representations (Figures 8B–F).
Regarding volume growth the simulated prostate and tumour
volumes are compared to the clinical ones (Figure 8B). In the
computational simulations, an initial rapid increase in prostate
volume is noted, which subsequently stabilizes. Upon reaching
the date of the first MRI follow-up, the simulated volume

attains 62.76 cm3. This represents a relative error of 6.15% when
compared to the volume segmented from theMRI data (Figure 8C).
Conversely, the tumour exhibits a notably accelerated expansion,
with MRI segmentations indicating a growth rate of 80.71%. The
computational model closely mirrors this progression, achieving
a relative error of just 4.49% at the time of the first follow-up.
Moreover, the cellularity metrics for the prostate and the tumour,
as inferred from computational models, are validated against the
MRI data observations (Figure 8E). The computational analysis
presents a proximate reflection of the actual data, with a relative
error of 6.61% for the prostate and 22.29% for the tumour. Notably,
this iteration reveals a more pronounced variance between the
simulated cellularity and that observed inMRI. Concerning the PSA
dynamics depicted (Figure 8F), the computational model continues
to project a more subdued ascent in PSA levels compared to the
clinical progression, as indicated by a MAE of 1.12 ng/mL. This
discrepancy underscores the model’s challenge in capturing the
rapid surge in PSA levels that is evident in clinical observations.

Results of Patient E and F are shown in the Supplementary
Material. Similar trends on the predictions were obtained for these
two additional patients.

4 Discussion

In this work, a novel approach is presented for creating a PCa
model by integrating clinical MRI data, so a full representation
of the whole prostate is obtained with its cellular and vascular
characteristics and the location of the tumour. On top of the
personalized model construction, our approach simulates and
predicts the effect of tumour growth in the prostate through the
FE method, coupling the dynamics of growth and the transport
of oxygen to better simulate the cross-talk between cells and
tumour microenvironment (Rao (2011); Ambrosi et al. (2019);
Comellas et al. (2018); Hervas-Raluy et al. (2024)). In addition, our
approach includes the simulation of the PSAdynamics, which allows
to evaluate tumour growth through the PSA levels in the patient, that
is a standard-of-care during AS.

The parameters of the biomechanical model presented here
have been predominantly gathered from existing literature, yet
refinement through optimization has been also performed to adjust
the model. It is assumed that the mechanisms of cell proliferation
and cell death are activated according to the oxygen concentration:
adequate oxygen triggers proliferation, while its absence induces cell
death. The model can be expanded to integrate additional factors
such as glucose or other nutrients. However, due to the complexity
of modeling all mechanisms involved in tumour growth, oxygen has
been selected as a representative factor for all these nutrients. Future
models could incorporate such additional elements by modifying
the transport equations to examine their impact on tumour
growth dynamics. Furthermore, the model incorporates a widely-
recognized regulatory term that reduces the rate of proliferation
as cell density approaches the tissue’s carrying capacity, ensuring
that cell densities remain within biologically plausible limits. This
term is essential for modulating the model’s growth dynamics,
as demonstrated by the optimization analysis detailed in the
Supplementary Material. The assumed carrying capacity of tumour
cells surpasses that of healthy cells, accounting for the glandular
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FIGURE 8
Patient C simulation results: (A) shows the simulated geometries of the prostate and the tumour compared to the MRI ones. In (B) the growth of the
prostate and tumour volume are represented and compared to the MRI segmented volumes. In (C) and (D), these volumes have been represented with
a bar chart for follow up 1 in order to make a clearer comparison, for the prostate and tumour, respectively. (E) represents the overall cellularity in the
prostate observed in MRI as opposed to computational outcome. Beside, the cellularity in the tumour area is shown, also comparing the MRI data and
computational outcome. Finally, in (F), the simulated serum PSA is compared to the clinical observations.

structure in healthy tissue. Proliferation rates are further influenced
by the level of cell differentiation,withmore undifferentiated tumour
cells exhibiting higher growth rates.The proliferation rate parameter
significantly impacts growth dynamics, especially in patient A,
where it ranks as the second most important factor according to the
optimization analysis (see Supplementary Material). In this model,
the diffusion term is underestimated from the equations that govern
population density evolution. The focus is on predicting tumour
growth in a localized context during the initial stages of cancer.

Consequently, for simplicity, the assumption is that the cancer has
not yet metastasized (Cieślikowski et al., 2020; Klotz, 2020). This
simplification is a significant limitation, as it prevents the model
from simulating tumour infiltration into surrounding tissues.

The distribution of oxygen within the tumour is determined
by a mass transport model. To mitigate computational costs, two
assumptions are incorporated. Firstly, the diffusive process of the
species is considered negligible compared to the extravasation
and consumption terms (Pienta and Loberg, 2005). And secondly,

Frontiers in Physiology 17 frontiersin.org

https://doi.org/10.3389/fphys.2024.1421591
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Pérez-Benito et al. 10.3389/fphys.2024.1421591

FIGURE 9
Patient D simulation results: (A) shows the simulated geometries of the prostate and the tumour compared to the MRI ones. In (B) the growth of the
prostate and tumour volume are represented and compared to the MRI segmented volumes. In (C) and (D), these volumes have been represented with
a bar chart for follow up 1 in order to make a clearer comparison, for the prostate and tumour, respectively. (E) represents the overall cellularity in the
prostate observed in MRI as opposed to computational outcome. Beside, the cellularity in the tumour area is shown, also comparing the MRI data and
computational outcome. Finally, in (F), the simulated serum PSA is compared to the clinical observations.

recognising the substantial difference in time scales between cellular
processes and transport phenomena, bothmodels are integrated into
a multiscale temporal model.

In the context of PSA dynamics, a temporal model is also
taken into account, postulating the attainment of equilibrium
between PSA concentration in the tissue and the blood before the
conclusion of each time increment. The computation of PSA in the
tissue involves considering that in the tumour area, where lumens
and ducts are obstructed due to abnormal cell proliferation, the
accumulation of PSA in the tissue surpasses that in the healthy

region (Lilja et al., 2008; Djavan et al., 1999). To account for
this effect, the proliferation range of healthy cells is chosen to
be much lower than that of tumour cells. Consequently, this
results in a parameter for healthy cell production that is 120
times lower in our model’s calibration. It’s important to note
that this parameter falls outside the typical biological range, and
as such, should be interpreted with caution. With regard to
natural decay rates, it is noteworthy that although the natural
decay rates observed during optimization appear to deviate from
the expected natural ranges, discrepancies were also observed in
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other models (Jain et al., 2011), so there is no clear consensus.
This discrepancy highlights the inherent challenges in identifying
parameters that fit the model seamlessly. Such difficulties are not
uncommon and reflect the complex nature of accurately simulating
real world phenomena. The production rates of PSA are critical
to this dynamic, particularly those from healthy cells, constitute
a greater portion of the total prostate volume, despite the fact
that PSA leakage into the tissue is more intense in the tumour
zone. The most significant parameter in PSA dynamics, however,
is the tissue decay rate (see Supplementary Material). Moreover,
vascularization is acknowledged as the primary facilitator of the
exchange between PSA in the tissue and blood (Chung et al.,
2014; Wu et al., 2018). The key parameter that conveys information
about prostate vascularisation is KTrans, influencing the arrival
of oxygen to the tissue and the exchange between PSA in the
tissue and blood. Other previous prostate tumour growth models
(Lorenzo et al., 2024; Jain et al., 2011) neglects this valuable
patient-specific information. A limitation of the present work is
that KTrans is treated as static, deviating from reality. Recognising
the importance of angiogenesis in tumour growth, future efforts
should explore the implementation of a dynamic KTrans for a more
accurate representation. In linewith earliermodels (Jain et al., 2011),
diffusion is neglected from PSA dynamics equations. We assume
the convective transport is much more significant compared to the
slower and limited impact of diffusion. The quick changes in PSA
levels and the small differences in concentration further lessen the
importance of diffusion (Pienta and Loberg, 2005; Tartakovsky and
Dentz, 2019; Hervas-Raluy et al., 2024).

PSA is the main biomarker currently used by clinicians to assess
the progression of cancer during AS, hence it seems likely that a
rise in PSA is related to the progression of the disease. However,
clinical PSA measurements exhibit substantial variability, as PSA
levels can significantly fluctuate due to various factors, whether
intrinsic to the patient -such as elevations due to benign prostatic
hypertrophy, recent manipulation of the prostate due to massage
or biopsy or prostatitis (Pezaro et al., 2014; Tzelepi 2023; Maeda-
Minami et al., 2023)- or external. In fact, PSAvariability is significant
in PCa diagnostics, with studies linking fluctuations to increased
cancer risk (Maeda-Minami et al., 2023). Public databases provide
insights into PSA patterns in both non-PCa and PCa patients
(Karunasinghe et al., 2022). PSA levels, influenced by various factors,
vary with cancer stage and are not strict cutoffs. Higher PSA levels
generally indicate advanced disease, but clinical stage and Gleason
Score also stratify risk (Tzelepi, 2023). Despite these variations,
the trajectory of the PSA data can be accurately characterized by
an exponential curve (Karnes et al., 2018; Siebinga et al., 2024)
(Figures 4, 5).

In this paper, two patients are used for parameter optimization
of themodel (patient A and B) and four others for demonstrating the
preliminary feasibility of the model (patient C, D, E and F).The four
six patients initially pursued AS as the primary treatment approach,
involving multiple PSA measurements and MRI scans. Despite the
presence of extraprostatic extension in patient B, the inclusion of
patient B in the study was deemed necessary due to the challenges
associated with obtaining new patient data. Moreover, given that the
model is designed to simulate the tumourwithin a defined boundary,
it remains applicable for its intended purpose. By integrating patient-
specific data obtained from MRIs and biopsies, the model accounts

for inter-patient variability. This approach avoids the need for
individual patient data calibration, favoring a unified parameter set
applicable across the patient spectrum. Consequently, it facilitates
personalized predictions that are both efficient and tailored to
the input data, thereby optimizing the predictive process. Finding
suitable parameters for biological models is a complex endeavor.
The intricate nature of biological systems means that small changes
in parameters can lead to significant differences in outcomes,
making it challenging to align models with real-world data. This
difficulty is a notable barrier in the development of accurate
predictive models. Despite the limited number of validated cases,
the computationally results obtained closely align with the clinically
observed outcomes. To gain a deeper understanding of the various
mechanisms involved in tumour development, it would be essential
to access additional data, which are currently unavailable. It is
noteworthy to emphasize the difficulty in obtaining comprehensive
datasets for analyses of this nature. These are retrospective studies
of patients treated at the hospital, where prioritizing minimal
and non-invasive tests is imperative, ensuring the patient’s health
and comfort take precedence. In regards to cellularity, the overall
prostate cellularity is stable over time. In contrast, tumour cellularity
increases. This variance is rationalised by the stable cell density
and structural maintenance in the healthy tissue, which contrasts
with the abnormal cell proliferation in the tumour tissue. In the
computational results we obtain a lower dispersion for both cases,
but the mean aligns within the clinical observations. The reason for
this is that the model inherently promotes uniformity in prostate
cellularity, representing a discernible constraint. Advancements in
themodel’s design and further refinement will be necessary to better
mimic cellularity outcome. It would indeed be advantageous to
have the capability to replicate cellular distribution by modifying
or introducing new hypotheses. This would enhance the model’s
adaptability and accuracy in reflecting the complex biological
processes within the prostate. Moreover, the complexities involved
in accurately quantifying discrepancies between the cellularity maps
from the model and actual observations are acknowledged. These
challenges arise from the absence of direct correspondence between
the mesh from the simulated prostate and the mesh generated from
MRI in the follow ups, which remain unregistered and vary in their
nodes and elements. Consequently, the focus has been maintained
on the primary objective of the work: to simulate tumour growth,
prostate, and PSA dynamics.

It is crucial to emphasize that the data used may harbor
intrinsic errors originating from image acquisition procedures
and assumptions made during data preprocessing. The volumes
of both the tumour and prostate are susceptible to dimensional
errors stemming from various factors. These include inaccuracies
in segmentation, an insufficient number of MRI slices to capture
the 3D characteristics, leading to potential inaccuracies in 3D
reconstruction, smoothing procedures to rectify imperfections in
the reconstruction, and the meshing of the geometry. Despite these
challenges, our model serves as a valuable tool for simulating and
understanding key aspects of PCa dynamics, providing a foundation
for further refinement and improvement in the pursuit of enhanced
accuracy and predictive capabilities.

This work represents a first contribution to the development of
a future digital PCa twin. Future directions include the integration
of different cancer treatments such as RT and HT into the model
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to study the effects of these treatments on tumour growth. The core
vision for the digital twin of PCa is to predict the various treatment
scenarios a newly diagnosed patient might face, such as AS, HT, RT,
and others. This type of model holds the potential to significantly
advance clinical practice. In the future, patient-specific digital twins
for PCa could become a valuable tool, enabling clinicians to predict
how the disease will progress in a patient-specific manner. This
would aid in determining the most appropriate treatment plan,
reducing the risks of both over- and under-treatment, which can
cause considerable distress, improving that way the quality of life
of the patient. The development of digital twins aligns with the
principles of precision medicine, marking a paradigm shift in the
approach to clinical decisions for PCa patients and paving the way
for more effective and targeted interventions in cancer care.
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