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Artificial intelligence in surgery has seen an expansive rise in research and clinical
implementation in recent years, with many of the models being driven by
machine learning. In the preoperative setting, machine learning models have
been utilized to guide indications for surgery, appropriate timing of operations,
calculation of risks and prognostication, along with improving estimations of
time and resources required for surgeries. Intraoperative applications that have
been demonstrated are visual annotations of the surgical field, automated
classification of surgical phases and prediction of intraoperative patient
decompensation. Postoperative applications have been studied the most, with
most efforts put towards prediction of postoperative complications,
recurrence patterns of malignancy, enhanced surgical education and
assessment of surgical skill. Challenges to implementation of these models in
clinical practice include the need for more quantity and quality of
standardized data to improve model performance, sufficient resources and
infrastructure to train and use machine learning, along with addressing ethical
and patient acceptance considerations.
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Introduction

There has been rapid growth of interest over the past decade in the use of artificial

intelligence (AI) in the field of surgery to perform data-driven tasks efficiently and

ultimately improve patient care (1). Machine learning (ML) is a division of AI which

learns from large datasets and algorithms to provide personalized analysis and

predictions. In visceral surgery, applications of ML in surgery include optimization of

patients and resources, intraoperative analysis and feedback, and prediction of

postoperative complications.

Despite the increase in research and demonstration of application on ML in visceral

surgery, there remains a challenge in implementation. Numerous factors play a role in

this dilemma including ML training, validating and testing of quality data, model

selection, implementation of appropriate resources and infrastructure for ML, along

with ethical and professional acceptance (2).

In this mini review, we will assess current literature on application of ML in visceral

surgery in the preoperative, intraoperative, and postoperative settings (Table 1).
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TABLE 1 Summary of studies on application of machine learning in visceral surgery in the preoperative, intraoperative, and postoperative settings.

Setting Authors, Year Study
design

Data source Aim of ML model Results of ML models

Preoperative Henn et al. 2022 (3) Systematic
review

47 studies Guide clinical decision-making to proceed with abdominal surgery ML models were superior in 97.8% of studies vs. conventional methods

Chongo et al. 2024 (4) Systematic
review

23 studies Liver transplantation prognostication ML models had excellent predictive performance (AUROC 0.9-1) for
short and long term outcomes of mortality and post-transplantation
complications

Zhao et al. 2019 (5) Retrospective
cohort

Single institution,
n = 500

Predict case duration during robot assisted surgery ML modes were more accurate (51.7%) vs. conventional means (34.9%)

Li et al. 2024 (6) Retrospective
cohort

Single institution,
n = 186

Predict surgical difficulty of laparoscopic rectal procedures ML models had high performance (AUROC 0.9-1) for predicting
surgical difficulty

Cao et al, 2019 (7) Retrospective
cohort

National registry,
n = 37,811

Predict severe postoperative bariatric surgery outcomes based on preoperative factors Most ML models had high accuracy (>90%) and specificity (>90%) but
sensitivity (0–75%) and AUROC (around 0.5) were poor

Lan et al. 2020 (8) Retrospective
cohort

Single institution,
n = 223

Predict appropriate surgical timing for infected necrotizing pancreatitis ML models better predicted surgical timing, identified factors associated
with surgical timing, and postoperative survival for infected necrotizing
pancreatitis vs. conventional methods

Intraoperative Laplante et al. 2023 (9) Retrospective
cohort

International
database, n = 31

Validate Madani et al’s “GoNoGoNet” model of displaying safe and dangerous zones
during laparoscopic cholecystectomy (10)

Model had 92% mean accuracy, 97% specificity, and 70% positive
predictive value for safe zones and 92% mean accuracy, 80% sensitivity,
and 95% negative predictive value for dangerous zones

Mascagni et al. 2022 (11) Retrospective
cohort

Single institution,
n = 201

“DeepCVS” model to identify critical view of safety in laparoscopic cholecystectomy Model had mean accuracy of 71.4%

Aspart et al. 2022 (12) Retrospective
cohort

Single institution,
n = 300

“ClipAssistNet” model to warn about adequate clipper tip visibility prior to clipping
cystic structures during laparoscopic cholecystectomy

Model had AUROC of 0.9107, 66.15% specificity and 95% sensitivity

Garrow et al. 2021 (13) Systematic
review

35 studies Automated surgical phase recognition during laparoscopic cholecystectomy, sleeve
gastrectomy, colorectal surgery amongst others

ML models had accuracy ranging from 68.8% to 96.3%

Takeuchi et al. 2022 (14) Retrospective
cohort

Single institution,
n = 119

Automated surgical phase recognition during laparoscopic inguinal hernia repair Models had accuracy of 88.1% and 85.8% in unilateral and bilateral
repairs, respectively

Kitaguchi et al. 2020 (15) Retrospective
cohort

Single institution,
n = 71

Automated surgical phase recognition during laparoscopic sigmoidectomy Model had accuracy of 91.9%

Kitaguchi et al. 2022 (16) Retrospective
cohort

Single institution,
n = 50

Automated surgical phase recognition during transanal total mesorectal excision Model had accuracy of 93.2%

Cheng et al. 2022 (17) Retrospective
cohort

Multicentre, n =
90

Automated surgical phase recognition during laparoscopic cholecystectomy Model had accuracy of 91.1%

Hashimoto et al. 2019 (18) Retrospective
cohort

Single institution,
n = 88

Automated surgical phase recognition during laparoscopic sleeve gastrectomy Model had accuracy of 85.6%

Ramesh et al. 2021 (19) Retrospective
cohort

Single institution,
n = 40

Automated surgical phase recognition during laparoscopic Roux-en-Y gastric bypass Model had accuracy of 91.2%

Hatib et al. 2018 (20) Retrospective
cohort

Multicentre, n =
1,334

“Hypotension Prediction Index” model to predict hypotension five minutes prior to
true drop in blood pressure

Model had sensitivity and specificity of 92% and 92% with AUROC of
0.97

Postoperative Stam et al. 2022 (21) Systematic
review

15 studies Predict postoperative complications, including surgical site infection, postoperative
anastomotic leakage, pulmonary complications, postoperative pancreatic fistula, 30
and 90-day readmissions, and mortality in colorectal, bariatric, gastric and
hepatobiliary surgery amongst others.

Models’ AUROC ranged from 0.50 to 0.96 with majority of models
outperforming conventional methods. Performance improved with
inclusion of both pre- and intraoperative data

Al Abbas et al. 2024 (22) Retrospective
cohort

Single institution,
n = 4,581

Higher scores from the ML model correlated with postoperative
outcomes, in lower mortality and decreased length of stay
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Preoperative applications

Prior to a patient’s operation, numerous complex factors are

deliberated by surgeons to deliver safe, quality and evidence-

based care, in an efficient manner. Information such as

indication for and timing of surgery, risk calculation,

prognostication, time and resources required are some of these

factors. Use of ML has the potential to more efficiently and

effectively process the data required to advise about these factors.

Henn et al. evaluated the value of ML on guiding clinical

decision-making to proceed with abdominal surgery, by conducting

a systematic review of 47 articles with mean number of 55,843

patients (3). Surgical domains included the breadth of visceral

general surgery including colorectal, surgical oncology, bariatric,

and hepatobiliary surgery. Studies looked at predicting risk or

benefit of procedures using ML vs. conventional decision-making.

Standard measures of clinical decision making such as scores and

tests, logistic regression, expert opinion and Cox regression were

used to compare ML to traditional decision-making. 97.8% of the

studies demonstrated ML to be superior to conventional methods

in guiding clinical decision-making to offer surgery. They suggest

that ML can be used to offer more personalized care, decrease costs

by targeting high risk patients for prehabilitation and focused

perioperative care, and that area under the receiver operating

characteristic (AUROC) be used for ML model evaluation.

Another application of ML in the preoperative setting is

prognostication. Chongo et al. studied ML use for

prognostication of liver transplantation in a systematic review

(4). 23 articles were included in which the ML models, using

pre-transplant data, outperformed traditional scoring systems

such as the Model for End-stage Liver Disease (MELD) and

Child-Turcotte-Pugh scores consistently. Primary outcomes were

mortality and post-transplant complications, in which AUROC

demonstrated ML models’ excellent predictive performance

(AUROC 0.9-1) for both short and long term outcomes. They

conclude with highlighting the potential of ML models to

optimize organ allocation, improve patient outcomes and

decrease healthcare costs.

Furthermore, Zhao et al. used ML to predict case duration

during robot assisted surgery (5). They performed a retrospective

cohort analysis of 500 elective robot assisted surgeries of

primarily abdominal visceral procedures at a single institution. 28

variables were selected for model building including patient age,

obesity, tumor location, time of day, and surgeon postgraduate

year, amongst others. Primary outcome was scheduled case

duration as predicted by the ML model vs. the conventional

system. All ML models including multivariable linear regression,

ridge regression, lasso regression, random forest, boosted

regression tree, and neural network decreased the average root-

mean-squared error when compared to the baseline model. ML

predicted durations were accurate 51.7% of the time compared to

the traditional system’s 34.9%. They highlight that ML can

improve the accuracy of robot assisted case length predictions, to

help improve utilization of scarce resources.

Li et al. explored ML in the preoperative setting by developing

models for predicting surgical difficulty of laparoscopic rectal
frontiersin.org
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cancer resection (6). Surgical difficulty was scored based on

duration of surgery, conversion to open procedure, postoperative

stay >14 days, visceral fat area, body surface area and

morbidities. 186 patients were included from a single centre

institution. Four ML models were developed and validated,

utilizing support vector machine, random forest, logistic

regression, and decision tree. All models showed high

performance using AUROC (0.9-1). Thus, the authors propose

ML models can assist surgeons evaluate surgical difficulty

preoperatively and accordingly make treatment decisions and

resource allocations.

Cao et al. compared supervised ML models to predict severe

postoperative bariatric surgery complications (7) based on

preoperative factors. The ML algorithms were trained using 37,811

bariatric surgery patients from the Scandinavian Obesity Surgery

Registry from 2010 to 2014, and validated on 6,250 patients in

2015. Preoperative data points such as age, BMI, year of operation,

HbA1c, and obesity-related comorbidities were included in the ML

models. 29 ML algorithms were studied including deep learning

neural network, k-nearest neighbor, support vector machine,

random forest, and adaptive boosting logistic regression to name a

few. Synthetic minority oversampling technique was used to tackle

the imbalanced data as only 3.2% of patients experienced severe

postoperative bariatric surgery complications. Performance of the

ML models were assessed using accuracy, sensitivity, specificity,

and AUROC. Most of the ML algorithms demonstrated high

accuracy (>90%) and specificity (>90%) but sensitivity (0%–75%)

and AUROC (around 0.5) were poor for all models. They

postulate this to the low incidence of postoperative bariatric

surgery severe complications. They also note that studies that

include information following the preoperative setting, such as

intraoperative complications, show improved model performance.

However, this is not useful for utilizing ML for preoperative risk

calculations. Therefore, while potential is shown for the use of ML

models in the preoperative setting in predicting severe

postoperative complications, it is not clinically beneficial yet.

Lastly, ML has also shown potential in guiding appropriate

timing of surgery. Lan et al. developed a ML model to predict

timing of surgical intervention for infected necrotizing

pancreatitis (8). A retrospective analysis was conducted on 223

patients in a single centre hospital. The ML models were logistic

regression, support vector machine and random forest.

Generative adversarial networks were used to generate simulated

samples to overcome the small sample size. Compared to

traditional models, the ML models better predicted surgical

timing, as well as identified factors associated with surgical

timing, and postoperative survival for infected necrotizing

pancreatitis. They conclude stating that ML can provide good

references for surgeons to make personalized surgical plans for

infected necrotizing pancreatitis patients.
Intraoperative applications

Along with providing valuable and personalized data in the

preoperative setting, ML has also been demonstrated to have
Frontiers in Surgery 04
application in the intraoperative setting, which is particularly

significant as the source of most adverse events for surgical

patients can be traced back to intraoperative events (10). Areas

that have shown promise are visual annotation of the surgical

field, automated surgical phase recognition and prediction of

intraoperative patient decompensation. This information can

provide the surgical team with important information to

optimize procedures, surgical training and ultimately provide

more effective and safe care to patients.

Madani et al. created an AI model, GoNoGoNet, to visually

display safe “Go” and dangerous “No Go” zones during

laparoscopic cholecystectomy. This was generated using deep

neural networks, a subset of AI algorithms that use machine

learning (10). Laplante et al. validated GoNoGoNet with expert

high volume surgeons from the Society of American

Gastrointestinal and Endoscopic Surgeons’ (SAGES) Safe

Cholecystectomy Task Force (9). They found the AI model to

have 92% mean accuracy, 97% specificity, and 70% positive

predictive value for safe zones and 92% mean accuracy, 80%

sensitivity, and 95% negative predictive value for dangerous

zones. Deep neural network modeling has also been used by

Mascagni et al. who created a model, DeepCVS, to identify the

critical view of safety in laparoscopic cholecystectomy with a

mean accuracy of 71.4% (11). Another intraoperative use of

machine learning in laparoscopic cholecystectomy is warning

surgeons about adequate clipper tip visibility prior to clipping

the cystic duct and artery. This model, ClipAssistNet, was also

generated using deep neural networking by Aspart et al, which

had a AUROC of 0.9107, 66.15% specificity and 95% sensitivity

(12). Thus, these models may eventually be implemented for

real-time intraoperative guidance to decrease the risk of bile duct

injury during laparoscopic cholecystectomy.

Moreover, Garrow et al. assessed ML models for automated

surgical phase recognition through a systematic review with 35

articles including laparoscopic cholecystectomy, sleeve

gastrectomy, and colorectal surgery (13). The most common ML

models used were Hidden Markov Model and Artificial Neural

Network. Accuracy of the models ranged from 68.8% to 96.3%.

Despite the majority of studies focusing on laparoscopic

cholecystectomy, there was significant heterogeneity in the

number of phases and definitions of phases, along with ML

models used, precluding accurate comparison of studies.

Interestingly, complexity of models and those used in more

recent studies did not affect accuracy. Takeuchi et al. similarly

looked at surgical phase recognition of laparoscopic inguinal

hernia repair using deep learning models, displaying accuracy of

88.1% and 85.8% in unilateral and bilateral repairs, respectively

(14). Kitaguchi and his team specifically studied automated phase

recognition in laparoscopic sigmoidectomy and transanal total

mesorectal excision using deep learning models with accuracies

of 91.9% and 93.2%, respectively (15, 16). Cheng et al. likewise

explored surgical phase recognition of laparoscopic

cholecystectomy using deep learning models, and showed

accuracy of 91.1% (17). Bariatric surgery automatic surgical

phase recognition has also been studied. Hashimoto et al.’s deep

neural based model showed 85.6% accuracy in laparoscopic
frontiersin.org
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sleeve gastrectomy (18). Ramesh et al. used multitask multi-stage

temporal convolutional networks to automate phase recognition

in laparoscopic Roux-en-Y gastric bypass with accuracy up to

91.2% (19). These studies conclude that automated surgical phase

recognition is an emerging field and recommend data collection

be compatible for ML analysis and standardized surgical

phase definitions.

Another use of ML for intraoperative application is prediction

of intraoperative decompensation. Intraoperative hypotension is

associated with postoperative complications including higher

mortality, acute kidney injury and myocardial infarction (29–33).

Consequently, Hatib et al. developed an algorithm, the

Hypotension Prediction Index, using machine learning to predict

hypotension five minutes prior to actual drop in blood pressure.

This was created using arterial waveform data of 1,344 patients,

with a sensitivity and specificity of 92% and 92% with AUROC

of 0.97 (20). The algorithm was validated in a randomized

control trial along with a treatment protocol by Wijnberge et al.

(34). Gastrointestinal, pancreas, esophagus, and gynecology

procedures were included. They demonstrated a median of

16.7 min less of intraoperative hypotension for patients in the

intervention group that used the Hypotension Prediction Index

and treatment protocol compared to the control group.

Therefore, this ML based model for prediction and prevention of

intraoperative hypotension has the potential to decrease

postoperative complications.
Postoperative applications

Lastly, ML has been studied the most in the postoperative

environment. Areas of interest are prediction of postoperative

complications, recurrence patterns of malignancy, surgical

education and automated surgical skill assessment. These

applications have the prospect of providing patients with

prevention and earlier management of complications, enhanced

treatment after oncologic surgeries, and improved training and

feedback for surgical trainees.

Numerous prediction models using ML have been developed

for postoperative complications, particularly in the last few years

(2). The range of visceral surgery including colorectal, bariatric,

gastric and hepatobiliary has been studied. Surgical site

infection, postoperative anastomotic leakage, pulmonary

complications, postoperative pancreatic fistula, 30 and 90-day

readmissions, and mortality are some of the complications that

have been analyzed (1, 2, 21, 35–39). ML generally

outperformed conventional logistic regression models (2).

Performance can be improved by inclusion of both pre- and

intraoperative data, instead of just one, along with both

structured and unstructured data. One such intraoperative

platform is Grantcharov’s Operating Room Black Box platform

which uses multimodal audiovisual data that is analyzed

through computer vision and machine learning to identify

adherence and quality of surgical safety checklists,

intraoperative errors and events, surgeons’ technical skills, and

environmental distractions (23). The ML-driven analysis from
Frontiers in Surgery 05
this platform has been demonstrated to correlate with

postoperative outcomes. For example, Al Abbas et al. assessed

surgical teams’ quality of surgical safety checklist performance,

based on the scores output by the Operating Room Black Box,

to postoperative outcomes (22). Higher scoring teams’ patients

correlated with lower mortality and decreased length of stay.

Therefore, these ML-based prediction models can foster

improved and individualized management of patients’

complications in the postoperative period.

Hayashi et al. assessed a different aspect of postoperative

care, in predicting recurrence patterns of pancreatic cancer

after upfront pancreatic surgery (24). They presented a

retrospective, single-centre study, with 524 patients in which

histology-based supervised ML was used to predict recurrence

patterns of pancreatic cancer. Variations in gland formation

size and type of atypia predicted non-recurrence (AUROC

1.000), liver (AUROC 1.000) and lung (AUROC 0.861)

metastasis. This information may lead to earlier, personalized

chemotherapy for these patients.

ML has also been used to promote surgical education as

demonstrated by Noroozi et al.’s LapBot Safe Chole, an

educational mobile game that uses AI to provide users with real-

time assessment on their choice of dissection of safe or

dangerous zones of the hepatocystic triangle during laparoscopic

cholecystectomy (26). The application uses Madani et al.’s deep

neural network based GoNoGoNet model to provide feedback

(10). St John et al. validated the study with 903 participants from

64 countries (25). Average scores were significantly positively

associated with players’ case volume and training level.

Meanwhile, averages scores and confidence levels significantly

decreased with increasing game difficulty levels. This suggests

that surgical education games can be an effective adjunct tool to

offer practice and coaching for trainees.

Another potential of ML postoperatively is automated

evaluation of surgical skill, which Lavanchy et al. assessed with

laparoscopic cholecystectomy (27). 242 videos were used for

annotation in the study. They developed a three-stage ML

model to assess surgeon ability, based on surgical instrument

handling. The premise being more skilled surgeons handle

instruments in a focused area while less skilled surgeons have

slow, trembling motions with repetitive direction changes and

greater areas of movement. The three stages are instrument

detection and localization, tracking motion, and skill

prediction based on calculated motion metrics. Prediction

skills ratings were correlated with expert ratings. The ML

model was able to predict good or poor surgical skills with

87% accuracy and skill level with 70% accuracy. Similarly,

Kitaguchi et al. also developed an automated surgical skill

assessment tool for laparoscopic colorectal surgeries. They

used 3-dimensional convolutional neural networking to create

the model which demonstrated mean accuracy of 75.0% (28).

The authors of these studies advocate that with a larger

training database and model refinement, an improved

automated surgical skill evaluation is possible to ultimately

help provide continuous objective feedback on surgical skills

for surgeons.
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Limitations and challenges going forward

Despite the scale of emerging data, there remains limitations

and challenges in clinical implementation of ML in visceral

surgery. The majority of this review’s studies’ ML models were

trained and validated internally with local institutional or

organizational datasets as opposed to being validated externally.

This can lead to potential biases and generalizability concerns to

other patient populations. As well, most of the studies are

observational (see Table 1), and thus, more statistically robust

designs such as randomized control trials can be explored to

validate the ML models in future studies. ML models in the

studies that performed poorly were generally due to fewer

modality sources of data and unstandardized and varying

definitions of surgical steps or phases. As a result, there are less

preoperative ML models compared to intraoperative and

postoperative applications which can extract from more

data points.

Quality and quantity of data affect ML performance. Vast

amounts of data are required which may involve interdisciplinary

regional, national, and international collaboration (40). The data

is generally not standardized and requires immense time

commitment to organize and annotate.

To help resolve this, the Global Surgical AI Collaborative has

been established to offer surgeons access to large, international

shared databases and an infrastructure to utilize this data (41).

Federated learning, an encrypted and decentralized form of

machine learning that allows data processing at remote physical

locations to train local models which are then amalgamated into

a final model. This increases data privacy and the possibility of

greater data accessibility. Thus, models can be created

collaboratively with other centres, mitigating the immense data

annotation workload often required to create a single centre

based ML model. Another method of decreasing the demand of

data annotation is using coarser labels in which the content of a

video sequence is categorized or qualitatively described instead of

segmenting each frame (42). This method of labelling is less

demanding, however may lead to less clinically relevant

applications. Coarse labelling is suited for tasks such as

navigation to specific points of videos as well as education by

describing the contents of videos.

Secondly, appropriate resources and infrastructure to

implement ML are necessary. Modifications to current electronic

medical record systems are required to allow safe and real-time

interaction between patient files and machine learning models

(2). The ML models must also be trained and validated in the

proposed healthcare facilities of installation to ensure accurate

performance for that specific hospital. As well, incentivizing

surgeons that participate in providing and annotating videos to

standardized databases for AI video-based assessment, with

compensation such as continuing medical education (CME)

points, may increase the available data pool and improve ML

models’ performances.

Lastly, ethical considerations and acceptance by patients and

the surgical team are another barrier in the application of ML.
Frontiers in Surgery 06
To help address the ethical issues of using vast patient datasets,

de Almeida et al. published a review and developed a framework

for AI regulation, from legislation to research and development,

with 21 guidelines (43). Moreover, in a systematic review of

public perception on AI, patients generally viewed AI in positive

light but still preferred to receive healthcare with human

physician supervision over AI (44). Greater acceptance of AI was

found if patients were given a choice between AI and provider,

AI was applied in a low risk setting, AI was proven to be more

accurate than providers, if physicians recommended AI, and if

AI matched societal and cultural norms. While the evidence of

ML in surgery is growing, surgeons are also weary of ML

implementation without institution-specific validated models. It’s

important for surgeons to understand how ML works, help

develop it, and then, push for its clinical application.

In summary, there is abundant potential of ML application in

visceral surgery in the preoperative, intraoperative, and

postoperative settings with the benefit of safer, more effective and

higher quality patient care. Some challenges have created a gap

between research findings and clinical implementation of ML

which future studies should further address.
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