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Inter-chromosomal contacts demarcate
genome topology along a spatial gradient

Milad Mokhtaridoost 1, Jordan J. Chalmers 1,2, Marzieh Soleimanpoor 1,
Brandon J. McMurray 1, Daniella F. Lato 1, Son C. Nguyen 3,4,
ViktoriaMusienko5, JoshuaO. Nash 1,6, Sergio Espeso-Gil 1, Sameen Ahmed1,2,
Kate Delfosse1, Jared W. L. Browning1,2, A. Rasim Barutcu 7,
Michael D. Wilson 1,2, Thomas Liehr 5, Adam Shlien 1,6, Samin Aref 8,
Eric F. Joyce3,4, Anja Weise5 & Philipp G. Maass 1,2

Non-homologous chromosomal contacts (NHCCs) between different chro-
mosomes participate considerably in gene and genome regulation. Due to
analytical challenges, NHCCs are currently considered as singular, stochastic
events, and their extent and fundamental principles across cell types remain
controversial. We develop a supervised and unsupervised learning algorithm,
termed Signature, to call NHCCs inHi-Cdatasets to advanceour understanding
of genome topology. Signature reveals 40,282 NHCCs and their properties
across 62 Hi-C datasets of 53 diploid human cell types. Genomic regions of
NHCCs are gene-dense, highly expressed, and harbor genes for cell-specific
and sex-specific functions. Extensive inter-telomeric and inter-centromeric
clustering occurs across cell types [Rabl’s configuration] and 61 NHCCs are
consistently found at the nuclear speckles. These constitutive ‘anchor loci’
facilitate an axis of genome activity whilst cell-type-specific NHCCs act in
discrete hubs. Our results suggest that non-random chromosome positioning
is supported by constitutive NHCCs that shape genome topology along an off-
centered spatial gradient of genome activity.

Chromosomal interactions between different chromosomes (termed
here: non-homologous chromosomal contacts [NHCCs]) have been
shown to contribute to genome topology1–5. It is well established that
NHCCs are critical for several biological processes, such as coales-
cing olfactory receptor genes to orchestrate their expression in
multi-chromosomal hubs6,7, and forming the nucleolus through
spatial proximity between acrocentric chromosomes8,9. Further
underscoring the importance of NHCCs is their reorganization in
human disease10,11.

Two commonly used approaches for investigating NHCCs are
imaging and chromatin capture, both of which are limited in deter-
mining NHCCs. Specifically, imaging is not scalable to genome-wide
approaches and chromosome conformation capture (i.e., proximity
ligation-based Hi-C) as the most widely used technique to study 3D
genome organizationmainly focuses on analyzing intra-chromosomal
contacts12,13. Moreover, both methodologies often caused discordant
results when studying NHCCs that do not complement one
another5,14,15. Importantly, Hi-C datasets contain ‘trans-reads’, but
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current computational and statistical analysis has limitations in con-
fidently determining true NHCCs. Hence, NHCCs have been con-
sidered as stochastic, singular events5,16, that are not readily detectable
in Hi-C data17,18. The non-ligation-based methodologies, such as
SPRITE9, imaging approaches17,19–23, TSA-Seq24, and HiPore-C25 have
assayed single cell types and although they determinedNHCCs around
the nuclear speckles and nucleoli9,25, their depth is not comparable to
Hi-C. In summary, while some examples of NHCCs are well established
and critical for cellular processes, we still lack a comprehensive viewof
the fundamental principles of NHCCs. This is owing to analytical Hi-C
limitations where a robust statistical framework is required to con-
fidently determine true NHCCs above background noise. Here, we
developed a machine learning method assessing the Spatially Inter-
acting GeNomic ArchitecTURE (Signature) towards a comprehensive
and systematic detection of NHCCs, their extent across cell types, and
their putative impact on non-random chromosome positioning. Sig-
nature is explicitly designed to examine intra- and inter-chromosomal
interactions in Hi-C datasets (including Omni-C, capture Hi-C, and
Micro-C26), without technical intricacy, further resources, and time to
perform orthogonal approaches (i.e., GAM27, SPRITE9, HiPore-C25),
which is advantageous for the field.

To derive the fundamental properties of NHCCs, we took a
genome-wide approach across 53 diploid (2n) cell types. Specifically,
Signature overcomes previous analytical limitations by supervised and
unsupervised learning (Community Detection28) and tests all genomic
contacts relative to the entire genomic context. Using Signature, we
confidently determined multi-dimensional NHCCs in Hi-C data to
provide a global view of how and where NHCCs contribute to genome
function. NHCCs occur in genomic regions that are highly gene-dense,
transcribed, and bound by transcription factors and that harbor genes
related to cell-type function and sex. We uncover 61 constitutive
NHCCs as ‘topological anchors’ at the speckles that occur across cell
types and sexes and that maintain a spatial genome gradient along an
axis of activity. Cell-type-specific NHCCs connect to themain gradient,
but act in discrete spatial hubs. Collectively, we reveal that NHCCs are
prevalent and deterministic in the inter-chromosomal topology across
human 2n genomes.

Results
The Signature pipeline determines NHCCs in Hi-C datasets
Classic Hi-C analysis identifies significant intra-chromosomal interac-
tions by taking the linear genomic distance between two interaction
anchors into account29. In contrast, distance as a concept for NHCCs is
not the same. Thus, to define true NHCCs where loci of different
chromosomes are in spatial proximity, our model is fitted against all
genomic coordinates and evaluates inter-chromosomal Hi-C interac-
tion weights between chromosomes. Specifically, we developed a non-
parametric supervised learning approach (Local Weighted Polynomial
Regression [LWPR]) that systematically assesses relationships between
all loci on all chromosomes. LWPRqueries each chromosomal position
against all other genomic regions (1megabase [Mb] bins) in an ‘All bins
vs. All bins’ approach, which has not been accomplished for Hi-C
analysis before (Fig. 1a, Supplementary Fig. 1a-e). The aim is to identify
genomic regionswith significantly increasingordecreasing interaction
weights, either implying spatial proximity (NHCCs) or separation (non-
interacting regions) in relation to the entire genomic background
(Fig. 1a). To determine the best local regression fit, we cross-validated
the span parameter. Thus, LWPR offers local insights into the spatial
relationships of non-linear inter-chromosomal genome topology.
Upon detecting how frequent anNHCC is observed versus all expected
‘locus-to-locus’ contacts, Signature evaluates if there is a significant
interaction (or no interaction) and determines either a bona fideNHCC
or non-interacting region by significant z-score-transformed p- and q-
values (Fig. 1a, Supplementary Fig. 1f-n).

Hi-C analysis is restricted to pairwise contacts, however, 3D gen-
ome organization results in multi-way interactions9,25,27,30,31. To over-
come this limitation, we further added Community Detection (CD,
unsupervised learning)28,32 to Signature. This feature complements
supervised learning (LWPR) and visualizes spatial peculiarities of
where NHCCs impact genome topology. CD can reveal multi-
dimensionality of Hi-C data with either dense or loose NHCC associa-
tions, because it clusters bins based on their structures and interaction
weights to deconvolute complex networks (Fig. 1b)32. Together, Sig-
nature includes supervised and unsupervised machine learning to
identify NHCCs genome-wide and across cell types.

Benchmarking. Our incomplete understanding of NHCCs is
mostly derived from probing single aneuploid cell lines. In order to
resolve the inter-chromosomal topology of human 2n genomes, we
analyzed solely diploid and near-diploid genomes to avoid aneuploidy
bias. Specifically, we identified 62 Hi-C datasets (Supplementary
Data 1) derived from 53 diploid cell types, devoid of aneuploidy, and
comprising unprecedented ˜161 billion reads (Fig. 1c). Using Signature,
we observed a total of 40,282 (q <0.05) NHCCs (740,835 [p <0.05],
SupplementaryData 2). Notably, Signature cannot only identifyNHCCs
but also those genomic regions that have a significant depletion of
interactions. Signature identified 186,429 (q < 0.05) significantly non-
interacting regions (2,068,828 [p < 0.05], Supplementary Data 3), and
120,106 (q <0.05) significant intra-chromosomal interactions at 50kb
genomic resolution (31,604,799 [p <0.05], submitted to GEO, Meth-
ods, Supplementary Fig. 1j).

Next, we used CD to establish genome topology maps across the
62 datasets. Using intra- and inter-chromosomal interaction weights,
and restricting the number of possible communities to 46, as this
entity resembles diploid human genomes, CD recapitulated the known
radial chromosomal arrangement33 (Fig. 1d, Supplementary Fig. 2a),
and the nucleolus formation by acrocentric chromosomes8 (Fig. 1e,
Supplementary Movie 1). These results indicate that CD can indeed
probe and visualize spatial genome structure. Signature showed high
detection rates and its methodology did not adversely affect interac-
tion patterns (Supplementary Figs. 2b,d, 3a, b).

To further evaluate Signature’s performance, we compared it to
orthogonal reference sets. First, we compared Signature toMERFISH20-
identified NHCCs and determined that NHCCs occurred significantly
more often at close spatial distances than non-interacting regions
(Mann–Whitney test p = 0.014, Supplementary Fig. 3c), consistent with
themeanNHCCdistance (˜280nm) thatwe defined byCRISPR live-cell
imaging17. Signature identified speckle-associated NHCCs that had
been determined by HiCAN34 and SPRITE9 (90.9% and 13.3% recall rate,
respectively), and nucleolar-associated NHCCs (42.4% and 74.6% recall
rate, Supplementary Fig. 3d, e). Importantly, Signature has high con-
cordance with other methods for known topological features, but
determines interactions that the comparable methods did not identify
(Supplementary Fig. 3d, e). Genes annotated at Signature NHCCs that
overlapped with either HiCAN or SPRITE NHCCs related to reported
biological function, such as splicing at the speckles35, in a GO term
analysis36. Moreover, Signature successfully validated reported NHCCs
in up to 47Hi-Cdatasets betweenCISTR-ACT& SOX910, between human
olfactory receptors7, and hemoglobin genes37 (Fig. 1f), and FIRRE &
YPEL438 (Supplementary Fig. 3f). The benchmarking suggests that
Signature can confidently detect NHCCs in existing Hi-C data and
uncovers an abundance of yet unexplored NHCCs which supports
studying genome topology.

NHCCs are non-random
The numerous discovered NHCCs across cell types provide the
opportunity to determine inherent properties of NHCCs. Therefore,
we started exploring global features of all chromosomal contacts
across chromosomes and cell types. First, intra-chromosomal contacts
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Fig. 1 | Signature confidently maps NHCCs. a Supervised learning in Signature.
Scheme depicts genomic regions between different chromosomes that are eval-
uated for their significantly interacting (red triangle = positive z scores) and non-
interacting bins (blue triangle = negative z scores). All genomic regions are queried
against all other regions in an ‘All vs. All’ approach. Right: example of interaction
weights with significance cutoffs (dashed lines) between two chromosomes.
b Unsupervised learning by Community Detection (CD) in Signature. CD groups
clusters of similar properties (i.e., interaction weights of intra-chromosomal
interactions and NHCCs) in communities (black, red, blue). c Features of the body
mapanalyzedwith Signature. 161 billion (B)mapped reads derived from62datasets
generated a compendium of 2n genomic interactions across human cell types,
separated by sex. d Consecutive bins of each chromosome are strung together to
generate the chromosomal outlines and to visualize CD-approximated genome
topology across 62 Hi-C datasets. Large chromosomes 1-7 (red & pink) and small,

gene-dense chromosomes 16-22 (blue & black) are highlighted. e Acrocentric
chromosomes 13-15, 21, and 22 are colored in genome topology map. Telomeric p-
arms and q-arms are shown as black squares or asterisks, respectively. Enlargement
depicts how CD strung bins together to generate chromosomal outlines.
f Ideogramsdepict reportedNHCCs testedbySignature. Each heatmap represents a
pair of interacting chromosomes. Mean z-scores are shown and red lines indicate
genomic positions of reported loci (shown in Mb = megabases). Enlargements
highlight region of interest, each cell is a 1Mb bin. Unmapped regions such as
acrocentric p arm of chromosome 14 are shown in white. g Interaction density per
megabase of intra-chromosomal interactions (gray) and NHCCs (red) per chro-
mosome (n = 62 Hi-C datasets). Box limits represent upper and lower quartiles.
Central boxplot line represents themedian andwhiskers represent 1.5x IQR.h Same
as panel g but for number of genes per chromosome (n = 62 Hi-C datasets).
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dominated in comparison to NHCCs (Supplementary Fig. 3g, h), which
is expected due to the in situ Hi-C protocol39,40 and prevailed intra-
chromosomal proximity17. Second, NHCC interaction density inversely
related to chromosome size across all cell types (Fig. 1g), whilst NHCCs
positively associated with intra-chromosomal contacts and chromo-
some length, and number of genes per chromosome (Pearson corre-
lations r =0.99 and r =0.82, respectively, Supplementary Fig. 3 h).
Overall, NHCCs seemed to be less dependent on the number of genes
per chromosome (Fig. 1h). Notably, gene-poor chromosome
21 showed the highest interaction density of NHCCs per Mb (Fig. 1g),
indicating that gene number may not be the sole determinant for
NHCCs. However, the most gene-poor chromosome 18 had sig-
nificantly fewer NHCCs than the gene-densest chromosome 19 (Mann-
Whitney p < 2.2 × 10−16, Fig. 1h, Supplementary Fig. 3i), confirming
earlier results13. In a global interactionmatrix of all 62Hi-Cdatasets, we
observed more recurrent and non-random NHCCs among smaller
chromosomes than between large ones (Fig. 2a). To investigate if
NHCCs depend on intra-chromosomal interactions, we performed
genome-wide correlations of averaged cis and trans interaction
weights per bin for all 62 datasets. Moreover, using Hi-C datasets with
the highest and lowest number of NHCCs, we tested if more NHCCs
occur at the expense of intra-chromosomal contacts. We found weak
negative correlations for both experiments (Pearson’s R = −0.18 and
−0.22, p < 2.2 × 10−16, Supplementary Fig. 3j), that suggest that bins
involved in NHCCs are mostly spatially separated from intra-chromo-
somal contacts. Collectively, the recurrent and deterministic NHCC
patterns across chromosomes and cell types in our body map align
with the paradigm of evolutionarily conserved chromosome posi-
tioning in a radial pattern33.

Inter-chromosomal compartment size. Mapping NHCCs indicated
that they pertain to larger inter-chromosomal domains. Specifically,
NHCCs spread across 1.84Mb on average, whilst significantly non-
interacting regions comprise 3.38Mb (q <0.05, Supplementary Fig. 3k-
l), which partially explains why locus-specific NHCCs (kilobase range)
were previously not readily detected in Hi-C14,16,17,41.

As reported before4,9,20,25, Signature also detected the association
of homotypic A/A compartments with NHCCs, further benchmarking
its accuracy to detect known topological features.Heterotypic A/B and
homotypic B/B compartmentalization correlated with significantly
non-interacting regions (Mann-Whitney test p < 2.2 × 10−16, Fig. 2b, c,
Supplementary Data 4), indicating clear segregation of NHCCs from
other genomic regions. Interestingly, genome topology maps showed
off-centered inversely organized compartments, where B was as
expected more in the periphery (Fig. 2d).

P/q arms. We next asked if NHCCs are biased by chromosomal
structure (p and q arms)which remains unexplored. Significantlymore
p–p and p–q than q–q contacts occurred (binomial testing p < 3.94 ×
10−138, Fig. 2e, Supplementary Fig. 3m), underscoring the deterministic
nature of chromosome positioning and NHCCs across cell types.
Chromosome types (meta-centric, sub-metacentric, acrocentric) did
not affect NHCCs (Supplementary Fig. 3n). Interestingly, despite the
heterogeneity of our body map, pervasive NHCCs in A compartments
occurred in deterministic patterns especially among small gene-dense
chromosomes with widespread p–p and p–q contacts.

Inter-chromosomal topology involves many inter-centromeric
and inter-telomeric contacts
The structural feature of clustered telomeric and centromeric inter-
actions on opposite ends of the nucleus (termed Rabl’s configuration
[1885]42) is observed in yeast43, drosophila44, plants45, andmammals3,46,
and has been proposed to reduce chromosomal entanglements42,47.
Rabl’s configuration may support the mitotic heritability of global
chromosome positioning15, but its existence in human genomes is
unclear48,49. When analyzingmapped regions flanking the centromeres
and sub-telomeric regions, Signature identified thousands of

significant contacts of p-arms and particularly of q-arms across all cell
types (Fig. 2f, Supplementary Fig. 3o). These NHCCs occurred sig-
nificantly more often than expected, and more frequently than
telomeric-centromeric NHCCs (Binomial testing empirical p =0, Sup-
plementary Fig. 3p). Remarkably, chromosomes 8, 15, 21, 22, and Y
showed either no or sparse inter-telomeric and inter-centromeric
NHCCs (Fig. 2g), similar to HiPore-C results25. Overall, these results
suggest that Rabl’s configuration is a predominant feature of human
genome topology and can be detected with Signature.

We next asked if the same inter-telomeric and inter-centromeric
NHCCs commonly occur among cell types, which may support the idea
of NHCCs as general determinants of genome structure. Upon inter-
rogating and visualizing common NHCCs (q<0.05, ≧ 10 datasets, 393
bins = 12.73%of hg38, SupplementaryData 6) in genome topologymaps,
we observed clustering and clear demarcations according to Rabl’s
configuration (Fig. 2h). Specifically, off-centered common q-telomeric
NHCCs occurred on one side of the CD-approximation, whilst
p-telomeric NHCCs were diffused (Fig. 2h). Inter-centromeric NHCCs
depicted more distributed interaction patterns distal to q-telomeric
NHCCs (Fig. 2h). Notably, all 40,282 NHCCs (q<0.05) were off-centered
and asymmetrically organized (Fig. 2i, Supplementary Data 5), in con-
gruence with the A compartment organization (Fig. 2d), and the highest
density of common q-telomeric NHCCs (Fig. 2h). Our findings indicate
that NHCCs across cell types are not randomly distributed across the
entire genome and common inter-telomeric and inter-centromeric
NHCCs contribute to the inherent genome structure.

NHCCs and genomic features demarcate genome topology
along a spatial genome gradient
Thus far, Signature has identified common NHCCs and their off-
centered pattern. Now, we further explore their collective funda-
mental properties. First, we focused on gene regulation, since tran-
scription rates can define the size of a chromosomal territory50 which
may influence inter-chromosomal topology. Common NHCCs (≧ 10
datasets, q < 0.05, Supplementary Data 6) harbored 23.47% of all genes
(GENCODE V4251) and their gene density was up to 2.1-fold higher than
expected (1Mb bins, Fisher’s exact test p = 9.31 × 10−36, Fig. 3a). Gene
expression across all 62 datasets was significantly higher for common
NHCCs when compared to GTEx52 (Mann-Whitney test, range: p = 2.79
× 10−15 - p = 6.11 × 10−52, Fig. 3b). The same was true when we compared
tissue-specific gene expression profiles from GTex samples matching
our Hi-C data by showing that NHCC regions harbor the most active
genes (Supplementary Fig. 4a). Similarly, we compared transcription
factor (TF) binding from ChIPseq experiments53 in cell types that
matched our tissue-specific uniqueNHCCs.We foundmoreTF binding
at NHCCs than globally (Mann-Whitney test range: p = 2.39 ×
10−6–p = 1.15 × 10−71, Supplementary Fig. 4b). Gene expression of either
of the two genomic regions that are involved in NHCCs was similar
(Supplementary Fig. 4c), proposing that NHCC formation is indepen-
dent of the counterpart’s expression level.

The visualization of gene expression and TF binding results in
genome topology maps (Fig. 3c, d) revealed again off-centered asym-
metric patterns that overlapped with the archetypes of A compart-
ments (Fig. 2d), common q-telomeric NHCCs (Fig. 2h), and all NHCCs
(Figs. 2i). These genomic features arepositively correlatedwithNHCCs
(Fig. 3e). Remarkably, expression and TF binding were highly corre-
lated (r =0.6945), although not in a consistent pattern across the
genome. Locally, we found regions with anticorrelated expression and
TF binding pattern in the genome topology map. For example, region
A (r = −0.161) harbors many bound TFs, whilst its genes are lowly
expressed and relate to HDAC-deacetylated histones (log10[q] =
−67.13, Fig. 3c, d), indicating a local enrichment of TFs. In contrast,
other regions showed high correlation between expression and TF
binding, such as region B where genes related to sensory perception
function (r =0.849, Fig. 3c-d). The combination of Signature results
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Fig. 2 | Deterministic NHCC patterns and inter-telomeric and inter-
centromeric NHCCs. a Genome-wide matrix of interacting chromosomes with
separated female gonosomes (XX), and male gonosomes (XY and Y). Lower left
depicts mean z-scores (unmapped regions = white), and upper right depicts sig-
nificant NHCCs (p <0.05); red gradient = percent detection range across 62 data-
sets.b Interaction heatmap of chromosomes 12 and 17 withmean z-scores of 62 Hi-
C datasets, in comparison to average eigendecomposition of each chromosome
across 62 datasets. A compartment = blue; B compartment = orange; centromeres =
dashed lines; unmapped regions = white. c Quantification of compartment clus-
tering (AA: n = 3.2 × 106, AB: n = 1.64 × 106, or BB: n = 4.25 × 106) of significant
positive and negative z-scores across 62 datasets. Asterisks depict significance
determined by Mann-Whitney testing (p < 2.2 × 10−16, two sided). Central boxplot
line represents the median, and box limits represent upper and lower quartiles.

d CD genome topology map of genomic compartments (A = blue, B = orange) in
across 62datasets. e. Binomial testing (p–q:p = 3.94× 10−138, p–p:p = 4.94× 10−324, q-
q: p = 4.94 × 10−324, two-sided) of expected and observed probabilities (%) of p–p,
p–q, and q–q interactions based on chromosomal length in 62 Hi-C datasets;
overrepresented = red; underrepresented = blue; n = 24 conditions per group (22
autosomes and two gonosomes). f Distribution of all 40,282 NHCCs (q <0.05)
along length of a unified chromosome. gHeatmap shows distribution of significant
inter-telomeric and inter-centromeric NHCCs for each chromosomal pair across 62
Hi-C datasets. h CD-approximation of common inter-telomeric (q <0.05, >10
datasets) and inter-centromeric NHCCs with chromosomal p- and q-arms shown in
blue and red, respectively. On the right, linear interactions of NHCCs are shown.
i Distribution of 40,282 NHCCs in genome topology map.
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with other genomic features in genome topology maps, such as
expression and ChIPseq data may help to reveal higher-order sub-
nuclear structures and their function that have not been determined
yet. Collectively, NHCCs form an off-centered asymmetric genome
gradient where especially highly gene-dense and expressed regions
interact. The spatial gradient along an axis of activity may either form
because of TF accumulation, transcription, and RNA or these features
are a consequence of chromatin flexibility and diffusibility of DNA and
subnuclear organization.

A constitutive ‘topological anchor community’ converges at
nuclear speckles
Given the spatial gradient of genome activity, we further explored if a
coalescence of constitutive NHCCs supports the genome gradient’s

activity and may explain constant principles of genome organization,
such as sub-nuclear organization9, and the mitotic heritability of the
genome1,15. Remarkably, LWPR determined 61 constitutive NHCCs in
≧50%of the 62 datasets (q <0.05), of which 56overlappedwith the off-
centered pattern identified by CD (overlap 91.8% [56/61], Fig. 3f, per-
mutation testing empirical p = 0, Supplementary Fig. 5a, Supplemen-
tary Data 7 and Supplementary Movie 2). This ‘topological anchor
community’ was proximal to q-telomeric NHCCs (Fig. 2h), converged
with patterns of genomic features (Figs. 2d, 3c, d), and had even higher
expression levels than remaining NHCCs (Mann–Whitney test p = 3.31
× 10−11, Supplementary Fig. 5b), and higher mean gene density (47.21
genes/Mb vs. 23.04 genes/Mb for genome). The involved loci showed
up to 11 multi-way interactions with consecutive bins, and harbored
chromosomal regions involved in sub-nuclear organization (MALAT154

Fig. 3 | Features of a spatial genome gradient. a Number of observed genes at
common NHCCs (q <0.05, ≧ 10 datasets, n = 15,096 genes) in comparison to
expected numbers of genes, separated in four biotypes. Fisher’s exact test deter-
mined significance (p = 9.31 × 10−36, two-sided). b Gene expression at common
NHCCs (q <0.05, ≧10 datasets) in comparison to GTEx52 (n = 56,201 genes). Mean
TPM (log2 + 1) of four biotypes is shown; asterisks denote significance determined
by Mann–Whitney testing (lncRNAs: [long non-coding RNAs]: p = 6.25 × 10-44,
protein-coding genes: 6.11 × 10−52, pseudogenes: p = 9.75 × 10−20, sncRNAs [short
nuclear RNAs]: p = 2.79 × 10−15, two-sided). Box limits represent upper and lower
quartiles. Central boxplot line represents the median, whiskers represent 1.5x IQR.
c Scaled average gene expression of GTex52 per 1Mb bin across genome topology.
Dashed boxes indicate regions with either an anticorrelated pattern of expression
and TF binding (region A) or a correlated pattern (region B). d Summed TF peaks
per 1Mb bin are shown across genome topology. e Pearson correlations of the bin
frequency involved in 40,282 NHCCs with compartments, gene expression

(GTEx52), and TF binding53. Correlation coefficients r and p-values are depicted.
f Genome topology map of constitutive NHCCs (>50% of datasets, red dots) and
acrocentric chromosomes 13-15, 21, and 22 (colored). Telomeric acrocentric p-arm
and q-arm NHCCs are shown as black squares or asterisks, respectively. Zoom-in
shows community of constitutive NHCCs (red) with multi-way interactions (dot
size). Genomic locations are annotated as 6_34 = chromosome 6, megabase 34–35,
hg38).gOligopaintingof six ‘anchor loci’ (red, hg38: [chr_Mb])with specklemarker
SON (green) in HCT116 cells (n = 2, each biological replicate > 300 nuclei); arrows
depict either co-localization or close spatial proximity; scale bars = 5 µm. h–i. FISH
of ‘anchor loci’ ([chr_Mb]) in lymphocytes, RPE-1 and MSCs [each ˜100 nuclei]).
White arrows exemplify clustered signals; scale bars = 1 µm. Plots show quantifi-
cation of no-colocalizations, mono-allelic (black), and bi-allelic (red) signal fre-
quencies of double (2x), triple (3x), and quadruple (4x) clustered signals of NHCCs.
Means (%) and datapoints of three analyzed cell lines are shown.
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and NEAT155), in chromatin-associated functions (KMT5B, KDM2A,
HMGA, ABL1, etc.), and in RNA-binding and transcription (Fig. 3f).

Recently, others described that paraspeckle formationwithNEAT1
is biased towards one side of the nucleus56, which aligns with our
genome topology maps. Thus, we proposed that the ‘topological
anchors’may be part of the nuclear speckles35 where high gene density
and expression contribute to the formation of these subnuclear
organelles9,57. We tested this idea by oligopainting58 of six ‘anchor loci’
and confirmed them, theirmulti-way interactions, and their significant
overlap with speckle marker SON59 (68.8%, n = 2, each > 300 nuclei,
permutation testing empirical p =0, Fig. 3g, Supplementary Fig. 5c).
Moreover, we performed two multi-color FISH approaches, each with
four different ‘anchor loci’ in lymphocytes, RPE-1, and MSCs (each >
100 nuclei). We measured either single alleles or bi-allelic proximities
and found that at least two ‘anchor loci’were proximal in 52.3% of cells
on average (Fig. 3h). Three anchors interacted in 12.3% of cells (Fig. 3i),
and even bi-allelic proximity occurred in several cells of the three
investigated cell types (Supplementary Fig. 5d). The imaging of prox-
imal ‘anchor loci’ validated Signature results, of both supervised and
unsupervised learning approaches, and showed that constitutive
NHCCs are in proximity to nuclear speckles.

Cell-type-specific NHCCs connect with the ‘topological anchor
community’
Cell-type-specific NHCCs exemplified a relation to function7,60,61.
Inspired by this finding, we next investigated the wide range of NHCC
frequencies (8–65.3%) across our compendium of cell types (Supple-
mentary Fig. 3g). We found that mature tissues (i.e., aorta, cortex,
hippocampus, lung, thymus, ventricles, etc.) had more NHCCs than
proliferating cell types (i.e., H9-hESCs, IMR90, RPE1, etc.) with more
intra-chromosomal contacts (Fig. 4a, Supplementary Fig. 5e, f). To test
if terminal differentiation and mitosis-related genome re-organization
can affect NHCC extent and formation, we performed Omni-C across
human chondrogenesis in organoids, where mesenchymal stem cells
(MSCs) terminally differentiate into hypertrophic chondrocytes with
reduced proliferation62,63 (Fig. 4b, Supplementary Fig. 5g, h). In the
chondrogenic time-course, pre- and hypertrophic chondrocytes
showed significantly more NHCCs across most chromosomes in
comparison to MSCs and chondrogenic precursors (ANOVA
p <0.0001, Fig. 4c, d). This suggests that reduced genome re-
organization and terminal differentiation facilitate NHCCs, probably
by cell-type-specific transcriptional programs that evolve post-mitosis
in a spatiotemporal manner.

Next, we determined NHCC variation among cell and tissue types.
Unexpectedly, 57.7% of significant NHCCs (23,251/40,282; q < 0.05)
were unique among the 62 datasets (Fig. 4e, Supplementary Fig. 6a,
Supplementary Data 8), which is significantly higher than random
selection (randomization test empirical p =0, Supplementary Fig. 6b).
Notably, genes at these unique NHCCs and also at significantly non-
interacting regions related to meaningful biological functions by GO-
term analysis36 (Fig. 4f, Supplementary Fig. 6c).

The high fraction of unique NHCCsmotivated us to evaluate their
relationship to constitutive NHCCs and the main spatial genome gra-
dient. Most of the analyzed tissues (14/18) had a significant overlap of
unique NHCCs with constitutive NHCCs (Fig. 4g). Visualizing these
shared interactions showed that the main genome gradient maintains
global structure by connecting constitutive and cell-/tissue-specific
NHCCs (Fig. 4h).Notably, topological anchor loci increased in stemcell
differentiations across chondrogenesis and cardiomyogenesis64, whilst
H1-ESC-derived germ layers65 shared similar numbers of constitutive
NHCCs (Fig. 4i). This high overlap between pluri-/multi-potent and
differentiated cell types with constitutive NHCCs (mean 69.9%) indi-
cates that topological anchors exist as prevalent structural feature in
all cell states. Moreover, a subset of 10 cardiovascular Hi-C datasets
recapitulated the spatial genome gradient with 96.7% of the

constitutive NHCCs and showed asymmetric gene expression (Sup-
plementary Fig. 7a, b), revealing that the genomegradient holds true in
smaller subsamples. Collectively, our findings indicate that con-
stitutive NHCCs globally connect and support an off-centered genome
structure with clustered q-telomeric and centromeric NHCCs across
cell types, and tissue-specific NHCCs dispersed in discrete hubs, which
expands recent observations9,20,24,25.

Sex-specific NHCCs relate to sexual dimorphic features
In the context of the spatial genome gradient and discrete function-
related hubs, it is interesting to consider sex-specific gonosome-
autosome NHCCs, which remain completely unknown. To do this, we
first separated female (54.8%) and male (45.2%) datasets; although it is
important to note that we did not analyze identical cell types for each
sex, and then visualized all gonosome-autosome interactions sepa-
rately. We found more unique than common NHCCs of the X chro-
mosomes in both sexes (Fig. 5a, Supplementary Data 9-11). Genes
annotated at XX-autosome contacts were enriched for mitochondrial
function and cardiolipin metabolism (Supplementary Fig. 7c), whilst
XY-autosome contacts related to lipid catabolism, carbohydrate
metabolism, and skeletal muscle development (Supplementary
Fig. 7d), which are reported sexual dimorphic processes66–68.
Remarkably, male and female datasets showed an anchor locus on a
Xq-telomeric region (~153–156Mb, hg38), interacting with sub-
telomeric regions of >50% of autosomes (both p and q arms, Fig. 5a).

In male cell types, two genomic regions of XY-Y NHCCs (XY ~ 85-
96Mb; Y ~ 3-8Mb) overlappedwith a pseudoautosomal region of an X-
chromosome-transposed region69, and centromeric XY-Y NHCCs mat-
ched with unique male trait associations70, i.e., hemoglobin con-
centration, body fat percentage, etc. (Fig. 5b, Supplementary Data 12,
13). Genes of XY-Y NHCCs related to fat differentiation and sterol sig-
naling (Supplementary Fig. 7e, f)71,72.

We then evaluated constitutivemale and female anchor loci (>50%
of datasets, q <0.05) in relation to the identified gonosome contacts.
Sex-specific constitutive NHCCs were off-centered and asymmetrically
organized with similar regions of chromosomes 3, 6, 9, and 11 (har-
boringMALAT1 and NEAT1) across both sexes (Fig. 5c, d). Remarkably,
the topologymaps recapitulated spatial proximity of the Xq-telomeric
anchor region to constitutive NHCCs and the XY-Y NHCCs (Fig. 5c, d).
To address gene expression among sexes in relation to themain spatial
gradient, we plotted sex-separated GTEx expression data in genome
topology maps. The spatial gradient along an axis of expression exists
in each sex (Fig. 5e). High similarity between supervised and unsu-
pervised learning (female: 93.4%;male: 95.3%) validated replicability of
Signature (Fig. 5f).

Collectively, we find evidence that sex-specific NHCCs relate to
sexual dimorphic processes and despite sex-biases, genome topology
in both sexes involves the spatial genome gradient of activity and an
Xq-telomeric anchor region close to constitutive NHCCs.

Discussion
Signature represents an applicable tool for multiscale and integrative
Hi-C analysis of all genomic contacts in healthy and in disease states.
Using Signature revealed an extensive repertoire of NHCCs that occur
genome-wide and that harbor intrinsic properties for genome struc-
ture and gene regulation.

Hi-C assays genome organization as a mean across cells in all
mitotic stages and our heterogenous body map reflects a spectrum
from proliferating to terminally differentiated cell types and tissues.
Nevertheless, our findings imply that many NHCCs are deterministic
and that constitutive NHCCs together with gene-regulatory features
are involved in an off-centered asymmetric spatial genome gradient
that is common across many cell types and both sexes. Cell-type-
specific NHCCs on the other hand locate to discrete function-related
spatial environments distal to the main genome gradient (Fig. 5g).
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The transmission of structural and regulatory features of genome
organization is thought to involve a unified model of helical coils that
allows interphase chromosomes to retain Rabl’s configuration, to build
chromosomal territories and to fit into the nucleus73. This fits with our

observation that Rabl’s configuration is congruent with the spatial
genome gradient of activity observed in our analysis. Despite recent
findings suggesting that condensin II prevents inter-centromeric
clustering and negatively influences Rabl’s configuration in the human

Fig. 4 | Cell-type-specific NHCCs connect with the main spatial genome gra-
dient. a K-Means clustering of NHCCs and intra-chromosomal interactions. Labels
specify datasets of underlying cluster. b Time course of chondrogenic differ-
entiation (0–21 d) in 3D organoids. Picrosirius Red and Alcian Blue stainings show
extra-cellular matrix deposition in sections ofMSC-derived cartilage (day 21). Scale
bars = 100 µm. c Number of NHCCs (q <0.05) across chondrogenesis. MSCs (0d),
chondrogenic precursors (3 d) and hypertrophic chondrocytes (21 d) are shown
(opacity 60%). Chromosome Y was omitted from circos plot as SCRC-4000 (MSCs)
cells are of female origin. d NHCC interaction weights across chromosomes during
chondrogenic differentiation. Two-way ANOVA determined significance

(p <0.0001, two biological replicates). e Scatterplot of unique (cell/tissue-type-
specific)NHCCs (q <0.05, opacity 50%) grouped into tissues that reflect the dataset
origins. Number of observations are noted. f Selected examples of top 20GO-terms
of unique (cell-type-specific) NHCCs are listed per cell/tissue-type together with
-log10(p values); one-sided, uncorrected. g Percent overlap of constitutive with
tissue-specific NHCCs. Red line indicates expected probability (3.27%). h Shared
interactions of constitutive ‘anchor loci’ (red) and unique NHCCs grouped into
tissues (multi-colored lines, see Supplementary Data 1). i. Percent overlap of con-
stitutive NHCCs in (top) chondrogenesis, (middle) cardiomyogenesis64, and (bot-
tom) pluri- and multi-potent cells/tissues derived from H1-ESCs65.
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genome49, Rabl’s configuration and chromosomal territories may not
be mutually exclusive. Rather, they both may coexist to structure a
flexible genome architecture that can react to external stimuli and
undergomitotic re-organization. Inter-centromeric and inter-telomeric
interactions are striking structural features in multiple organisms,
where chromosomal interaction patterns are influenced by relative
sizes of the involved chromosomes. Small chromosomes crowded in a

boscage of all chromosomes tend to make more contacts74. This is
consistent with our findings, especially in terminally differentiated
cells with reduced mitosis-related genome re-organization.

The combination of supervised and unsupervised learning in
Signature unveiled multi-chromosomal NHCCs, especially on chro-
mosomes 6, 9, and 11. Local gene density and transcription on chro-
mosome 11 (as one of the gene-densest and disease-richest

Fig. 5 | NHCCs relate to sex-specific features. a Alluvial-style plots show unique
gonosome-autosome NHCCs (q <0.05) for chromosome X in (left) female datasets
or in (center) male datasets, and (right) common gonosome-autosome NHCCs for
chromosome X among male and female datasets. n = number of interactions.
Interactions are colored based on autosome’s origin where p-arm = red, and q-arm
= black (opacity 10%). XX = chromosome X from female data, XY = chromosome X
from male data. X “chromosomes” are outlined in blue, Y “chromosomes” are
outlined in orange, “autosomes” are outlined in black. Asterisks describe genomic
regions of hg38 in megabases (Mb). b Same as panel a but for (left) X-Y gonosome-
gonosome NHCCs and (right) Y gonosome-autosome NHCCs in male datasets.
c Constitutive female NHCCs (>50% of datasets) are shown in genome topology
map with XX (blue) and female communities (colored datapoints). Dashed boxes

highlight Xq-telomeric anchor region. d Same as panel c, but for male datasets. In
addition to Xq-telomeric anchor region, dashed boxes highlight constitutive XY-Y
contacts. e Scaled average sex-specific gene expression of GTex52 per 1Mb bin
across (left) female and (right) male genome topology (high [intense color] vs. low
expression [white]). f Overlap of supervised and unsupervised Signature results
separated by sex. g Working model of the inter-chromosomal topology across
human cell types. Constitutive NHCCs coalesce at the speckles and demarcate
together with inter-centromeric and inter-telomeric interactions a major spatial
genome gradient. Cell-type-specific NHCCs locate to discrete hubs distal to the
main axis of genome activity (i.e., NHCCs in neurons, heart). Constitutive NHCCs
happen in euchromatin and possess more genes with higher expression in com-
parison to non-interacting regions.
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chromosomes) influence its nuclear organization75. It harbors 40% of
olfactory receptors76 which are involved in NHCCs7, and highly and
ubiquitously expressed lncRNAs (i.e., MALAT1 and NEAT1) that orga-
nize speckles54,55. Moreover, this further validates that topological
features determined by Signature are validated by known structures.
Whether or not the largest autosomal heterochromatin block and
sequence duplications on chromosome 977 that may be caused by
NHCCs, are involved in the formation of the ‘anchor community’
remains to be determined. The largest tRNA cluster on chromosome
6 strongly interacts with NHCCs in HiPore-C25, and its MHC locus78

often loops away from its chromosomal territory upon transcription79,
which likely supports NHCCs. Altogether, high concentrations of
genes, RNAs, andTFs support NHCCs and the spatial genomegradient.
This fits well with the findings that NHCCs can demarcate nuclear
compartments together with expressed lncRNAs that remain proximal
to their loci to enrich for otherwise diffusible molecules (i.e., RNA-
binding proteins, TFs, etc.)10,38,80,81. However, euchromatin’s natural
flexibility juxtaposed with organized heterochromatin formation may
also support the diffusibility of DNA and the gradient formation and its
NHCCs. Altogether, the reciprocal interplay between fine-scale gen-
ome organization of DNA, transcription, and RNA shapes the genomic
architecture82,83.

Signature revealed clear evidence that constitutive NHCCs, as
‘topological anchor loci’ synergistically shape genome topology along
a spatial gradient to maintain non-random chromosome positioning.
Especially, p- and q-telomeric NHCCs coalesce regions of highest gene
density and expression at the nuclear speckles (Fig. 5g). To which
extent certain thresholds of RNA and protein interactors are required,
and if RNA and DNA in phase-separated hubs as components of gen-
ome structure contribute to NHCC formation by clinging chromo-
somes together, remains to be addressed. Further exploring the
biological functions of non-interacting regions, such as cis gene-
regulatory hubs and intra-chromosomal organization would be inter-
esting, as well as the extent of transient factors, such as transcriptional
activity and cell cycle stages, that influence deterministic NHCC for-
mation. Combining Signature outputs with additional genomic fea-
tures (i.e., expression and ChIPseq data, methylation and acetylation
pattern, recombination frequencies, etc.) in genome topology maps
may complement Signature-derived data interpretation and identify
yet uncharacterized subnuclear structures.

Signature uncovered rules of shared and separated spatial envir-
onments in the human genome. We defined NHCCs and their prop-
erties and underscore that NHCCs represent an important regulatory
structure for genome topology.

Methods
Datasets
All studies were performed under the regulation of the SickKids
Research Ethics Board (Study: #1000080135). Upon completion of
required data access agreements, datasets were downloaded from the
The European Genome-phenome Archive (EGA) for
EGAS0000100476384, and from the NIMH Repository & Genomics
Resource, a centralized national biorepository for genetic studies of
psychiatric disorders for NPCs, glia, and neurons85. These data were
generated as part of the PsychENCODE Consortium, supported by:
U01DA048279, U01MH103339, U01MH103340, U01MH103346,
U01MH103365, U01MH103392, U01MH116438, U01MH116441,
U01MH116442, U01MH116488, U01MH116489, U01MH116492,
U01MH122590, U01MH122591, U01MH122592, U01MH122849,
U01MH122678, U01MH122681, U01MH116487, U01MH122509,
R01MH094714, R01MH105472, R01MH105898, R01MH109677,
R01MH109715, R01MH110905, R01MH110920, R01MH110921,
R01MH110926, R01MH110927, R01MH110928, R01MH111721,
R01MH117291, R01MH117292, R01MH117293, R21MH102791,
R21MH103877, R21MH105853, R21MH105881, R21MH109956,

R56MH114899, R56MH114901, R56MH114911, R01MH125516, and
P50MH106934 awarded to: Alexej Abyzov, Nadav Ahituv, Schahram
Akbarian, Alexander Arguello, Lora Bingaman, Kristin Brennand,
Andrew Chess, Gregory Cooper, Gregory Crawford, Stella Dracheva,
Peggy Farnham, Mark Gerstein, Daniel Geschwind, Fernando Goes,
VahramHaroutunian, ThomasM.Hyde, Andrew Jaffe, Peng Jin,Manolis
Kellis, Joel Kleinman, James A. Knowles, Arnold Kriegstein, Chunyu Liu,
Keri Martinowich, Eran Mukamel, Richard Myers, Charles Nemeroff,
Mette Peters, Dalila Pinto, Katherine Pollard, Kerry Ressler, Panos
Roussos, Stephan Sanders, Nenad Sestan, Pamela Sklar, Nick Sokol,
Matthew State, Jason Stein, Patrick Sullivan, Flora Vaccarino, Stephen
Warren, Daniel Weinberger, Sherman Weissman, Zhiping Weng, Kevin
White, A. JeremyWillsey, HyejungWon, and Peter Zandi. Details on the
origin of the other datasets can be found in the Supplementary Data 1
which also includes Pubmed IDs of the underlying papers.

Mapping of Hi-C and Omni-C data
We processed Hi-C/Omni-C data according to the 4D Nucleome
recommendation86. Specifically, we mapped reads to the GRCh38
version 32 of the human reference genome using bwa (version 0.7.17;
mem)87. We determinedmapping statistics using samtools (version 1.5;
view, flagstat)88, and filtered for valid Hi-C and Omni-C alignments by
using pairtools (version 0.3.0; parse, sort, dedup, select ‘(pair_type ==
“UU”) or (pair_type == “UR”) or (pair_type == “RU”)’, split, select ‘True’)
(https://github.com/open2c/pairtools). Indexing of the resulting pairs
was done with pairix (version 0.3.7) (https://github.com/4dn-dcic/
pairix). We normalized the data and applied binning for genomic
resolutions (cis = 50 kb, NHCCs = 1Mb) by using Cooler89. We ensured
that pseudo-chromosome Y information was removed from female
cooler data (refer to section “Sex determination of cell types”). Omni-C
biological replicates of chondrogenic differentiation showed high
reproducibility in Pearson’s correlations (normalized cooler output),
done in R. For downstream analyses, sequences obtained from repli-
cates were pooled separately (pairtools merge) and balanced (cooler
balance89) to serve as a combined dataset per cell type. For all datasets,
we aggregated genomic bins for 50 kb in cis and 1Mb in trans into a Hi-
C contact matrices and performed out-of-core matrix balancing using
cooler (version 0.8.11; cload pairix, balance, dump)89.

Supervised learning
We employed a Local Weighted Polynomial Regression (LWPR)
model90 to model the relationship between Hi-C/Omni-C interaction
weights and genomic position (inter-chromosomal, in trans = 1Mb
bins). Beginning at each chromosome’s start, LWPR continuously
measures locally in 1Mb bins which other chromosomal regions (1Mb
bins) are in proximity in relation to the entire genomic background
with all possible interactions. We applied LWPR with the same setting
on all datasets.

LWPR is facile to use andprocessesHi-C data in short run-times. For
example, Signature’sparallel computing approachanalyzes ˜3.87B reads
in ˜3h with 38 CPUs (IntelR XeonR E5-2670 @ 2.60GHz) and 4 GB RAM
on a SLURM system. A step-by-step documentation to use Signature can
be found on Github (https://github.com/MaassLab/Signature).

We considered linear genomic distance (intra-chromosomal, in
cis = 50kb bins) as previously described29, and added our cross-
validation approach. In our supervised learning framework, we treated
interactionweight as the response variable andgenomicposition as the
predictor in our regression model. To do this, we linearly represented
the anchor chromosome (Fig. 1a), and assigned each bin as an inde-
pendent predictor variable, with the relationship formulated as:

Y =Xθ+ E ð1Þ

Here, Y and X denote the dependent (interaction weight) and
independent (genomic position) variables of the LWPR model,
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respectively. θ represents the coefficient parameter, estimated
through local polynomial fitting, and E indicates the error term. For
every bin xi, the LWPR assigns different weights to the data points in
the vicinity of xi.

Central to LWPR is the determination of coefficients θ that mini-
mize the weighted least square error of the fitted polynomial model,
capturing the Y -X relationship in the local neighborhood of each xi:

θi = argminθ

Xn

j = 1

wij � ðyj � xjθÞ2 ð2Þ

In this equation, wij represents the weight assigned to the data
point (xj, yj) based on its distance from xi, and n stands for the number
of data points. In our study, we employed nonparametric estimation91

to solve Eq. 2. We utilized four-fold stratified cross-validation to
determine the optimal width of the span window (n, i.e., smoothing
parameter) for each bin, considering different percentages of neigh-
boring interactions. Cross-validation was utilized to assess the per-
formance and generalization of our predictive model92. For the NHCC
analysis (inter-chromosomal, 1Mb resolution), we evaluated five
potential values for the dynamic span parameter, encompassing
approximately the interactions in 4, 5, 6, 7, and 8bins, to form the local
neighborhood used for the LWPR fitting. To maintain consistency
across different genomic resolutions, wemultiplied the previous range
by 20 (1Mb/50kb) for the 50 kb (cis) analysis, resulting inwidths of 80,
100, 120, 140 and 160. Independently of the sequencing depth of aHi-C
dataset, LWPR recognizes the trends of interaction weights.

Our LWPR model calculates weighted average and weighted
standard deviation for each genomic bin (LOESS fitted values),
addressing distance signal bias (in cis), and considering interacting
bins (NHCCs, in trans) genome wide. We transformed Hi-C/Omni-C
signals into z-scores using the formula Zi=xi-μθ/Sθ, where Zi represents
the z-score and xi denotes the interaction weight of interaction i.
Additionally, μθ and Sθ indicate the LOESS fitted values for each
genomic bin (distance in cis), respectively. Positive z-scores denote
more frequent contacts than expected, while negative z-scores indi-
cate fewer interactions than expected29. For each queried interaction
in ‘All vs. All’, we obtained two z-scores. Depending on the chosen
anchor (i.e., predictor variable - the chromosome used to calculate
weighted mean and standard deviation for interacting bins across
chromosomes), we selected the more conservative z-score that was
closer to zero. The log2-transformed interaction weights of Hi-C data
conform to a normal distribution (Supplementary Fig. 1). Conse-
quently, z-scores follow a standard normal distribution, so we also
extracted corresponding p-values from the normal distribution func-
tion. Finally, tomitigate the risk of false positive results, we performed
the Benjamini-Hochberg method to control the false discovery rate.
We identified interactions with positive z-scores and q values < 0.05 as
significant results indicating highly interacting loci, while negative z-
scores with q values < 0.05 represent significantly non-interacting loci.
We further extracted annotated genes that mapped within the inter-
acting bins and performed GO-term analysis as described below.

Unsupervised learning
WeusedCommunityDetection (CD) to investigate hubs (communities)
of genomic interactions. CD operates on a (weighted) graph compris-
ing nodes and edges, aiming to identify non-overlapping node clusters
based on the network structure28. The most common approach for
detecting communities in networks involves maximizing the function
modularity by heuristic optimization algorithms to group nodes of the
input network into clusters. Particularly, the Combo algorithm93 has
shown higher relative success in maximizing modularity94. Similar to
applying K-Means for clustering independent vector data to find clus-
ters of similar datapoints in an unsupervisedway, we employedCombo
for CD to generate clusters from interdependent network data.

Chromosomal interactions are interdependent data that cannot be
clustered using vector clustering, justifying our use of CD for network
clustering. We used interaction weights (both intra-chromosomal and
inter-chromosomal) as CD input to generate clusters of interacting loci
through weighted modularity maximization.

We restricted the number of possible communities to 46, as
this entity resembles both maternal and paternal alleles of diploid
human genomes. To attain a robust 3D genome structure, averting
mapping noises, we computed the mean interaction weights from
our 62 datasets for each mapped interaction. This treated each
genomic locus as a node within a graph, enabling us to cluster all
loci in the genome-wide graph based on their interactions into 46
distinct communities. We applied CD using the pycombo package in
python 3.8 (using the parameters modularity_resolution = 1.4,
max_communities = 46). We then used the outcome of CD to
visualize estimations of genome topology by clustering interactive
bins and linking consecutive bins in a string together to generate
chromosome outlines.

Todetermine theoverlapbetween results ofCDandLWPR,weused
permutation testing that involved 10,000 iterations of randomly selec-
tedNHCCs to examine the number of iterations inwhichbothbins are in
the same community. To visualize amaximumof 46 chromosomes (two
gonosomes [female XX / male XY] and 22 pairs of autosomes = 24
possible chromosomes) in human diploid cells, we set the number of
possible communities to 46. This resembles the human genome and
allows each community to include only one chromosome’s bin if there is
an intra-chromosomal domain structure isolated from the rest of the
genome. For the visualization of the genome topology, we used the
Gephi95 software. To reflect the results of CD and to ensure clear
separation between bins fromdifferent communities, we first optimized
the visualization process. We excluded inter-community interactions
and plotted all bins as nodes using the ForceAtlas-296 visualization lay-
out, based on intra-community Hi-C interaction weights. This step
ensured that bins within each community are visualized close together
and separated from other communities, in turn facilitating the visuali-
zation of each community in the genome topology map. The distribu-
tion across the topology map as a ‘mock nucleus’ resulted in 46 distinct
communities, where bins with higher interaction weights in each com-
munity were placed closer together to better visualize their interactions.
Next, we added the physical connections between consecutive bins as
edges in the network and optimized the network layout using the
Fruchterman-Reingold layout algorithm (parameters: area = 5000,
gravity = 5, speed = 10). This ensured that bins within the same com-
munity remained close together and the structural connections between
consecutive bins across chromosomes were maintained. In the final
genome topology estimation, consecutive bins were positioned next to
each other to outline of the chromosomal structures. Moreover, bins
within the same community were as close to each other as the physical
constraints allowed. For the 3D visualizations, the Helios web software97

was employed to showcase the 3D architectural estimationderived from
the CD results.

Genome-wide significant NHCCs
To assess Signature’s capacity to map inter-chromosomal interactions,
we checked reported NHCCs with 1Mb resolution across all 62 data-
sets. We extracted any interaction involving both chromosomes of
four reported NHCCs (i.e., chromosome 12 and 17 interactions for
CISTR-ACT & SOX910) from our genome-wide result and plotted the
average z-score of all datasets with a positive z-score for that reported
NHCC. To addressNHCCs genome-wide, we generated a globalmatrix,
displaying NHCCs for all chromosome pairs across all datasets. We
extracted interactions between each pair of chromosomes and plotted
the average z-score of each interaction across the 62 datasets in a
heatmap. To identify significant NHCCs across cell types (positive z-
score with either p < 0.05 or q <0.05), we calculated the percentage of
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datasets with significant interactions and plotted the results for the
entire genome.

NHCCs vs. intra-chromosomal interactions
To assess the relative proportions of NHCCs and intra-chromosomal
interactions in 62 diploid (2n) datasets, we divided all normalized Hi-C
interaction weights (from cooler) into cis and trans-chromosomal
interactions for each dataset.

MERFISH
We extracted loci of the MERFISH approach20 that matched both bins
of our Signature-identified NHCCs and non-interacting regions
(q < 0.05) in two Hi-C datasets of IMR90 cells (Supplementary Data 1).
To analyze these contacts, we computed the spatial distance between
two genomic regions using the Euclidean metric.

HiCAN
We intersected the top 100 speckle-associated and nucleolus-
associated bins identified by the HiCAN34 approach with our Sig-
nature-identified NHCCs (q <0.05). Cell lines were matched to 2x
GM12878, HMEC, HUVEC, 2x IMR90, 2x NHEK, and 2x teloHAEC
datasets (SupplementaryData 1).HiCANbinswere converted from500
Kb to 1Mb for direct comparison to Signature.

SPRITE
Genomic bins associated with nucleolar and active (“speckle”) hubs
defined by SPRITE9 were intersected with our Signature-identified
NHCCs (q < 0.05) in two datasets of GM12878 cells.

Eigendecomposition for compartment analysis
We utilized the eigendecomposition method implemented in the
cooltools package98, and computed mean eigenvalues of each bin to
generate the eigenvectors for the analysis of genomic compartments.
Values above zero indicateA compartments (active),while thosebelow
zero were designated as B compartments (inactive).

Domain definition for NHCCs and non-interacting regions
We considered four different scenarios (I-IV) to determine the average
size of NHCC and non-interacting domains (Supplementary Fig. 3k). I:
consecutive bins of chromosome A, with amaximumof one bin as gap
in between, interact with the same bin on chromosome B. This builds
domains on chromosomes A and B. Individual interacting bins were
considered once to measure average NHCC sizes. II: consecutive bins
of chromosome A, with one bin as gap in between, interact with dif-
ferent single bins on chromosome B. This builds a domain on chro-
mosomeAonly. III: consecutive bins of chromosomeA,with one bin as
gap in between, interact with similar setup on chromosome B. This
builds domains on chromosomes A and B. IV: consecutive bins of
chromosomeA, with one bin as gap in between, interact with different
bins on two different chromosomes B and C. This builds a domain on
chromosome A only.

Binomial testing of p and q arm interactions
To investigate whether the structure of human chromosomes (p and q
arms) influence chromosomal interactions and positioning, we
focused on the interaction weights of p-p, q-q, and p-q arm contacts
and took the length of each chromosomal arm into account. First, we
assessed the impact of p- and q- arms on chromosomal contacts. We
grouped all genome-wide interactions into p-p, p-q, and q-q categories
and extracted the total interaction weights in each group. We then
used the total length of p- and q- arms to calculate the probability of
each interaction type as follow:

P ppð Þ =P pð Þ× P pð Þ;P pqð Þ= 2× P pð Þ ×P qð Þ;P qqð Þ=P qð Þ× P qð Þ

and,

P pð Þ =
P

i2chrsLðpiÞP
i2chrsLðciÞ

; P qð Þ=
P

i2chrsLðqiÞP
i2chrsLðciÞ

, chrs 2 all chromosomes
� � ð3Þ

Here P ppð Þ, P pqð Þ, and P qqð Þ represent the probability of p-p, p-q,
and q-q interactions, respectively, calculated based on the chromo-
somal arm length. The function L(.) represents length in megabases.
Accordingly, the variables L(p), L(q), and L(c) represent the length of
the respective underlying p-arm, q-arm, and the entire chromosome
(p-arm plus q-arm).

Next, to assess significant over-representations and under-
representations between the expected and actual NHCCs for each
interaction type, we conducted binomial testing99. The expected
probabilities, actual interaction weights, and total interaction weights
of each interaction type were considered as hypothesized probability
of success, number of trials, and number of successes in the binomial
test respectively.

We then calculated the probability of each interaction type based
on the p- and q-arm lengths for each chromosome (anchor chromo-
some), separately. The calculation was done using Eq. (3):

P XanchY targ

� �
=
LðXanchÞ
LðcanchÞ

×

P
i2targLðY iÞP
i2targLðciÞ

, targ 2 all chromosomes except anch
� �

ð4Þ

X denotes the arm of the anchor chromosome (indicated by anch
index) and Y denotes the arm of all other chromosomes except anchor
chromosome (indicated by targ index).

Using equation (4), we computed the probability of four possible
interaction types (panchptarg, panchqtarg, qanchptarg, and qanchqtarg) for all
chromosomes. By aggregating the data from all 62 datasets, we
extracted the interaction weights for each interaction type. Subse-
quently, we conducted the binomial testing (as described above) to
determine statistically significant discrepancies between the observed
and expected interaction weights for each interaction type.

Unified chromosome length
To visualize the distribution of identified NHCCs across all chromo-
somes along one single linear chromosome, wemappedNHCCs onto a
unified representation. The calculation was done using Eq. 5:

Xu =
Lu ×Xc

Lc
ð5Þ

Xc represents the coordinates (start and end) of a bin of the
selected chromosome, and Xu represents their corresponding coor-
dinates on the unified linear chromosome. Here, Lc and Lu denote the
length of the selected chromosome and unified chromosome,
respectively. To ensure a comprehensive representation,we included a
gap size of 4.2%of theunified chromosome length between thep andq
arms, which accounted for the average unmapped read percentage in
the centromeric regions of all chromosomes.

Telomeric–centromeric interactions
To explore potential patterns in chromosomal interactions and posi-
tioning of telomeric and centromeric regions, we focused on specific
segments of mapped sequences, excluding repetitive sequences. We
selected 5% of mapped regions 5’ and 5% 3’ of each chromosome as
subtelomeric regions (t), and 5%ofmapped regions fromboth 5’ and 3’
of the centromeres (c; identified as unmapped regions in Hi-C). We
excluded p arms of acrocentric chromosomes, as well as other regions
wheremore than 2.5% of chromosomal sequence in respective regions
were unmapped (Supplemental Fig. 3p). Utilizing amodified version of
Eq. (3), tailored for centromeric and telomeric regions, we computed
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the expected probability of mapped regions of each interaction type
(c-c, c-t, and t-t). Following amethodology analogous to testing the p- /
q-arm interactions (see binomial testing of p and q arm interactions),
we conducted a binomial testing to evaluate interactions of telomeric
and centromeric regions, aiming to identify instances of either over- or
under-representation for each interaction type.

Gene expression analysis using GTEx
We explored gene expression levels of genes among the common
significant NHCCs (q <0.05, ≧ 10 datasets, 393 bins = 12.73% of hg38
genome) genome-wide using GTEx gene IDs52. We used normalized
gene expression fromGTExV8with transcript permillion (TPM) values
for 56,201 genes. Since GTEx expression profiles are count data with
non-negativevalues,weapplied a log2-transformation after adding 1 to
the expression levels to avert a log(0) numerical error.

First, we compared the mean TPM of genes annotated in our
common NHCC bins with all genes in GTEx across four different bio-
types using Mann-Whitney testing. We assigned the biotypes using
GENCODE V42. Next, we extracted the number of genes for each bio-
type from the bins identified by Signature. To assess statistical sig-
nificance, we calculated the expected number of genes for each
biotype in the same bins using Eq. 6:

E xð Þ=Nxbin s=bin a ð6Þ

E xð Þ and Nx represent the expected number and total number of
genes in biotype x, respectively. Additionally, bins and bina denote
the number of bins identified by Signature (393) and the total number
of bins in hg38 genome (3088), respectively. We then performed a
Fisher’s exact test to determine if there is a significant difference
between the actual and expectednumber of genes for eachbiotype. To
investigate tissue-specific expression levels of the genes identified in
Signature’s unique NHCCs, we separated the corresponding cell-types/
samples from GTEx and from our Hi-C datasets to generate eight
matched groups. We then examined whether there is a significant
difference between average TPM of all genes and our tissue-specific
genes using Mann-Whitney tests.

To visualize topological gene expression by CD, the GTEx cata-
logue was filtered to 18 Signature-matched cell-types and the mean
TPMwas calculated for every bin observed across the 62 Hi-C datasets
(2813 = 91.1% of hg38 genome). This was repeated for sex-specific bins
(F = 2786, M= 2802), filtering GTex catalogue to corresponding sam-
ples with annotated sex.

Transcription factor binding (ChIPseq)
We explored transcription factor binding in our Signature-identified
NHCCs (q <0.05) using the ChIP Atlas53 (“TF and others” track, human
hg38, statistical significance threshold 50). Eight tissue groups were
matched between the ChIPseq data and Signature’sHi-C data. For each
tissue group individually, we summed the peak counts for each bin
identified in the NHCCs and compared this with the summed peak
counts for every bin observed across the 62 Hi-C datasets. The statis-
tical significance was examined using a Mann-Whitney test. To visua-
lize topological transcription factor binding by CD, the summed peak
counts across all matched tissues were determined for every possible
bin observed across the 62 Hi-C datasets (n = 2813).

Tissue culture
hTERT-immortalized female adipose-derived primary human
mesenchymal stem cells (ASC52telo [SCRC-4000; RRID:CVCL_U602],
ATCC) were maintained in basal MSC media (PCS-500-030, ATCC),
supplemented with 2% FBS (ThermoFisher), 5 ng/ml recombinant
human FGF basic (R&D Systems 233-FB-010), 5 ng/ml recombinant
human FGF acidic (R&D Systems 232-FA-025), 5 ng/ml recombinant
human EGF (R&D Systems 236-EG-200), 2.4 mM L-Alanyl-L-Glutamine

(ThermoFisher), and 0.2mg/ml Geneticin (G418, ThermoFisher). Tel-
oHAEC (SCRC-4052, RRID:CVCL_Z065, ATCC) were maintained in
vascular cell basal medium (ATCC PCS-100-030) with VEGF (ATCC
PCS-100-041). hTERT-RPE-1 (RRID:CVCL_4388, ATCC) were cultivated
in DMEM:F12 (ThermoFisher) with 10% FBS (Canadian origin, Ther-
moFisher). HCT116 cells (RRID:CVCL_0291) were cultivated according
to ATCC recommendations. All cells were maintained at sub-confluent
conditions, maintained at 37 C with 5% CO2 and were passaged every
3-4 days. Mycoplasma testing was performed every eight weeks with
LookOut Mycoplasma PCR detection kit (Sigma-Aldrich).

Oligopainting with immunofluorescence of specklemarker SON
We designed probes the recently described optimized Oligopaint
protocol23. Briefly, we designed probes with 80 bases of homology to
1-Mb genomic targets, with an average probe density of 3.5 probes per
kb, and directly labeledwith Alexa 555.Weperformed two replicates of
FISH and immunofluorescence experiments. Specifically, HCT116 cells
were settled on fibronectin-coated slides for 2 h and fixed in 4% for-
maldehyde for 10min. We then permeabilized cells in 0.5% Triton-PBS
for 15min, followed by adding 25 µl of hybridization mix, consisting of
2 pmol of each probe, 10% dextran sulfate, 2x SSCT (0.3M NaCl,
0.03M sodium citrate and 0.1% Tween 20), 50% formamide, 4% poly-
vinylsulfonic acid (PVSA)), 5.6mMdNTPs and 10μgRNaseA, onto each
slide, sealing under a coverslip, followed by denaturation at 92 oC for
5min. Slides were then incubated overnight at 37 oC. On the next day,
we washed slides in 2x SSCT at 60 oC for 15min and twice at RT for
10min. Slides were then blocked for 30min in a 0.05% Tween-PBS
(PBST) solution containing 1% bovine serum albumin (BSA). For
speckle labeling, we incubated 1:500 dilution of anti-SON antibody
(HPA023535, Sigma) overnight with each slide at 4 oC, washed the next
day three times in 1% PBST alone for 5min each, incubated in anti-
rabbit Alexa 488 secondary (111-545-003, Jackson) at room tempera-
ture for 1 h, followedby an additional threewashes in 1% for 5min each.
After mounting slides in SlowFade Gold Antifade (Invitrogen), we
acquired images of > 300 nuclei in each replicate similar to Luppino
et al. 100, using a Leica widefield microscope with a 1.4 NA ×63 oil-
immersion objective (Leica) andAndor iXonμltra emCCDcamera, then
deconvoluted with Huygens Essential v20.04.03 (Scientific Volume
Imaging), using the CMLE algorithm and signal:noise ratio of 40, and
then analyzed using TANGO101 to identify and make measurements
between the FISH spots and speckles.

Permutation analysis. We determined significance of clustering by
comparing the observed clustering of genomic regions at speckles to
an “expected” null distribution of clustering, generated by 10,000
permutations of the data. Specifically, each permutation maintained
the observed number of genome-speckle associations per cell, but
randomized which genomic regions interacted with which speckle.
The maximum number of spots at any speckle was determined and
averaged across all randomizedcells, and thisprocesswas repeated for
each permutation to generate a distribution of random clustering to
compare against the observed clustering.

Multicolor FISH
We performed molecular cytogenetic studies on PHA-stimulated per-
ipheral blood lymphocytes, MSCs (SCRC-4000, ATCC), and hTERT
RPE-1 (ATCC) according to standard protocols102. For locus-specific
labeling, DNA from bacterial artificial chromosome (BAC) probes from
BACPAC Chori were used; their DNA was extracted, amplified and
labeled by DOP-PCR (standard protocols). Zeiss Axioplan 2 and Axio
Imager.Z2 fluorescence microscopes (Carl-Zeiss, Jena, Germany)
equipped with appropriate filter sets to discriminate between a max-
imum of four different fluorochromes.

For FISH, we labeled RP11-661K21 (6p21.31; hg38:33,873,549-
34,061,469) and RP11-57C19 (9q34.11 ~ 34.12; hg38:130,605,158-
130,778,620) directly with DEAC, RP11-545E17 (9q34.11;
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hg38:128,699,415-128,866,078) and RP11-569N5 (11q13.2 ~ 13.3;
hg38:68,548,288-68,727,966) with Spectrum Orange, RP11-142G8
(11q13.2; hg38:66,352,870-66,511,335) and RP11-466J21 (1p36.12;
hg38:22,393,597-22,470,578) indirectly with Digoxigenin-Fluorescein,
andRP11-24C3 (3p21.31; hg38:48,340,573-48,500,067) andRP3-349A12
(6p21.31; hg38:34,842,772-34,975,718) indirectly with Biotin-Cy5; DAPI
was used as counterstain. We combined the eight probes in two
independent four color FISH experiments (set1: RP11-661K21, RP11-
545E17, RP11-142G8, RP11-24C3; set2: RP11-57C19, RP3-349A12, RP11-
569N5, RP11-466J21). Digital images were captured using an IMAC S30
CCD camera and MetaSystems (Isis) software (Altlussheim, Germany).
We used the same acquisition setting to image ˜100 nuclei from the
same experiment, on the same slide, under the same microscopic
conditions. To provide the best signal-to-noise ratios of every image,
we used the Isis-standardized background control algorithm to allow
quantitative analysis of the BAC signals. Images were post-processed
by increasing the contrast of each acquired channel. We analyzed the
arrangements of the BAC signals to one another within the same cell in
a cell-by-cell manner for identifying the relative chromosomal posi-
tioning to eachother.We refer to clustered signalswhere either signals
of different channels directly overlapped (co-localized) or where sig-
nals were in close proximity. To distinguish close proximal signals
from non-colocalized signals, we measured signal distances and put
them in relation to the corresponding nucleus diameter. Then, we
calculated means across all cells (˜100) analyzed in each experiment.
We grouped the signals into groups of no colocalization, two-color,
three-color, and four-color clustered signals and distinguished
between mono-allelic and bi-allelic signals.

K-means and hierarchical clustering
We performed K-Means clustering with four clusters (evaluated using
the elbow method) to gain insight into the distinct characteristics
distinguishing cell types based on their cis contacts and NHCCs. We
standardized the interactionweights by scaling them to ameanof zero
and a standard deviation of one. Moreover, we examined interaction
patterns across each chromosome using hierarchical clustering on
NHCCs and intra-chromosomal interactions separately.

Chondrogenic differentiation
We performed chondrogenic differentiation in micromass pellet cul-
tures for up to 21 days.We supplementedDMEM (4.5 g/L glucose)with 1
IU/mL heparin sulfate, 5% FBS, 1× ITS-X, 100U/mL penicillin, 100μg/mL
streptomycin, 100nM dexamethasone, 50 μM l-ascorbic-2-phosphate,
100 ng/μL recombinant human IGF-1, 10 ng/mL recombinant human
TGF-β1 and 1mM sodium pyruvate. We fixed chondrogenic pellets
overnight with 4% paraformaldehyde, and paraffin-embedded tissue
was sectioned for Picrosirius Red and Alcian blue staining. We exchan-
ged the medium every two days for a total period of 21 days.

Immunohistochemistry of chondrogenic differentiations
Day 21 chondrogenic pellet cultures were fixed in 4% paraformalde-
hyde for 24 hr at 4 °C. Sampleswere embedded inparaffin, cut intofive
micrometer sections, deparaffinized, hydrated and then subjected to
either Alcian Blue or Picrosirius Red staining. For Alcian Blue staining
ofmucins, sectionswere soaked in 3% acetic acid for 3minutes, then in
1% Alcian Blue in 3% acetic acid for 30minutes at room temperature
and subsequently washed with distilled water. We stained collagen
fibers with Picrosirius Red according to standard procedures in colla-
boration with the SickKids Pathology core.

RNA extraction, cDNA preparation, RT-qPCR
Chondrogenic identity was verified by measuring relative expression
of chondrogenic markers (COL2A1, COL10A1, PTHLH, and SOX9). Total
RNAwas extracted from cells undergoing differentiation at day 0, 3, 7,
10, 14, and 21, using the phenol-chloroform extraction method

according to standard protocols. Residual genomic DNAwas removed
using DNase I digestion (Invitrogen) according to the manufacturer’s
instructions. cDNA was synthesized using SuperScript III First Strand
Synthesis System (Invitrogen). qRT-PCRs were performed using Pow-
erUp SYBR Master Mix (Applied Biosystems) analyzed by using the
2(-ΔΔCt) method. Relative expression was calculated using RPL13A as the
housekeeping gene.

Omni-C
Hi-C13 and Omni-C (randomly digested chromatin, Dovetail Genomics,
CA, USA) analyze genomic interactions. We generated Omni-C data of
two independent MSC-derived chondrogenic differentiations (time
course: 0, 1, 3, 7, 14, and 21 days). We FA-crosslinked samples for
10minutes and pelleted them for 5minutes with 2000 g. Pellets were
washed in800 µLwashbuffer (100mMNaCl, TrispH8.0, 0.05%Tween-
20) until fully resuspended. We removed supernatants after 5minutes
of centrifugation at 2000g and repeated the latter two steps. Cell
pellets were frozen at -80 °C for library preparation. Dovetail Geno-
mics, CA, USA prepared three Omni-C libraries (technical replicates) of
each independent replicate.

Tissue-specific NHCCs
Of all 40,282 interactions, we singled out those NHCCs that displayed
significance (q <0.05) exclusively in a particular dataset and labeled
them as ‘unique NHCCs’ (23,251). In order to assess the proportion of
theseunique interactions, we applied randomselection to a simulation
of NHCC numbers. For each dataset, we randomly selected the same
number of NHCCs as presented in the dataset. For example, dataset
aorta_Leung showed 2210 NHCCs. Thus, we randomly chose 2210 out
of the total number of NHCCs without replacement. This process was
repeated for all datasets, and then iterated 10000 times. In each
iteration, we calculated the ratio of uniqueness (the number of NHCCs
that was selected in only one dataset). Our actual unique NHCC ratio
was 0.577, whereas the highest ratio observed in the 10,000 iterations
was 0.162 (empirical p-value = 0).

Enrichment analysis
We performed functional GO-term analysis of genes with
Metascape36, using GENCODE-annotated genes103 of 1 Mb bins as
background. Default was q < 0.05 in chondrocytes 3 d and 7 d,
germinal B-cells, HMEC, naïve B-cells, NPC_Rajarajan, and VSMCs
21 d. Due to the high number of genes in bins of unique NHCCs
in other datasets, we adjusted the FDR cutoff to limit the
number of genes (q < 0.025 NHEK in dilution; q < 0.01 aorta, astro-
cytes_cerebellum, cardiomyocytes 80 d, H9ESCs, MSCs_Dixon,
NHEK in situ, NPC_Dixon, spleen, trophectoderm; q < 0.005 thymus;
q < 0.001 H1ESCs_Dixon, islets, RPE-1).

Sex determination of cell types
Among the 62 analyzed datasets, 16 lacked information about the
sample’s sex. To address this issue, we utilized logistic regression104 on
the SAM files of 46 datasets with known sex to train a classifier. This
classifier was trained on the proportion of gonosome-mapped reads
and the mapped reads from the autosomes. This relies on the
assumption that 2n diploid genomes with male (XY) gonosomes will
produce 50% fewer mapped reads for the X chromosome than female
(XX) genomes. We then split the datasets with sex labels (SAM files of
46 datasets) randomly into two sets: 75% as the training set and the
remaining 25% as the validation set. The proportions of male and
female labels were maintained in both sets. The sex determination
classifier achieved 100% accuracy on the validation set, confirming the
approach’s reliability. We then applied the trained classifier to predict
the sex of 16 datasets without sex labels. To analyze sex-specific
NHCCs across all datasets, we applied an FDR cutoff of q < 0.05 and
converted genomic positions of sex-specific NHCCs into unified
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chromosome lengths (see unified chromosome length) to plot them in
circos plots105.

Statistics and reproducibility
No statistical method was used to predetermine sample size and data
was excluded upon outlier analysis. All statistical tests conducted were
two-sided, unless stated otherwise. If multiple tests were carried out on
the same data, error rates were corrected for multiple testing using
Bonferroni correction or as stated in the results and methods. For sta-
tistical analysis,weuseddistinct samples inRversion4.2.1 (or as stated in
the methods), Python version 3.8, and GraphPad Prism version 10.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated in this study have been deposited in the GEO
repository (https://www.ncbi.nlm.nih.gov/geo/; accession numbers:
GSE217358, GSM7757606, GSM7757607, GSM7757608, GSM7757609,
GSM7757610, GSE242273). Source data are provided with this paper.

Code availability
The code of Signature (LWPR & Community detection), its doc-
umentation, and a demo of how to utilize Signature, as well as com-
putational analysis required for graphical visualization are available at
https://github.com/MaassLab/Signature106. Further custom code to
reanalyze the data reported in this project is available from the cor-
responding author on reasonable request.
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