Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Oct 1;480(Pt 1):71–80. doi: 10.1113/jphysiol.1994.sp020341

The actions of extracellular H+ on the electrophysiological properties of isolated human detrusor smooth muscle cells.

C H Fry 1, C R Gallegos 1, B S Montgomery 1
PMCID: PMC1155778  PMID: 7853227

Abstract

1. The influence of extracellular pH changes on intracellular pH and [Ca2+], as well as on L-type Ca2+ currents, has been investigated in isolated human detrusor smooth muscle cells. 2. Alteration of extracellular pH by changing superfusate PCO2 also changed intracellular pH. A change of superfusate pH made by altering the [NaHCO3] at constant PCO2 was not reflected in a change in intracellular pH. 3. Extracellular acidosis attenuated the magnitude and rate of change of intracellular [Ca2+] evoked by raising the extracellular [KCl]. 4. Extracellular acidosis attenuated the rate of rise and amplitude of the action potential, as well as the magnitude of the L-type Ca2+ current. In the pH range 6.78-7.62 no alteration to the voltage dependence of Ca2+ current activation or inactivation was recorded. 5. A close proportional relationship between tension generated by multicellular strips and the magnitude of peak inward Ca2+ current in isolated cells was noted over a wide range of the two variables using a number of interventions, including alteration to extracellular pH, [Ca2+] and [Mg2+]. 6. Extracellular acidosis attenuated the magnitude of caffeine-dependent intracellular Ca2+ transients and the resting [Ca2+]i between transients. Acidosis was without effect on the rise of [Ca2+]i induced by carbachol. 7. The results suggest that the negative inotropic effect of extracellular acidosis can be accounted for by attenuation of the L-type Ca2+ current. The results also imply that intracellular stores are influenced by transmembrane Ca2+ fluxes at rest and that such fluxes are also attenuated by extracellular H+.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aickin C. C., Brading A. F. The effect of loop diuretics on Cl- transport in smooth muscle of the guinea-pig vas deferens and taenia from the caecum. J Physiol. 1990 Feb;421:33–53. doi: 10.1113/jphysiol.1990.sp017932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eisner D. A., Nichols C. G., O'Neill S. C., Smith G. L., Valdeolmillos M. The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular cells. J Physiol. 1989 Apr;411:393–418. doi: 10.1113/jphysiol.1989.sp017580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eldrup J., Thorup J., Nielsen S. L., Hald T., Hainau B. Permeability and ultrastructure of human bladder epithelium. Br J Urol. 1983 Oct;55(5):488–492. doi: 10.1111/j.1464-410x.1983.tb03354.x. [DOI] [PubMed] [Google Scholar]
  4. Fry C. H., Poole-Wilson P. A. Effects of acid-base changes on excitation--contraction coupling in guinea-pig and rabbit cardiac ventricular muscle. J Physiol. 1981;313:141–160. doi: 10.1113/jphysiol.1981.sp013655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ganitkevich V Y. a., Isenberg G. Depolarization-mediated intracellular calcium transients in isolated smooth muscle cells of guinea-pig urinary bladder. J Physiol. 1991 Apr;435:187–205. doi: 10.1113/jphysiol.1991.sp018505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ganitkevich VYa, Isenberg G. Caffeine-induced release and reuptake of Ca2+ by Ca2+ stores in myocytes from guinea-pig urinary bladder. J Physiol. 1992 Dec;458:99–117. doi: 10.1113/jphysiol.1992.sp019408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ganitkevich V. Y., Isenberg G. Contribution of Ca(2+)-induced Ca2+ release to the [Ca2+]i transients in myocytes from guinea-pig urinary bladder. J Physiol. 1992 Dec;458:119–137. doi: 10.1113/jphysiol.1992.sp019409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilliam F. R., 3rd, Rivas P. A., Wendt D. J., Starmer C. F., Grant A. O. Extracellular pH modulates block of both sodium and calcium channels by nicardipine. Am J Physiol. 1990 Oct;259(4 Pt 2):H1178–H1184. doi: 10.1152/ajpheart.1990.259.4.H1178. [DOI] [PubMed] [Google Scholar]
  9. Iijima T., Ciani S., Hagiwara S. Effects of the external pH on Ca channels: experimental studies and theoretical considerations using a two-site, two-ion model. Proc Natl Acad Sci U S A. 1986 Feb;83(3):654–658. doi: 10.1073/pnas.83.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kass R. S., Krafte D. S. Negative surface charge density near heart calcium channels. Relevance to block by dihydropyridines. J Gen Physiol. 1987 Apr;89(4):629–644. doi: 10.1085/jgp.89.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Komori S., Bolton T. B. Role of G-proteins in muscarinic receptor inward and outward currents in rabbit jejunal smooth muscle. J Physiol. 1990 Aug;427:395–419. doi: 10.1113/jphysiol.1990.sp018178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Krafte D. S., Kass R. S. Hydrogen ion modulation of Ca channel current in cardiac ventricular cells. Evidence for multiple mechanisms. J Gen Physiol. 1988 May;91(5):641–657. doi: 10.1085/jgp.91.5.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liston T. G., Palfrey E. L., Raimbach S. J., Fry C. H. The effects of pH changes on human and ferret detrusor muscle function. J Physiol. 1991 Jan;432:1–21. doi: 10.1113/jphysiol.1991.sp018373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Montgomery B. S., Fry C. H. The action potential and net membrane currents in isolated human detrusor smooth muscle cells. J Urol. 1992 Jan;147(1):176–184. doi: 10.1016/s0022-5347(17)37192-6. [DOI] [PubMed] [Google Scholar]
  15. Montgomery B. S., Thomas P. J., Fry C. H. The actions of extracellular magnesium on isolated human detrusor muscle function. Br J Urol. 1992 Sep;70(3):262–268. doi: 10.1111/j.1464-410x.1992.tb15728.x. [DOI] [PubMed] [Google Scholar]
  16. PITTS R. F., AYER J. L., SCHIESS W. A. The renal regulation of acid-base balance in man; the reabsorption and excretion of bicarbonate. J Clin Invest. 1949 Jan;28(1):35–44. [PubMed] [Google Scholar]
  17. Pacaud P., Bolton T. B. Relation between muscarinic receptor cationic current and internal calcium in guinea-pig jejunal smooth muscle cells. J Physiol. 1991 Sep;441:477–499. doi: 10.1113/jphysiol.1991.sp018763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Palfrey E. L., Fry C. H., Shuttleworth K. E. A new in vitro microsuperfusion technique for investigation of human detrusor muscle. Br J Urol. 1984 Dec;56(6):635–640. doi: 10.1111/j.1464-410x.1984.tb06134.x. [DOI] [PubMed] [Google Scholar]
  19. Prod'hom B., Pietrobon D., Hess P. Interactions of protons with single open L-type calcium channels. Location of protonation site and dependence of proton-induced current fluctuations on concentration and species of permeant ion. J Gen Physiol. 1989 Jul;94(1):23–42. doi: 10.1085/jgp.94.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sato K., Ozaki H., Karaki H. Multiple effects of caffeine on contraction and cytosolic free Ca2+ levels in vascular smooth muscle of rat aorta. Naunyn Schmiedebergs Arch Pharmacol. 1988 Oct;338(4):443–448. doi: 10.1007/BF00172125. [DOI] [PubMed] [Google Scholar]
  21. Satoh H., Seyama I. On the mechanism by which changes in extracellular pH affect the electrical activity of the rabbit sino-atrial node. J Physiol. 1986 Dec;381:181–191. doi: 10.1113/jphysiol.1986.sp016321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sethia K. K., Smith J. C. The effect of pH and lignocaine on detrusor instability. Br J Urol. 1987 Dec;60(6):516–518. doi: 10.1111/j.1464-410x.1987.tb05032.x. [DOI] [PubMed] [Google Scholar]
  23. Thuringer D., Diarra A., Sauvé R. Modulation by extracellular pH of bradykinin-evoked activation of Ca(2+)-activated K+ channels in endothelial cells. Am J Physiol. 1991 Sep;261(3 Pt 2):H656–H666. doi: 10.1152/ajpheart.1991.261.3.H656. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES