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1 | INTRODUCTION

Cancer has long been a global challenge, recognized as the
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Abstract

Antibody-drug conjugates (ADCs), chemotherapeutic agents conjugated to an anti-
body to enhance their targeted delivery to tumors, represent a significant advance-
ment in cancer therapy. ADCs combine the precise targeting capabilities of
antibodies and the potent cell-killing effects of chemotherapy, allowing for enhanced
cytotoxicity to tumors while minimizing damage to healthy tissues. Here, we provide
an overview of the current clinical landscape of ADCs, highlighting 11 U.S. Food and
Drug Administration (FDA)-approved products and discussing over 500 active clinical
trials investigating newer ADCs. We also discuss some key challenges associated
with the clinical translation of ADCs and highlight emerging strategies to overcome
these hurdles. Our discussions will provide useful guidelines for the future develop-

ment of safer and more effective ADCs for a broader range of indications.
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Translational Impact Statement

This review aims to provide an overview of the current clinical landscape of antibody-drug con-
jugates (ADCs), an emerging modality for targeted cancer therapy. We discuss Food and Drug
Administration-approved ADC products and highlight the diversity of new investigative ADCs in
active clinical trials based on their indication, antibody type, target antigen, and payload while
also outlining the challenges in ADC development. Together, this review provides an under-
standing of the current state of ADCs in the clinic while fostering research initiatives to improve

ADC development.

damage to healthy cells, organs, and tissues (a consequence of radio-
therapy and chemotherapy), and the development of drug resistance

(a challenge for chemotherapy).> Moreover, these treatments tend to

second leading cause of death worldwide, accounting for one in six
deaths.? Traditional treatment methods—surgery, radiotherapy, and
chemotherapy—have been the cornerstone of cancer management for
decades. However, their effectiveness is hampered by several factors
such as the stage of cancer at diagnosis (limiting surgery's viability), the
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focus on the cancer's location or histological features rather than on
specific molecular changes.® Recent advances in molecular and tumor
biology have shifted cancer treatment from these broad approaches to
more personalized and precise therapies.® Inspired by Paul Ehrlich's
“magic bullet” concept, new cancer treatment options aim to minimize
toxicity by targeting specific molecular markers of cancer. Targeted

therapies, which include monoclonal antibodies (mAbs) and small-
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molecule inhibitors, have transformed the management of various can-
cers, such as those affecting the breast, colon, lungs, and digestive tract,
enhancing the efficacy of traditional chemotherapy.*¢

The foundation for antibody-based therapies was laid in the 1960s
with the identification of tumor antigen expression and the development
of antibodies in the late 19th century. mAbs have proven effective in
both diagnosing and treating hematological malignancies and solid
tumors.”® They work by targeting tumor-associated antigens, either inhi-
biting cell growth and angiogenesis or stimulating a long-lasting immune
response against the tumor.”° This led to the creation of Antibody-
Drug Conjugates (ADCs), which merge the targeted approach of mAbs
with the cell-killing power of chemotherapy, sparing healthy tissue and
thus representing a significant advancement in cancer therapy.1'™22
Over the past few decades, clinical studies of ADCs have been increas-
ingly active. To date, the US Food and Drug Administration (FDA) has
approved 11 ADCs, with two additional approvals by other regulatory
agencies. Numerous ADCs are under clinical investigation, promising to
expand the range of treatable cancers. Ongoing trials are also exploring
the most effective treatment combinations using approved ADCs. In this
review, we provide an overview of the clinical landscape of ADCs. We
discuss the design considerations and mechanism of actions of ADCs,
highlight approved products, and review >500 active clinical trials involv-
ing both approved and new investigative ADCs. We also discuss the
challenges for clinical translation of ADCs and provide a prospect for the
future development of more effective and safer ADCs.

2 | KEY COMPONENTS AND MECHANISM
OF ACTIONS OF ADCs

21 | Keycomponents

An ADC is composed of an antibody conjugated to the cytotoxic pay-
load by a chemically stable linker. While this sounds simple, the com-
plexity of the ideal properties of each of these components has

impacted the progress of ADC research.'* Here, we discuss key con-
siderations related to the design of each ADC component.

2.1.1 | Antibody

mAbs, which have specificity to a particular antigenic epitope, are
more commonly used to formulate ADCs.*>¢ The antibody can be
considered the driver that facilitates the specific delivery of the pay-
load to tumor cells. The generally recommended properties of the
antibody component include: (i) high selectivity for cancer antigens
over healthy cells, and (i) high target binding affinity.>> Other desir-
able properties include strong retention after binding, low immunoge-
nicity, and minimal cross-reactivity. Earlier generations of ADCs were
formulated using murine mAbs, which were problematic due to immu-
nogenicity that reduced efficacy. However, newer generations of
ADCs employ humanized antibodies, which have a lower risk of

immune activation.**1°

A key aspect in designing the antibody component is the selection
of antigenic targets. Ideally, the target should be exclusively expressed
on tumor cells.>”18 However, a more realistic goal is to identify a
target that (i) has high expression on tumor cells and low expression
on healthy cells, with a minimum target antigen threshold of >10,000
copies/cell,*®? (i) is displayed on the surface of tumor cells with min-
imal shedding to enable efficient antibody binding, and (iii) has the
ability to be internalized to aid the transport of ADC into
the cell.'*>1720 There are over 50 known antigens used in ADCs,
and common antigens in approved ADC products include HER2,
Trop2, B-cell maturation antigen (BCMA), Nectin4, CD19, CD22,
CD30, CD33, and CD79b.'> More recently, research focus has also
shifted to the identification of antigens beyond the tumor cells. Anti-
gens expressed in the tumor microenvironment, such as on the
stroma, vasculature, extracellular matrix, and tumor matrix, have the
potential to broaden the target antigen scope of ADCs. Additionally,
antigens expressed in these areas are less susceptible to mutations
and could prevent the development of drug resistance.!”

The size of the antibody in an ADC is also important.” Immuno-
globulin G (IgG) antibodies (IgG1, 1gG2, 1gG3, 1gG4) are commonly
used in ADCs.'® IgG1 is the most commonly employed subtype due to
its abundance in the serum and strong effector functions, while 1gG3
is rarely used due to its short half-life in the blood.*® While IgG anti-
bodies are the most common in the serum, their large size often limits
penetration through the blood capillaries and tumor tissue. To over-
come this, newer ADCs are formed with miniaturized antibodies by
removing the fragment crystallizable (Fc) segment. This has made
ADCs more applicable to solid tumors but also comes with the prob-
lem of reduced half-life.”

In the design of ADCs, a careful balance between the antibody's
binding affinity and internalization is important. Often, higher binding
affinity results in rapid internalization of the antibody. However, in
the case for solid tumors, the rapid internalization of ADCs mostly
occurs at the tumor periphery only.}”*? This effect is because of the
binding site barrier, which causes the trapping of ADCs near the blood
vessels in solid tumors hindering their penetration to distant tumor
cells. 172

Aside from enabling delivery of the payload, the antibody also
plays some cytotoxic functions such as antibody-dependent cytotox-
icity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and

14

complement-dependent cytotoxicity (CDC),”" which will be further

discussed in a later section.

212 | Linker

The linker is an important component that influences the stability,
payload release, pharmacokinetics (PK), toxicity, and overall therapeu-
tic efficacy of ADCs.2*?22% Most recent advances in ADCs are due to
improvements in drug-linker technologies.?? An ideal ADC linker
should be stable enough in circulation to prevent premature drug
release while also being sufficiently sensitive to the release stimuli at

the target site.1724-2¢
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ADC Linkers are broadly classified as either cleavable or noncleava-
ble. Cleavable linkers can be chemical cleavage linkers (such as hydra-
zone or disulfide bond based) or enzyme cleavage linkers (such as
glucuronide or peptide bond based).'”*?* Upon internalization of
ADCs into target cells, such linkers are degraded through several mech-
anisms such as proton lysis, thiol reduction, proteolysis, or carbohydrate
hydrolysis, resulting in the release of the cytotoxic payload.?* This
cleavage occurs in the endosomal-lysosomal compartment of the tumor
cells. Because the stimuli responsible for the cleavage of these linkers
are not exclusively restricted to tumor cells, some of these linkers are
also susceptible to chemicals and enzymes in the blood or tumor micro-
environment, increasing the risk of systemic toxicity.'?

Conversely, noncleavable linkers enable to release the payload by
enzymatic degradation of the antibody in the endosome/lysosome.?”
The linker remains conjugated to the payload along with some amino
acid residues, which restricts the diffusion of the payload across the
cells, thus reducing systemic toxicity.®2° These linkers are less sus-
ceptible to the physiological environment, resulting in increased

1617 and specific drug release.?” However, the persis-

plasma stability
tence of the linker and amino acid residue could affect the function of
the payload; hence, only small molecules that tolerate chemical modi-
fications are suitable for these linkers.*”18

Other considerations for the ADC linker include its length and
hydrophobicity. Accumulating evidence indicates that shorter linkers
improve the stability of ADCs as the payloads benefit from the steric
shield provided by the antibody.?® Simultaneously, hydrophilic linkers
increase the solubility and improve the PK of ADCs and are more ben-

eficial for ADCs with hydrophobic payloads.'??22°

213 | Payload
ADCs are formulated with highly potent payloads that possess pico-
molar or nanomolar ICsq to ensure cytotoxic efficacy.® Earlier genera-
tions of ADCs utilized conventional chemotherapeutic drugs;
however, due to the limited amount (1%-2%) of the payload reaching
the target site, the efficacy of these moderately potent agents was
suboptimal.1*171? The new generation of approved ADCs deploys
more potent payloads that inhibit microtubules necessary for cell divi-
sion or inflict damage on cell DNA. The potency of these agents
exceeds that of traditional chemotherapy by more than 100- to
1000-fold.*®?128 Examples of such microtubule-targeting agents
include Dolastatin10-based auristatin analogs and maytansinoids, and
commonly used DNA-damaging payloads include Calicheamin analogs
(inducing DNA double-strand breaks), Duocarmycin analogs (promot-
ing DNA alkylation), and topoisomerase 1 inhibitors (causing DNA
intercalation).*® Having an intracellular target is an important require-
ment for these payloads, as they are designed to be released within
the tumor cells.?® A thorough review of ADC payloads can be found
in recent reviews published elsewhere 2282

Beyond their high potency, ADC payloads should also exhibit sev-
eral other key properties including stability in systemic circulation,

resistance to degradation within endosomes/lysosomes, minimal

immunogenicity, a relatively low molecular weight, and chemical
groups amendable to conjugation with the linker. Additionally, an
appropriate hydrophobicity of the payload is needed to balance solu-
bility for successful conjugation to the ADC with good cellular perme-

ability while preventing rapid clearance.>17:1%:28

2.2 | Mechanisms of action
Figure 1 provides an overview of the mechanism of actions of ADCs.
After intravenous administration, ADCs are distributed throughout
the body and accumulate in the tumors. The circulation of ADCs is
facilitated by the long half-life of the antibody component, while their
accumulation within tumor is driven by the binding of the fragment
antigen-binding (Fab) segment of the antibody to the antigenic tar-
get.%° The large size of mAbs limits the diffusion of ADCs through
tumor vasculature, resulting in only a small fraction (0.0003%-0.08%
per gram of tumor®?) of the administered dose eventually accumulat-
ing at the target site, underscoring the need for a highly potent pay-
load.*2 The binding of the antibody to its target triggers the
internalization of the ADC, which can occur via clathrin-mediated
endocytosis (CME), caveolar-mediated endocytosis, or pinocyto-
sis.*>?7 Subsequently, the ADC is packed into an early endosome,
which matures and fuses with a lysosome where the payload is
released upon endosomal/lysosomal degradation of the ADC. The
type of linker determines the payload release mechanism postinterna-
lization.3? Noncleavable linkers require ADC localization in the lyso-
some for proteolytic degradation, whereas the payload release from
cleavable linkers is triggered by intracellular stimuli (such as pH sensi-
tivity, protease sensitivity, or glutathione sensitivity), bypassing the
need for lysosomal trafficking.2”-33

Once the payload is released into the cytoplasm, it disrupts cellular
functions through microtubule inhibition or DNA damage, leading to
cancer cell death. This is the primary mechanism of action of ADCs. In
addition to enhanced payload delivery to targeted cells, some ADCs
can display bystander-killing effect where the released payload perme-
ates through the cell membrane, diffusing to and killing neighboring
tumor cells. Moreover, CDC, ADCC, and ADCP are additional mecha-
nisms to enhance ADC's effect. These mechanisms are medicated by
the interaction of the Fc region of the antibody with the neonatal Fc
receptors present on effector immune cells.>* In ADCC, the Fc region's
interaction with the Fcy receptor activates immune cells like natural
killer (NK) cells, which release cytotoxic molecules (e.g., perforins and
granzymes). ADCP involves macrophages engulfing cancer cells follow-
ing a similar interaction.” However, these Fc-mediated actions can also
reduce ADC efficacy by causing ADCs to be sequestered by immune
cells, leading to off-target toxicity.>> However, these effector functions
are mainly associated with 1gG1, as IgG2 and 1gG4 are less effective in
medicating Fc-dependent activities.'®34 Furthermore, another mecha-
nism of action of ADC involves its inhibition of downstream signaling
pathways. This is particularly observed with antigenic targets upstream
of the oncogenic pathway, where antibody binding prevents the dimer-

ization of the receptors.3%3*
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=44 1) Diffusion of ADCs from blood
into the tumor microenvironment

2) Antigen-dependent endocytosis of ADC
resulting in lysosomal cleavage and release of
payload to initiate cell death and bystander

3) Fe-mediated Antibody Dependent Cell
Cytotoxicity by stimulation of immune cell
effector function

4)Fc-mediated Antibody Dependent Cell
Cytotoxicity by disruption of receptor
dimerization and downstream signalling

effect on neighboring cancer cells
&n;
™

FIGURE 1
crystallizable.

3 | FDA-APPROVED ADC PRODUCTS
Currently, there are 11 FDA-approved ADC products and two more
approved by other regulatory agencies (NMPA and PMDA). Another
two ADCs (Moxetumomab pasudotox and Belantamab mafodotin-
blmf) were previously approved by the FDA but were withdrawn due
to limited clinical use or failure to meet primary efficacy endpoints. All
the approved products are administered intravenously and are
intended to treat a specific type of cancer. Key information for each
approved product is summarized in Table 1.

3.1 | Approved ADCs for hematological cancers

To date, seven ADCs have been approved by the FDA for treating
hematological cancers, with two of them having been withdrawn due
to limited clinical efficacy or use. Mylotarg® (Gemtuzumab Ozogami-
cin, GO) is the first ADC approved for the treatment of acute myelog-
enous leukemia (AML), characterized by poor bone hematopoiesis.>®

GO was initially approved in 2000 for AML but was then voluntarily

Schematic representation of the mechanisms of action of antibody-drug conjugates (ADCs). Created with BioRender. Fc, fragment

withdrawn from the market because of failing to demonstrate clinical
benefits and excessive fatal toxicities. Before the approval of GO, the
standard of care for AML was a 7 + 3 regimen, involving a 7-day
treatment with cytarabine followed by a 3-day treatment with dauno-
rubicin.24*” GO was reapproved in 2017 with new data showing
safety and efficacy after dose adjustment for CD33+ AML in patients
of 2 years and older.383? It consists of a humanized anti-CD33 1gG4
mAb linked to DNA-damaging calicheamicin via a covalent linker. The
linker is acid-cleavable and enables the release of the payload in
the endosome/lysosome of myeloblasts. The treatment is not consid-
ered intensive and hence is suitable for elderly patients and patients
with comorbidities.3” In the Phase 3 trial of 280 patients in France
(ALFA-0701 Trial), GO demonstrated superior event-free survival for
patients with newly diagnosed AML,*? and a meta-analysis of 3325

1.38 How-

adult patients also showed an overall improvement in surviva
ever, Mylotarg® comes with a blackbox warning for hepatotoxicity,
and other warnings include the risk of severe hemorrhage and
infusion-related reactions.

ADCETRIS® (Brentuximab vedotin) is the standard of care for

treating patients with refractory or relapsed classical Hodgkin
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Lymphoma (cHL). It was most recently approved by the FDA in 2018
and consists of a human chimeric anti-CD30 IgG1 antibody covalently
linked with monomethyl auristatin E (MMAE) via a valine-citrulline
cleavable linker.*® Upon binding to and internalization by CD30+ can-
cer cells, the linker undergoes cleavage by endosomal/lysosomal pro-
teases to release MMAE, which induces cell death via apoptosis.**
Brentuximab vedotin has also been reported to be active in diseases
with low CD30 expression, due to its bystander effect where free
MMAE diffuses to and kills adjacent cancer cells.**? Before its
approval, the frontline treatment of cHL involved a combination of
chemotherapy agents: doxorubicin, bleomycin, vinblastine, and dacar-
bazine, but this treatment regimen is associated with relapse in up to
40% of patients. The Phase 3 ECHELON-1 trial revealed that repla-
cing bleomycin with brentuximab vedotin in this treatment regimen
led to superior progression-free survival in patients with stage lll and
IV cHL,*® and long-term follow-up showed that this benefit is sus-
tained.**** However, ADCETRIS® comes with a blackbox warning for
progressive multifocal leukoencephalopathy.*

Besponsa® (Inotuzumab ozogamicin) is the only ADC approved
for the treatment of relapsed or refractory B-cell precursor acute lym-
phoblastic leukemia (R/R ALL). It is a humanized anti-CD22 1gG4 anti-
body covalently conjugated to calicheamicin via a butanoic acid liable
linker.***” In this case, the cytotoxicity is mediated only by the pay-
load upon release, and its effectiveness is thus dependent on effective
internalization and sensitivity to calicheamicin.*® Inotuzumab ozoga-
micin has been reported to improve clinical outcomes compared with
salvage chemotherapy.*® The INO-VATE Phase 3 trial revealed that
Inotuzumab ozogamicin led to a higher response rate than standard-
of-care chemotherapy.*®*’ The overall response rate of Inotuzumab
ozogamicin is 60%-80% in patients with R/R ALL.*’

Polivy® (Polatuzumab vedotin-piig) received accelerated FDA
approval in 2019 for the treatment of R/R diffuse large B-cell lym-
phoma (DLBCL) in combination with bendamustine and rituximab
(BR).>° The Phase 2 trials of Polatuzumab vedotin-piiq demonstrated
a higher complete response (CR) rate and reduced the risk of death in
patients with transplantation-ineligible R/R DLBCL by 58% in patients
treated with a combination of Polatuzumab vedotin with BR com-
pared with BR alone.> Polatuzumab vedotin consists of a humanized
anti-CD79b 1gG1 mAb linked to MMAE via a protease cleavable
linker. This formulation uses an engineered cysteine (THIOMABS) to
achieve the efficient and homogenous conjugation of antibody with
MMAE.52

Zynlonta® (Loncastuximab tesirine, $G3199), consisting of a
humanized anti-CD19 IgG1 antibody conjugated to a pyrrolobenzo-
diazepine (PDB) dimer cytotoxin, is another approved ADC for the
treatment of DLBCL. Upon endosomal/lysosomal cleavage, SG3199
forms inter-strand crosslinks within the cell's DNA leading to cell
death. SG3199 also exhibits a bystander-killing effect.>>** In July
2023, further clinical trials on Zynlonta® were terminated due to
FDA's hold on this ADC, stemming from concerns over excessive fatal
toxicities.

LUMOXITI®
approved in 2018 for the treatment of adult patients with R/R hairy

(moxetumomab  pasudotox-tdfk) was initially

cell leukemia. This ADC comprises the Fv fragment of a
CD22-targeting antibody conjugated to an immunotoxin. Once
released, the immunotoxin induces apoptosis through the catalysis of
ADP-ribosylation of the diphthamide residue in elongation factor-2.
LUMOXITI's approval was based on a Phase 3 study that showed up
to 90% of circulating CD19+ B cells were depleted by Day 8 of treat-
ment.>> Although this study reported a generally acceptable tolerabil-
ity profile, LUMOXITI was withdrawn from the market in 2023 due to
inadequate clinical use.

Blenrep® (Belantamab mafodotin-blmf) was approved in 2020 for
the treatment of R/R multiple myeloma in adult patients.>® Belanta-
mab mafodotin-blmf was a first-in-class ADC with an anti-BCMA anti-
body and the first ADC with the microtubule inhibitor, monomethyl
auristatin F (MMAF) payload to receive approval. Its approval was
based on the DREAMM-2 global trial, which demonstrated an overall
response rate of 31%. However, 77% of patients receiving the treat-
ment of Belantamab mafodotin-bimf experienced ocular toxicity, lead-
ing to a black-box label by the FDA on this product.®” In 2020, GSK
announced the withdrawal of Blenrep® from the US market as it failed
to meet the primary endpoint in the DREAMM-3 confirmatory clinical

trial.>®

3.2 | Approved ADCs for solid tumors

To date, six ADCs have been approved by the FDA and two more by
other regulatory agencies for treating solid tumors. Kadcyla® (Ado-
trastuzumab emtansine) is the first ADC approved by the FDA for the
treatment of HER2-positive metastatic breast cancer.’® Ado-
trastuzumab emtansine (T-DM1) consists of a humanized anti-HER2
IgG1 antibody known as trastuzumab, which was introduced in 1998
for the treatment of HER2-+ breast cancers. Up to 25% of breast can-
cer patients exhibit HER2 overexpression, which is associated with
poor prognosis.®®¢! However, a significant portion of patients under
trastuzumab treatment did not respond or experienced relapse. Ado-
trastuzumab emtansine is a combination of trastuzumab and the
microtubule-inhibiting maytansinoid, linked via a nonreducible
thioether linker. Endosomal/lysosomal degradation of the antibody
leads to the release of maytansinoid causing apoptosis. There is also
additional antibody-mediated cytotoxicity due to the downregulation
of HER2, inhibition of HER2 dimerization, activation of immune
response, and ADCC.%%2 Various clinical studies have shown
improvement in overall survival and quality of life in patients treated
with Ado-trastuzumab emtansine.>”*® Despite the improvement in
outcome noted with T-DM1, there are concerns about the develop-
ment of drug resistance observed in initial responders.®? Kadcyla®
also comes with FDA-boxed warnings for hepatotoxicity, cardiotoxi-
city, pulmonary toxicity, and embryo-fetal toxicity.®*

Padcev® (Enfortumab vedotin-ejfv) is a first-in-class ADC for the
treatment of metastatic urothelial carcinoma (UC), an aggressive can-
cer with a poor prognosis. Enfortumab vedotin-ejfv (EV) consists of a
fully humanized anti-Nectin-4 1gG1 antibody linked to MMAE.®°
Enfortumab vedotin-ejfv received accelerated FDA approval in 2019
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based on the Phase 1 and 2 trials indicating that EV had a high
response rate, disease control rate, and improved overall survival in
UC patients. The Phase 2 (EV-201) trial, in which 90% of enrolled
patients had metastatic visceral disease, showed that EV led to an
overall response rate of 44% and complete remission rate of 12%. A
Phase 3 (EV-301) trial with 608 patients demonstrated the superior
efficacy of EV compared with single-agent chemotherapy.®®” This
facilitated the approval of EV in 2021 by the FDA for the treatment
of UC in two adult populations, including patients who had previously
received a PD-L1 inhibitor and platinum-based chemotherapy and
patients who are ineligible for cisplatin-based chemotherapy.®” Pad-
cev® comes with an FDA-boxed warning for serious skin reactions.

Enhertu® (Fam-trastuzumab deruxtecan-nxki, T-DXd) is the first
ADC approved for HER2-low breast cancer, accounting for about 40%-
50% of HER2-negative breast cancers. T-DXd is composed of a human-
ized anti-HER2 1gG1 linked to a topoisomerase-1 inhibiting exatecan
derivative (DXd) via a stable tetrapeptide linker. Like trastuzumab
emtansine, the payload is released within the cancer cell. However, with
a drug-to-antibody ratio (DAR) of 8, T-DXd led to an efficient delivery
of DXd even to tumors with low HER2-expression.®®%? T-DXd was
granted accelerated approval in 2019 for the treatment of patients with
unresectable or metastatic breast cancer. This expansion of indication to
cover all HER2-expressing tumors allows for flexibility in the use of the
medication. Its initial approval was based on a Phase 2 trial indicating an
overall response rate of 60.3%.°® Following a Phase 3 trial indicating
meaningful improvement in progression-free survival and overall sur-
vival, T-DXd received regular approval from the FDA in 2022.%%7°
Based on the DESTINY-GastricO1, TXd was also approved in 2021 for
the treatment of locally advanced or metastatic HER2-positive gastric or
gastroesophageal junction adenocarcinoma in patients who had
received a prior trastuzumab-based regimen. Again in 2022, following
results from the DESTINY-Lung02 trial, T-DXd received FDA approval
for the treatment of unresectable or metastatic nonsmall cell lung cancer
in adult patients with HER2-overexpression or HER2 mutations.”*
Enhertu® comes with an FDA-boxed warning related to the risk of inter-
stitial lung disease, pneumonitis, and embryo-fetal toxicity.®*

Trodelvy® (Sacituzumab govitecan) is the only approved ADC target-
ing TROP2 as its antigen. It received its first approval in 2020 for treating
metastatic triple-negative breast cancer in adult patients who had under-
gone at least two prior therapies for metastatic disease.”? In 2021, it also
gained approval for treating metastatic urothelial cancer. Sacituzumab
govitecan comprises a humanized anti-TROP2 IgG1 antibody linked by a
hydrolyzable hydrazone linker to SN-38, a topoisomerase-1 inhibitor and
the active metabolite of irinotecan. Besides its DNA-damaging effect
within the internalized cell, SN-38 demonstrates a bystander effect due
to its high membrane permeability.>3”2 In 2023, Sacituzumab govitecan
received extended FDA approval for treating patients with hormone-
positive and HER-2/NEU-negative metastatic breast cancer with a boxed
warning for neutropenia and diarrhea.>3”®

Tivdak® (Tisotumab vedotin-tftv [TV]), is a first-in-class tissue fac-
tor (TF)-directed ADC approved in 2021 for treating recurrent or met-
astatic cervical cancer in adult patients. About 10%-20% of patients

with early-stage disease and 70% patients with locally advanced

disease experience relapse within 2 years of diagnosis. Only a small
fraction of these patients are responsive to curative treatment, neces-
sitating the need for more targeted treatment alternatives.”* TV, a
humanized IgG1 antibody conjugated to MMAE via a protease-
cleavable linker,”* demonstrated clinically meaningful and durable
antitumor activity in a Phase 2 clinical study, with target lesions
reduced in 79% of treated patients.”>’® With more than 50% of
patients in the innovaTV 201 and innova TV 204 trials developing
ocular related adverse effects, Tivdak® comes with an FDA blackbox
warning for ocular toxicity.®*

ELAHERE™ (mirvetuximab soravtansine-gynx) is another first-
in-class ADC approved for treating adult patients with a folate receptor-
o (FRa)-positive, platinum-resistant epithelial ovarian, fallopian tube, or
primary peritoneal cancer.”””® Approved for patients not responding to
platinum-based chemotherapy who have undergone other types of che-
motherapy, it features a chimeric anti-FRa IgG1 antibody conjugated to
a maytansine derivative (DM4) via a cleavable disulfide linker.”® Upon
endosomal/lysosomal cleavage, DM4 causes cell cycle arrest and apo-
ptosis. DM4 also exhibits a bystander-killing effect.>®> ELAHERE™ also

comes with an FDA-boxed warning for ocular toxicity.

4 | ADCsINACTIVE CLINICAL TRIALS

Since the approval of the first ADC in 2000, continued efforts have
focused on designing new ADCs with improved efficacy and reduced
toxicity. These efforts are evident by the number of ADCs currently in
active trials, which represent only a small portion of all ADC research.
We conducted a search on clinicaltrials.gov to identify active clinical tri-
als for both approved and newer investigative ADCs. For trials related
to approved ADCs, we conducted the search by inputting the drug
name in the “Other terms” category for each approved ADC, while
checking off “interventional studies,” in active status (“not yet
recruiting,” “recruiting,” “enrolling by invitation,” and “active, not
recruiting”). For trials related to new ADCs, we conducted the search
by using the keywords “antibody drug conjugate OR antibody-drug
conjugate OR ADC OR ADCs OR antibody drug conjugates OR
antibody-drug conjugates” in the “Other terms” category on
clinicaltrials.gov, and also checked off “interventional studies,” in active
status (“not yet recruiting,” “recruiting,” “enrolling by invitation,” and
“active, not recruiting”). All the collected trials were then manually
screened to only include trials focusing on IgG-based ADCs bearing
pan-cytotoxic payloads. Our search identified a total of 551 active clini-
cal trials as of October 2023. Here, we discuss these active trials and
highlight new trends emerging from the investigative ADCs in active tri-
als compared with approved products. Tables 2 and 3 present represen-

tative active trails for approved ADCs and new investigative ADCs.

4.1 | Scope of disease indications

A large portion of ADC-focused active trials are geared toward solid

tumors, with breast cancer being the most investigated indication,


http://clinicaltrials.gov
https://nam04.safelinks.protection.outlook.com/?url=http%3A%2F%2Fclinicaltrials.gov%2F&data=05%7C02%7Ceudofa2%40groute.uic.edu%7Cfd654d0f0ed9430a6c0f08dc4a1defcf%7Ce202cd477a564baa99e3e3b71a7c77dd%7C0%7C0%7C638466739660726760%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=%2FJpuwVjJ1tHPlQjsN0vXcxxF39IMhiGbjeLMWFF5xVo%3D&reserved=0
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featuring 140 trials. Figure 2 provides an overview of the scope of
indications addressed in ADC-focused active clinical trials. The major-
ity (64%) of these trials aim to expand the clinical application of cur-
rently approved products. The ADCs in these trials have the same
components as the marketed product but vary in the scope of indica-
tions under investigation. Approximately 36% of trials focus on new
ADCs that have not yet been approved (Figure 2). When comparing
the two groups of interest—trials for new ADCs versus trials related
to approved ADCs—a significant shift toward solid tumor applications
is noted in the trials for new ADCs, with solid tumor
applications representing about 90% of the trials. A detailed break-
down of disease indications for the identified active ADC-related trials
is shown in Figure 2. Another notable observation is the shift in anti-

gen targets, with the second group (trials for new ADCs) showcasing a

() (b) n
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13

45.8%

0 2 4 6 8
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broader diversity in antigen targets than the first group (Figure 3).
There is also a broader diversity in the antibody and drug payload
components used in the trials for new ADCs, which all contribute to
the wider range of disease indications covered by this group. This
diversification is likely driven by the growing understanding of target
expression patterns in cancers.

4.2 | Scope of antibody

The antibody is an essential component of ADCs, as it determines tar-
get specificity, thereby enhancing the on-target cytotoxic effect of
the payload.”? Moreover, the antibody component influences the

plasma concentration, immunogenicity, and immune functions of
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FIGURE 2 Overview of antibody-drug conjugates (ADCs) in active clinical trials. (a) Approved ADCs (11 approved by the FDA and
2 approved by other regulatory agencies) in the market showing their scope of disease indications. (b) Phase and disease scope of ADCs in active
clinical trials. (c) In-depth analysis of ADC trials showing the ratio of trials based on new ADC products (left) to trials based on approved ADCs

(right) analyzed on phase and indications.
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FIGURE 3 Scope of antibody used in antibody-drug conjugates (ADCs) under active clinical trials. Comparison between trials for new ADCs

(right) and trials for approved ADCs (left) based on mAb isotype. Each isotype is further analyzed (bar chats) to show the range of target-antigen

in different phases of clinical trials.

the ADC and can also contribute to direct or indirect cytotoxic
effects.r” IgGs are the most used antibodies in ADCs, with the IgG1
subclass being the most prevalent (Figure 3).”? About 70% (383 trials)
of active clinical trials utilize IgG1, mostly humanized, and
likely because of its abundance in serum and high binding affinity to
IgG-binding Fc-gamma receptors compared with other subclasses,
resulting in enhanced antibody-dependent cytotoxicity and phagocy-
tosis.1””? Following is 1gG4, accounting for 15% of active trials.
A detailed breakdown of antibody subtypes used in active ADC trials
is shown in Figure 3. Additionally, there are three trials involving

ADCs made of the IgG2 subclass.

4.3 | Target antigens

Antigen selection is crucial for the effectiveness and safety of ADCs,

as ADCs carry highly potent cytotoxic payloads that require precise

delivery to minimize off-target toxicity. Key considerations in anti-
gen selections include (i) the exclusive or predominant expression of

17,79 (

the target on tumor cells for selectivity, ii) the target antigens'

surface expression on tumor cells without their secretion, which

17,80

could lead to nonspecific drug release, and (iii) the target's ability

to trigger cellular internalization of ADCs, crucial for payload
delivery.1”81

Currently, ADCs approved by the FDA and other regulatory
agencies target 11 distinct antigens for hematological malignancies
and solid tumors Of the active clinical trials, about 80% (447 trials)
focus on these established antigens used in approved products; a
detailed breakdown of this is given in Table 2. The leading antigen
targets in trials are HER2 (32%), CD30 (14%), and TROP2 (9%). Yet,
more novel antigen targets were found in trials for new ADCs, with
novel targets accounting for about 20% (104 trials) of total active
trials. A detailed breakdown of these novel targets used in active

ADC trials is shown in Figure 4. The pursuit of novel targets is a
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FIGURE 4 The scope of antigen targets in active antibody-drug conjugate (ADC)-focused clinical trials. (a) Bar chart showing the number of
trials for new investigative and approved ADCs focusing on known antigens. (b) Tree chart showing the scope of novel antigen targets in trials for

new ADC for solid tumors or hematological tumors.

major driver for the extension of ADCs to solid tumors, as the use
of these novel targets could potentially reduce ADC's toxicity to
normal tissues. While most of these antigens are tumor-associated
rather than tumor-specific, there is also an extension from typical
tumor cell antigens to antigens found in the tumor microenviron-

ment and neovasculature.

43.1 | Novel targets in active clinical trials—
Hematological cancer antigens

Hematological cancers are considered more accessible than solid
tumors. This explains why most antigens used in ADCs for treating
hematological cancers often pertain to both neoplastic and non-
neoplastic cells, given ADC's direct access to diseased cells. Addition-
ally, the absence of these targets on hematopoietic stem cells and

nonhematopoietic tissues allows for the continuous replenishment of

blood cells and reduces cytotoxicity, respectively. Classic antigens
used in approved ADC formulations for hematological cancers include
CD19, CD22, CD30, CD33, CD79%b, and BCMA, with detailed reviews
available elsewhere.>382 A significant portion of ADC-focused active
clinical trials (32%) targeting these antigens aims to expand the indica-
tions of approved ADCs or enhance their efficacy through combinations
with other chemotherapeutics (e.g., doxorubicin, cyclophosphamide,
gemcitabine) or immunotherapy (e.g., pembrolizumab, nivolumab, rituxi-
mab). Currently, there are 18 new ADC trials (3% of total active trials)
focusing on hematological tumors, with 14 targeting novel antigens.
Details about the scope of these antigens in clinical trials can be found in
Table 3. These antigens include CD74, CD20, CCR7, and CD25 for lym-
phomas; CD71, CD123, CD25, and CD38 for leukemias; and CD38 for
myeloma and light chain amyloidosis. These antigens are broadly
expressed in immune cells (e.g., B cells, T cells, NK cells, dendritic cells,
monocytes, macrophages), erythroid lineage cells, and other tissues
as well.
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4.3.2 | Novel targets in active clinical trials—Solid
tumor antigens

Unlike hematological cancer antigens, solid tumor antigens are not
lineage-specific and are mostly tumor-associated. This means these
antigens are mainly overexpressed in tumor cells but may also be
expressed at lower levels in healthy cells, raising concerns about off-
target toxicity and reduced intratumoral drug delivery.8? Therefore,
identifying targets with limited expression in healthy tissues is crucial
to improve the therapeutic effectiveness of ADCs. Classical antigens
targeted by FDA-approved ADCs for solid tumor include HER2,
TROP2, TF, nectin-4, and FRa. Currently, 32 novel solid tumor anti-
gens are being investigated in clinical trials for new investigative
ADCs, such as B7 family proteins, EGFR, HER3, mesenchymal-
epithelial transition factor (c-MET), AXL, Claudin-18.2, and NaPi2b
accounting for 15% of active trials. Further details about these new

antigens and related trials are shown in Figure 4 and Table 4.

4.4 | Diversity of payload and linker in active
clinical trials

Due to their specificity for tumor cells or tissues, ADCs can minimize the
off-target effects associated with the parent chemotherapeutic
drugs.*?®® The currently approved ADCs utilize DNA-damaging and
microtubule-inhibiting payloads, such as auristatins, maytansinoid, camp-
tothecin, and calicheamicin, effective at sub-nanomolar concentrations.8?
These payloads are not suitable for systemic administration alone due to
their high cytotoxicity. ADCs present a valuable tool for repurposing
small-molecule drugs previously limited by off-target toxicity.'2

The ongoing expansion of indications for ADCs in active clinical
trials also reflects the inclusion of new payloads into investigative
ADCs. Of the 200 active clinical trials for new ADCs, about a quarter
involve new payloads. Figure 5 provides a breakdown of the payloads
in current ADC trials, with microtubule inhibitors constituting 51% of
these payloads. Auristatins, which inhibit tubulin polymerization, dom-
inate with 81 trials, possibly attributed to their favorable biochemical
properties.? Topoisomerase inhibitors, which cause DNA damage
through DNA intercalation, represent the second major payload class
in ADC trials, totaling 44 trials. Some examples of the new payloads
being explored in investigative ADCs include the DNA alkylating
clas—duocarmycin (10 trials), PBD dimers and pyridinobenzodiaze-
pines (7 trials), and monoamine indolinobenzodiazepines (7 trials).
These molecules are known as highly potent antitumor agents.®*
Detailed chemical properties of these payloads can be found in recent
reviews published elsewhere.?®

The linker in an ADC significantly impacts the ADC's safety and
efficacy. In ADC design, an ideal linker should be stable enough to
prevent premature drug release while being sensitive to enable site-
specific drug release.®* ADCs are largely designed with either cleav-
able or noncleavable linkers. The cleavable linkers are responsive to
pH changes, glutathione/disulfide isomerase, or proteases present in

the TME, while noncleavable linkers rely on the endosomal/lysosomal

degradation of the ADCs for drug release.>>#* Reflecting the prefer-
ence in approved ADC products, cleavable linkers are favored in new
investigative ADCs in current clinical trials (Figure 5). Examples of
such cleavable linkers include glutathione-sensitive disulfide linkers,
protease-sensitive linkers (phenylalanine-lysine, valine-citrulline), and
acid-sensitive hydrazone linkers.

5 | CHALLENGES AND OUTLOOK FOR
CLINICAL TRANSLATION OF ADCs

The principle behind the efficacy of ADCs is straightforward. How-
ever, the development of an effective ADC is challenging. To date,
improvements such as the use of humanized antibodies, highly potent
payloads, and the development of highly stable linkers have driven
the development of more effective ADCs with many promising candi-
dates in clinical trials.?°

A pressing challenge in the development of ADCs is optimizing
drug loading. This includes determining the optimal DAR and achiev-
ing a homogenous drug conjugation. The DAR is an important prop-
erty that influences the PK, stability, and efficacy of ADCs.?!
Different studies have shown the need to link a certain number of
drug units to each mAb to optimize its effectiveness. However, a
higher DAR does not necessarily imply better efficacy. While ADCs
conjugated with a high number of payloads demonstrate increased
in vitro potency, several in vivo studies have revealed a negative cor-
relation between high DAR and toxicity and aggregation.8>8¢ An ADC
with a DAR of 4 showed equivalent in vivo antitumor activity to that
with a DAR of 8, and a further reduction to a DAR of 2 improved
in vivo activity.227:88 An average DAR of four is often recommended,
as higher DAR values increase plasma clearance and antibody
aggregation, reducing the therapeutic index of ADCs.2”®° However,
contrary to this general recommendation, a good number of new
ADCs have a DAR higher than 4 and are showing promising results in
clinical trials. For example, XMT-1536, a dolaflexin-based ADC target-
ing SLC34A2/NaPi2b in solid tumors, has a DAR of up to 15.
Although this contradicts the typical DAR recommendations, the pay-
load is a prodrug of auristatin F that exhibits notable bystander cyto-
toxicity, increasing its antitumor efficacy. Once metabolized
intratumorally, auristatin F becomes impermeable to cell membranes,
further reducing the systemic drug exposure and improving the overall
tolerability.”® Thus, this prodrug approach holds potential in improving
ADC efficacy, as its overall PK profile is comparable to those of other
clinically investigated ADCs with lower DARs.

Early approved ADCs are based on random/heterogeneous con-
jugation of the payload to the antibody. This approach has been
shown to negatively impact the therapeutic index of ADCs.57?* Het-
erogenicity could translate to each ADC containing an amount of
material above the nominal DAR®® and/or ADCs with both unconju-
gated and overloaded antibodies.®? Hence, the current research focus
is on achieving homogenous ADCs that have the same site of drug
attachment between individual mAbs. This goal is technologically chal-

lenging and depends on the method of conjugation of the linker to
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Representative active ADC trials involving novel antigens (more than four trials) for solid tumors.
ADC name Condition Payload Phase ID
DS-7300A Extensive-stage small-cell lung cancer Deruxtecan 2 NCT05280470
MGC018 Cancer: solid tumors Duocarmycin 1/2 (in combination NCT03729596
with retifanlimab)
1 (in combination with NCT05293496
Lorigerlimab)
HS-20093 Advanced solid tumor TOP1i 1 NCT05276609
MHBO088C Advanced or metastatic solid tumors TOP1i 1/2 NCT05652855
BAT8009 Locally advanced/metastatic solid TOP1i 1 NCT05405621
tumors
HS-20093 Osteosarcoma/sarcoma TOP1i 2 NCT05830123
M1231 Metastatic solid tumors; esophageal Hemiasterlin 1 NCT04695847
cancer; nonsmall cell lung cancer
(NSCLC)
BB-1705 Solid tumor Eribulin 1/2 NCT05217693
MRGO003 Advanced or metastatic gastric cancer; MMAE 2 NCT05188209
advanced or metastatic
gastroesophageal junction
carcinoma
Recurrent or metastatic 2 NCT05126719
nasopharyngeal carcinoma
Recurrent or metastatic squamous cell 2 NCT04868162
carcinoma of head and neck
Advanced or metastatic biliary tract 2 NCT04838964
cancer
Carcinoma, nonsmall-cell lung 2 NCT04838548
Advanced solid tumors 1/2 NCT05688605
Squamous cell carcinoma of the head 3 NCT05751512
and neck
AZD9592 advanced solid tumors; carcinoma TOP1i 1 NCT05647122
nonsmall cell lung; head and neck
neoplasms
SHR-A1811 Breast cancer SHR9265 1/2 NCT05824325
Triple-negative breast cancer (TNBC) 2 NCT05749588
HER2 low breast carcinoma 2 NCT05911958
Breast neoplasm; breast cancer; 2 NCT05594095
hormone receptor positive
tumor|HER2-negative breast cancer;
advanced breast cancer
Breast neoplasm; breast cancer; breast 1/2 NCT05582499
tumors; TNBC; HER2-positive
breast cancer; HER2-negative
breast cancer; hormone receptor
positive tumor; hormone receptor
negative tumor; early-stage breast
cancer; locally advanced breast
cancer
ABT-414 Glioblastoma; gliosarcoma MMAF 3 NCT02573324
U3-1402 Breast cancer Deruxtecan Early Phase 1 NCT04610528
Metastatic breast cancer 2 NCT04965766
Metastatic breast cancer; locally 2 NCT04699630
advanced breast cancer
Metastatic colorectal cancer 2 NCT04479436
NSCLC 1 NCT03260491
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TABLE 4 (Continued)
Antigen  ADC name Condition Payload Phase ID
HER3-DXd Metastatic breast cancer TOP1i 1
Metastatic breast cancer; advanced 2 NCT05865990
nonsmall cell squamous lung cancer;
solid tumor
Brain metastases Early Phase 1 NCT05620914
c-MET BYON3521 Solid tumor duocarmycin 1 NCT05323045
RC108 Solid tumor Undisclosed 1 NCT04617314
Microtubule
Digestive cancer Inhibitor 2 NCT05628857
TR1801-ADC Unspecified adult solid tumor, SG3249 1 NCT03859752
protocol-specific
BYON3521 Solid Tumor duocarmycin 1 NCT05323045
MYTX-011 NSCLC; NSCLC Stage IVINSCLC Stage  MMAE 1 NCT05652868
111B; NSCLC; advanced nonsmall cell
squamous lung cancer; advanced
NSCLC; advanced nonsmall cell
nonsquamous lung cancer
SHR-A1403 Advanced solid tumor Undisclosed 1 NCT03856541
Microtubule
Inhibitor
AXL CAB-AXL-ADC Nonsmall-cell lung cancer MMAE 2 NCT04681131
Solid tumor; NSCLC; melanoma; 1/2 NCT03425279
sarcoma; sarcoma, ewing;
osteosarcoma; leiomyosarcoma;
synovial sarcoma; liposarcoma; soft
tissue sarcoma; bone sarcoma;
refractory sarcoma
ADCT-601 Advanced solid tumors SG3199 1 NCT05389462
HuMax-AXL-ADC Ovarian cancer; cervical cancer; MMAE 1/2 NCT02988817
(Enapotamab vedotin) endometrial cancer; NSCLC|thyroid
cancer; melanoma; sarcoma; solid
tumors
Claudin TORL-2-307-ADC Advanced solid tumor; gastric cancer; MMAE 1 NCT05156866
18.2 pancreas cancer; gastroesophageal
junction adenocarcinoma
RC118-ADC Advanced solid tumor MMAE 1/2 NCT05205850
SKB315 Advanced solid tumors TOP1i 1 NCT05367635
TQB210 Advanced malignant neoplasm DDDXD 1 NCT05867563
SOT102 Gastric cancer; pancreatic cancer; PNU-159682 1/2 NCT05525286
gastro-esophageal junction cancer
NaPi2b XMT-1536 High grade serous ovarian cancer; AF-HPA 3 NCT05329545
fallopian tube cancer; primary
peritoneal cancer
Platinum-sensitive ovarian cancer 1/2 NCT04907968
(UPGRADE-A)
Platinum-resistant ovarian cancer; 1/2 NCT03319628
NSCLC metastatic
XMT-1592 Ovarian cancer; NSCLC Undisclosed 1/2 NCT04396340

Abbreviations: ADC, antibody-drug conjugates; IgG, Immunoglobulin G; MMAE, monomethyl auristatin E; MMAF, monomethyl auristatin F.

the mAb. The most common method of conjugation is via the lysine different sites, and each species displaying distinct in vivo PK and effi-

side-chain amines or cysteine sulfhydryl groups.8”#? This results in a cacy patterns.®”?* Purification can be used to eliminate species with

mixture of species (>100 species) with different DARs, linked at different DARs, but this still leaves a heterogeneous mixture with
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FIGURE 5 Payload and linker diversity in antibody-drug conjugate (ADC)-focused active clinical trials. Pie-charts showing the drug action (tier
1), class (tier 2), and payload (tier 3) in trials for new ADCs (left) and trials for approved ADCs (right).

payloads attached at different sites, resulting in batch-to-batch varia-
tions in ADC production.®?

In addition, the site of payload attachment and the coupling tech-
nique also influence the PK and stability of ADCs.8>8772 Coupling of
payloads can induce both physical and chemical instability. For example,
in cysteine conjugation, there is a reduction of the interchain disulfide
bond on the mAb's free cysteine residue. These cysteines play an
important role in maintaining the structure of the antibody, and such
disturbance increases the risk of instability.”® To overcome these chal-
lenges, an emerging approach is to use a site-specific attachment strat-
egy. This approach involves conjugating payloads to sites that
individually minimize the density and solvent accessibility to the hydro-
phobic payloads.?>?* It has been shown that while ADCs with a DAR
of 8, only achieved minor tumor inhibition in vivo, using a site-specific
ADC, still with a DAR of 8, resulted in superior tumor inhibition, show-
ing that location matters.2° This necessitates investigating mAbs to find
specific sites that display plasma exposure equivalent to the unconju-
gated antibody, thereby improving the therapeutic efficacy of ADCs.
Alternatively, another emerging strategy is to adopt other methods of
conjugation.”>?> A few of the new ADCs in clinical trials adopt novel
conjugation methods. SKB264, a TROP-2 targeting ADC, utilizes a
novel coupling strategy that permits the conjugation of seven to eight

payloads on the reduced interchain disulfide bonds via a covalent sulfo-
nyl pyrimidine-CL2A-carbonate linker. This strategy improves the sta-
bility of the ADC and increases its plasma half-life to up to 57 h in
mice. When compared with TRODELVY (an approved TROP-2 target-
ing ADC), SKB264 at the same dose demonstrates improved antitumor
efficacy and reduced adverse effects.”® STI-6129, another new ADC
with six ongoing clinical trials, utilizes this disulfide re-bridging approach
to achieve site-specific conjugation of five duostatin molecules to an
anti-CD38 mAb. Using this strategy, STI-6129 shows an internalization
rate comparable to that of the unconjugated antibody.’” Other strate-
gies to improve conjugation include the introduction of an additional
cysteine group at strategic points on the mAbs to preserve the innate
cysteine. ADCT-602 and IMGN632, which contain a cysteine-
engineered anti-CD22 mAB?® and anti-CD123 mAb,”>1% respectively,
are notable examples for this strategy. This modification retains antigen
binding and specificity and yields homogeneous conjugates.®?:101
Choosing the right site can thus improve drug loading and reduce clear-
ance.”? Other studies have suggested that lysine conjugation could be
more beneficial than site-specific cysteine conjugation,°? highlighting
the need for a case-by-case optimization of conjugation methods in
ADC development. There are a few notable ADCs with other site-

specific conjugation strategies in clinical trials. ARX-788, an
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amberstatin-bearing anti-HER2 ADC with a DAR of 1.4, utilizes a non-
cleavable linker based on a non-natural amino acid technology. This
results in a homogeneous ADC with high serum stability, outperforming
T-DM1 in preclinical studies.'®® Likewise, ADCT-601 utilizes an
N-glycosylation site to achieve site-specific conjugation of SG3199 to
an anti-AXL mAb via a cleavable linker.1%41%5

Another notable challenge affecting the development and clinical
application of ADCs is the development of resistance. The advantage
of having multiple mechanisms of action also sets ADCs up for resis-
tance, as it can occur at any of these steps.’% Resistance to ADCs
can be antigen-related, payload-related, or tumor-cell-related.

Antigen-related resistance could be due to the reduced expres-
sion of antigen or truncated forms of antigen ectodomain, leading to
reduced binding of antibodies to the cell surface.'%¢"1% |t has been
shown that months of treatment with anti-HER 2 trastuzumab-
maytansinoid ADC (TM-ADC) resulted in 16-fold resistance to TM-
ADC and cross-resistance to other trastuzumab ADCs, partly due to
decreased HER2 expression.'®? A similar trend in the downregulation
of antigen (CD30) has also been reported for resistance to Brentuxi-

mab Vedotin.'® Tumor heterogenicity*****2

113

and genomic alter-
ations™~ of antigens can also lead to varied expression of antigens in
different parts of the tumor, contributing to treatment failures. Such
resistance is typically overcome by switching to other ADCs or
standard-of-care chemotherapeutics.*°7*14

Payload-related resistance is mostly due to the overexpression of
drug efflux pumps on the tumor cells. Efflux pumps, such as MDR1,
also known as permeability glycoproteini, are responsible for the
development of resistance to many small-molecule drugs and likewise
ADCs.106109.110 The overexpression of ABC transporters has been
reported to be responsible for resistance to T-Dxd, T-DM1, gemtuzu-
mab ozogamicin, and an anti-CD33-calicheamicin ADC.1°711> Strate-
gies to overcome such resistance include the diversification of
payloads, which account for the number of new payloads under ADC
trials (Figure 4).1°® Replacing the tubulin inhibitor DM1 with a topo-
isomerase inhibitor was reported to effectively overcome T-DM1
resistance,>*®> and switching from auristatin-based ADCs to
anthracycline-based ADCs also showed a similar effect.*® Other
strategies include optimizing DAR and conjugation techniques and
developing more hydrophilic ADCs, as MDR1 has a higher preference
for hydrophobic compounds.*”:118

The genetic instability of cancer cells enables them to continu-
ally develop mechanisms to evade treatment. Tumor-cell-related
resistance mechanisms involve changes in trafficking pathways,
lysosomal dysfunction, and alterations in apoptotic signaling path-
ways. Effective internalization of ADCs is central to its mechanism
of action (Figure 1) and predominantly occurs via CME.**” The use
of alternative routes like caveolar-mediated endocytosis could
result in the accumulation of ADCs in caveolin-1 (CAV1)-coated
vesicles, reduced lysosomal colocalization, and overall reduced effi-
cacy.'”11? |t was reported that while HER2 expression in some
T-DM1-resistant cell lines remained normal, intracellular traffic,
lysosomal pH, and proteolytic activity were abnormal. Increased

lysosomal pH and deranged protease activity result in the

accumulation of intact ADC within the cell.*2° This is particularly
noted in ADCs with linkers that require complete proteolysis of the
antibody to release payload. Hence, switching to using linkers that
only require one proteolytic event could help overcome this mech-
anism of resistance.’’” Other strategies involve the use of ADCs
with alternative cleavage mechanisms,'?%'12? the use of nanoparti-

H,'2% and more

cles and other drugs to stabilize lysosomal p
recently, the use of dual-drug ADCs and bispecific ADCs. Leverag-
ing insights from these resistance mechanisms, some new ADCs in
clinical trials feature new designs to improve their efficacy. Nota-
bly, SYD985 and DS-8201a, ADCs based on trastuzumab, show
promise in overcoming T-DM1 drug resistance in HER2-positive
breast cancers. These second-generation ADCs employ more
potent cytotoxic payloads and have shifted from covalent to cleav-
able linkers. SYD985, currently in 5 active trials, utilizes a
duocarmycin-derived payload, whose cytotoxicity is not cell cycle
dependent, conjugated using a valine-citrulline linker. Unlike
T-DM1, which requires the complete degradation of the antibody
for payload release, SYD985's payload is released through
cathepsin-mediated cleavage of its linker.12#12> As another exam-
ple, DS-8201a contains a topoisomerase-inhibiting DXd payload
conjugated via a stable tert-butoxycarbonyl-glycyl-glycyl-phenyla-
lanyl-glycine linker to trastuzumab. DS-820l1a can circumvent
T-DM1 resistance as DXd is resistant to the effect of
p-glycoproteins, and the stable linker allows for the conjugation of
up to eight drug molecules, enhancing its cytotoxicity.'2 Further-
more, both ADCs exhibit significant bystander cytotoxicity due to
the high membrane permeability of the payloads.*?®

Bispecific biparatopic ADCs are an emerging strategy to over-
come tumor-cell-related ADC resistance. These ADCs are designed to
have antibodies with different nanobodies that can simultaneously
recognize either different targets or the same targets but different
and nonoverlapping epitopes. This helps to improve internalization,
lysosomal trafficking, and subsequent degradation of the ADC. A
notable example is M1231, a first-in-class bispecific ADC targeting
MUC-1 and EGFR, demonstrating superior efficiency in cell internali-
zation and lysosomal trafficking compared with monospecific
mAbs.227128 By recognizing different epitopes, this strategy is useful
in overcoming resistance due to antigen downregulation.'?? Further-
more, combining the specificity of two antibodies can also improve
ADC potency by blocking targets central to disease progression
and/or initiating ADCC or CDC.*®° It was reported that engaging the
overexpressed MET in lung cancers with a biparatopic ADC,
METXMET-M114, provided more benefits than merely blocking the
MET function and had the potential to overcome acquired resistance
to MET-selective tyrosine kinase inhibitors.*** Numerous other stud-
ies have demonstrated the potential of bispecific ADCs, suggesting
that this could indeed be a future direction for ADC develop-
ment. 1301327135 However, it is worth noting that the functioning of
biparatopic antibody requires a minimal number of antigen expres-
sions, thus limiting its function below that threshold.*??

Another emerging strategy to address the problem of ADC
resistance incorporates the concept of polypharmacy, but without
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the complexity of multiple drug regimens. This involves the use of
dual-drug ADCs. These ADCs commonly consist of payloads with
different physiochemical properties or mechanisms of action
attached to the mAb via the same linker.'3¢ By coupling MMAE
and MMAF, Levengood et al.*®? reported a 3:5 cure rate, compared
with a 1:5 cure rate achieved with only MMAF. Similarly, another
study designed an MMAE and MMAF dual ADC using a click
chemistry-based linker, which allowed for effective control of DAR
and more effective tumor killing.**® Similarly, it was demonstrated
that a dual ADC bearing MMAE and a PBD dimer could achieve
tumor killing via different mechanisms.*>> ADCs designed in this
manner have been reported to have increased efficacy compared
with the single-drug formulations and represent a future direction

in ADC development.1®¢

6 | CONCLUSION

The surge in the clinical adoption of ADCs since their initial approval
is attributed to their superior therapeutic effectiveness over tradi-
tional cytotoxic therapies. ADCs have emerged as the primary treat-
ment option for certain blood and solid tumors that are unresponsive
to conventional chemotherapy, underscoring their potential in target-
ing cancers with identifiable markers. Currently, more than 500 clinical
trials are exploring numerous new ADCs, suggesting an anticipated
increase in ADC approvals across a broader range of indications in the
forthcoming years. Insights gained from the clinical use of existing
ADCs have spurred the creation of next-generation ADCs, which
promise enhanced efficacy and fewer adverse effects. Innovations
including the discovery of novel targets, the refinement of conjugation
techniques, optimization of the DAR and the diversification of cyto-
toxic agents are poised to improve the PK and safety profiles of ADCs
significantly. Despite facing challenges such as drug resistance and
tumor heterogeneity, ongoing advancements in ADC technology offer

optimism for overcoming these obstacles.
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