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ABSTRACT: Identifying improved and sustainable alternatives to
“classic” separation techniques is an active research field due to its
potential widespread impact in fundamental and applied chemistry.
As basic purification methodologies, like liquid−liquid extraction,
undergo continuous refinement by chemists and engineers,
identifying new conditions that outperform existing techniques
can be difficult. A major contributor to this challenging problem is
the need to explore a vast experimental space to identify the precise
conditions that optimize the separation procedure. The advent of
artificial intelligence and the advancement of robotic technologies
offer the potential to shift the traditional design paradigm. Toward
that end, we applied a combination of Bayesian Optimization and
high-throughput robotic experiments on the liquid−liquid extrac-
tion of thorium (Th4+) and demonstrated that this approach speeds up discovery and significantly accelerates the optimization
process. By using Bayesian Optimization as a guide, our automated instrument carried out a total of 339 distribution ratio
measurements, corresponding to 113 unique conditions, identifying the optimal experimental conditions with reduced experimental
efforts by an estimated 74% compared to a traditional full screening approach. This time and cost saving is particularly significant for
radioactive materials, as it not only is more economical and sustainable but also minimizes human exposure to radioactivity.
KEYWORDS: high-throughput experimentation, Bayesian Optimization, separations, liquid−liquid extraction, robotics, actinides

■ INTRODUCTION
Chemical separations, e.g., chromatography, crystallization,
(co)precipitation, and liquid−liquid extraction, represent
some of most fundamental operations performed by chemists
and engineers.1,2 Among these methods, liquid−liquid extrac-
tion is the core technique for the separation and purification of
metals and has been refined by chemists and engineers for
centuries. This method finds widespread application in
supporting the growing need to separate rare-earth (4f) and
actinide (5f) elements for emerging technologies and clean
energy. The difficulty lies in the highly similar physical and
chemical properties of these f-elements.3−5 While liquid−liquid
extraction methods for these elements have been studied for
decades, developing new economic and environmentally
sustainable conditions that outperform existing methods
remains a significant challenge.1,6

A major barrier in developing new separation methodologies
is the need to identify the experimental conditions that optimize
key partitioning values such as distribution ratios, separation
factors, and separation kinetics. In liquid−liquid extraction,
variables like analyte, extractant, holdback agent identities, and
concentrations, along with the organic diluent, temperature,
mixing rates, and contact times all need to be optimized.7−10

However, systematically determining how each variable impacts
partitioning parameters is a daunting task due to the vast
experimental space that must be explored; a space often too large
to be adequately covered in a reasonable amount of time.
Typically, experimental campaigns significantly reduce the
exploration space by systematically varying a single variable or
very few at a time, potentially missing multifactor interactions
needed to find the true optimum. Overcoming this issue could
substantially advance the development of new methodologies in
liquid−liquid extraction.
Advances in robotic laboratories using high-throughput

experimentation allows for expanded, multidimensional exper-
imental spaces to be thoroughly explored in less time than
traditional screening or Edisonian approaches.11−16 However, as
the total number of experiments needed to fully explore an
experimental space grows exponentially with the number of
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variables, evaluation of the entire space can quickly become
inefficient. Statistical analysis and strategic machine learning
decision-making techniques, such as Design of Experiments
(DoE)17−20 or genetic algorithms21−24 can be used to select
more informative experiments and guide robotic experimental
campaigns. Bayesian Optimization25−27 represents a non-
parametric, response surface modeling technique that has been
gaining traction in fields such as material science,28−32 drug and
molecular design,33−37 reaction optimization,38−40 and exper-
imental imaging.41−44 The method employs a surrogate model
to establish a probabilistic model of the expensive-to-query
experimental response function. Gaussian Processes are
frequently chosen surrogate models because they provide both
predictions and uncertainties for the unobserved regions of the
response surface. An acquisition function is then used to
determine the next sampling points on the response surface,
strategically selecting regions based on their potential for high
performance (exploitation) and significant uncertainties (ex-
ploration). As new experimental data is acquired, the probability
distribution of the prior Gaussian Process model is updated,
enhancing the efficiency of the exploration on the experimental
space. Unlike many conventional DoE methods, where the
sampling pattern is predetermined, Bayesian Optimization
dynamically adapts the experimental design in response to
new data and learns the true response surface in real-time.45,46

Herein, a custom-designed, experimental robotics platform
was developed to support challenging actinide chemical
reprocessing campaigns. The high-throughput instrument,
affectionately named the LANL Super Separator, automates
almost every step in liquid−liquid extraction, chromatography,
crystallization, and (co)precipitation processes. It provides
rigorous control over variables such as analyte, extractant, and
holdback concentrations, pH, temperatures, contact times, and
mixing rates. This methodology significantly enhances the
robustness of data acquisition and increases experimental
throughput to an estimated 200 measurements per day.
Additionally, the instrument was specifically designed to be
compatible with radiological samples, thereby increasing worker
safety when handling these hazardous chemicals.
In this study, we integrated Bayesian Optimization with the

LANL Super Separator to guide experiments and optimize the
liquid−liquid extraction of Th4+ contacted with an organic phase
containing N,N-di-2-ethylhexylbutyramide (DEHBA) and
tributyl phosphate (TBP) (Figure 1). The extraction process

was simultaneously characterized against four experimental
variables, specifically, Th(aq)4+ concentration, HNO3(aq) concen-
tration, DEHBA(org) concentration, and temperature. By using
this automated high-throughput platform, the Th4+ distribution
ratio was successfully optimized after conducting a total of 339
liquid−liquid extraction measurements. Considering that a

complete characterization of the experimental space would
require performing an estimated 1296 total measurements using
a typical high-throughput screening method, our approach
achieved optimization while saving 74% of the experimental
time and effort. This underscores the efficacy and necessity of
combining high-throughput experimentation with machine
learning for efficiently identifying the optimal separation
conditions for a liquid−liquid extraction system.

■ EXPERIMENTAL SECTION
General Considerations. CAUTION! Thorium-232 (232Th, t1/2 =

1.4 × 1010 y)47 and progeny products constitute health threats because
of radioactive decay. Hence, all experiments that involved manipulation
of these radionuclides were conducted in a radiological buffer area that
contained HEPA filtered hoods, continuous air monitors, negative
pressure gloveboxes, and monitoring equipment appropriate for α-, β-,
and γ-particle detection. Entrance to the laboratory space was
controlled with a hand and foot monitoring instrument for α-, β-,
and γ- emitting isotopes and a full body personal contamination
monitoring station.
All chemical manipulations were carried out within a chemical fume

hood with no attempt to exclude air and moisture. All reagents were
obtained commercially and used as received: hydrated thorium nitrate
(Th(NO3)4·5H2O, 99%, guaranteed reagent grade, EM Science),
aqueous solutions of nitric acid (HNO3(aq), 70 w%, Optima grade,
Thermo Fisher Scientific), n-dodecane (anhydrous, ≥99%, Sigma-
Aldrich), n-tributyl phosphate (TBP, 96.5%, Spectrum Chemical MFG
Corporation), and N,N-di-2-ethylhexylbutyramide (DEHBA, ≥95%,
Aurum Pharmatech LLC). Water (H2O) was deionized, passed
through a Barnstead water purification system to achieve resistivity of
>18.2 MΩ·cm, and purified further via distillation within a Teflon
apparatus (Savillex).

Preparation of Stock Solutions. Ten different HNO3(aq) stock
solutions (0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, and 15.5 M) were
prepared by volumetrically diluting nitric acid (70 w%) with water. A
0.01 M Th(aq)4+ in 0.1 M HNO3(aq) stock solution was generated by
charging a 20 mL volumetric flask with solid Th(NO3)4·5H2O (114.0
mg, 200 μmol). The powder was then dissolved in 1 mL of 0.1 M
HNO3(aq), and the resulting colorless solution was further diluted with
0.1 M HNO3(aq) until the final volume was 20 mL. The DEHBA stock
solution was prepared by charging a 50 mL volumetric flask with
DEHBA (779 mg, 2.50 mmol) and diluting to 50 mL with n-dodecane.
Each stock solution was then loaded into 20 mL scintillation vials used
by the LANL Super Separator for automated dispensing.

Automated Liquid−Liquid Extraction Procedure. All liquid−
liquid extraction experiments were performed using the LANL Super
Separator (Figures S1 and S2), a custom-designed Big Kahuna
automated instrument from Unchained Laboratories Inc. Its two
robotic arms are equipped with instrumentation for automated liquid
dispensing that can deliver solutions up to 10 mL in volume with an
accuracy and precision of ±10 μL and ±5%, respectively. Additionally,
the platform is equippedwith two temperature-controlled vortexers and
four ambient temperature vortexers, all of which mix the contacted
organic and aqueous phases at controlled speeds and times. Two
software packages, Library Studio and Automation Studio, were used to
design and execute the liquid−liquid extraction workflows described
below, both of which were provided by Unchained Laboratories Inc. to
interface with the LANL Super Separator.
Each extraction experiment followed previously reported proce-

dures48−50 and consisted of the following three steps:

(1) Conditioning: Initial organic phases were generatedmanually by
volumetrically diluting the DEHBA stock solution with 20 v%
TBP in n-dodecane until the desired DEHBA concentration was
achieved. The volume concentration of TBP was constant for all
the experiments. These were then loaded onto the experimental
deck of the LANL Super Separator and contacted with equal
volumes (200−400 μL depending on conditions) of HNO3(aq)
in 4 mL Wheaton glass vials and vortexed at 1000 rpm for 30

Figure 1. Chemical structure of N,N-di-2-ethylhexylbutyramide
(DEHBA) and n-tributyl phosphate (TBP).
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min. The concentrations of both HNO3(aq) and DEHBA(org)
during this step matched their respective values used in the
liquid−liquid extraction experiments. The pre-equilibrated
organic phases were then manually separated from the Th-free
HNO3(aq) solutions using an Eco-mini centrifuge (United
Scientific) and used for the following liquid−liquid extraction
experiments.

(2) Extraction: The initial aqueous feed concentrations of Th(aq)4+ and
HNO3(aq) were generated by mixing varied volumes of the Th(aq)4+

stock solution, the appropriate HNO3(aq) stock solution, and
H2O into 2 mL Eppendorf microtubes inside the LANL Super
Separator. From there, equal volumes of the Th(aq)4+ /HNO3(aq)
aqueous phase and preconditioned DEHBA/TBP/n-dodecane
organic phase were contacted and vortexed at 1000 rpm for 30
min. The total volume of the biphasic mixture varied from 0.2−2
mL depending on the extraction conditions. Extraction
experiments were then manually transferred from the LANL
Super Separator and centrifuged at 3000 rpm for 30 s. Following
transfer back to the LANL Super Separator, aliquots of the
aqueous raffinate phases were transferred via automated pipet
into 4 mL Wheaton glass vials for further analysis.

(3) Characterization: The extraction performance at each exper-
imental condition was characterized through the thorium
distribution ratio (DTh), as shown in eq 1.

=
[ ]
[ ]

= [ ] [ ]
[ ]

D
Th

Th
Th Th

ThTh
org

aq

feed raf

raf (1)

Here, [Th]org and [Th]aq represent the final Th4+ concentrations in the
organic and aqueous phase postextraction, respectively. [Th]org was
calculated by subtracting the thorium concentration in the aqueous
raffinate, [Th]aq = [Th]raf, from that in the initial aqueous feed, [Th]feed,

based on the conservation of mass. All liquid−liquid extraction
experiments at a given condition were performed in triplicate, therefore,
reported DTh values represent the average of the triplicated measure-
ments with error bars determined as a single standard deviation of the
measurements.

Quantification of Th4+ via ICP-AES. [Th]feed and [Th]raf were
determined by inductively coupled plasma-atomic emission spectros-
copy (ICP-AES) using a PerkinElmer Avio 500 instrument. Here, 4−
200 μL aliquots of the aqueous feed and raffinate phases were
transferred into 4 mL Wheaton glass vials and diluted 10−1000× with
0.1 MHNO3(aq). Due to the tendency of Th to adhere to surfaces of the
ICP sample introduction hardware, we incorporated an extended wash
time of 50 s with a solution of 0.1 M HNO3(aq) doped with 0.01 w%
HF(aq) between samples. This wash prevented buildup of thorium and
allowed for its robust quantification. Additionally, we used a delay time
of 65 s and a solution flow rate of 1.00 mL/min.
Seven calibration standards (0−10 ppm) were prepared using a

Th(aq)4+ standard (1000 ppm, Inorganic Ventures in 7% HNO3(aq)) to
construct a calibration line for Th(aq)4+ in 0.1 M HNO3(aq). The lower
limit of detection (LLOD) and lower limit of quantification (LLOQ)
for Th4+ concentrations were determined by measuring the signal from
seven 0.1 M HNO3(aq) blanks and using eqs 2 and 3, respectively.

= s mLLOD 3 /bl (2)

= s mLLOQ 10 /bl (3)

Here, sbl was the standard deviation in the y-intercept of the ICP-AES
signal intensity from the calibration curve and m was the slope of the
calibration curve (obtained by the least-squares method). For LLOD,
the factor of 3 represents a confidence level of 95%. For the LLOQ, the
factor of 10 represents the signal intensity threshold for ten times
greater than the observed noise from the measurement.51,52

Figure 2. Dataset composed for the theoretical test. (Top) General structure of symmetric N,N-dialkyl monoamides and the four unique categories
they are classified into based on n-alkyl or branched alkyl groups. (Bottom) A breakdown of the total number of reported distribution ratios for the
UO22+, Pu4+, and Th4+ cations with variousN,N-dialkyl monoamide extractants. A complete list of the acronyms used for the monoamide names can be
found in Table S1.
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Bayesian Optimization. All Gaussian Process modeling and
Bayesian Optimization were conducted through an in-house Python
code using the sci-kit learn53 and scipy54 libraries. Initial length-scale
hyperparameters for the Gaussian Process kernel function (eq S6) were
set to the mean value of each dimension and bound by a factor of 10
above and below the minimum and maximum values of that dimension,
respectively. The measured DTh standard deviation values were used as
input noise. Final kernel hyperparameters were found within their
bounds by maximizing the log-marginal likelihood of data during the
fitting process. Upon training the Gaussian Process model to observed
measurements, new experimental sampling points were determined
through maximum locations using the Kriging Believer acquisition
function. The acquisition function was generated within the in-house
Python code based on refs 55−57 with a pseudocode provided in
Section S3.

■ RESULTS AND DISCUSSION
Monoamide Extraction Dataset. Given the high cost

associated with conducting extensive experimental measure-
ments for actinide systems, we compiled a comprehensive
dataset from literature to test the concept of Bayesian
Optimization and benchmark the algorithms. Here, we selected
the N,N-dialkyl monoamide class as extractants because they
have been studied since 196058 for their enhanced environment
sustainability for liquid−liquid extraction compared to the
conventional tributyl phosphate, offering improved selectivity
and reduced secondary waste.59−64 Thus, the extraction of f-
elements with these molecules represents an ideal case to test
our integrated Bayesian Optimization and high-throughput

experimentation workflow as it allows us to directly compare our
results with a significant amount of data accumulated within the
same chemical space to validate our optimization process.
Figure 2 illustrates a breakdown of the extractants used with

UO22+, Pu4+, and Th4+�the most reported actinides, while
Figure S3 provides a complete summary of the whole dataset,
which contains a total of 2132 distribution ratios from previously
reported experiments involving 35 unique monoamides and 11
different actinides (note that these refer to unique experimental
conditions, not accounting for possible duplicated or triplicated
experiments performed by a group in each condition). The most
extensively studied system is the extraction of UO22+ with the
N,N-di-2-ethylhexylisobutyramide (DEHiBA) extractant, which
has 245 reported UO22+ distribution ratio values (DU). Most
other systems within the dataset were only characterized with a
number of experiments in the low tens. Therefore, we chose to
use the UO22+ with DEHiBA dataset to develop the Bayesian
Optimization methodology (Section S2) before applying the
technique to support experiments on the LANL Super
Separator. Here, the performance of the anisotropic Radial
Basis Function (RBF) and Mateŕn kernels were compared for
predicting DU, while the sampling strategies of the Kriging
Believer, Thompson Sampling, Distance Exploration, and
Random acquisition functions were examined in their efficiency
for finding the maximum DU value. Virtual Bayesian
Optimization campaigns showed that a combination of the
RBF kernel and the Kriging Believer acquisition function was

Figure 3. (Top) Sampling locations and measured DTh values across the four-dimensional experimental input space after four Bayesian Optimization
cycles on the extraction of Th(aq)4+ by DEHBA in 20 v% TBP/n-dodecane. (Bottom)Measured vs predictedDTh values of the first four cycles. Error bars
represent a single standard deviation from the predicted and measured values, while the legend reports the mean absolute error (MAE) between the
values.
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able to identify the maximum DU value within the dataset by
only needing to perform (at most) 90 total experiments inside an
experimental space of 244 experiments (Section S2c). This
represents a significant acceleration in the identification of the
optimal separation conditions by saving 63% of time and effort
compared to a complete sampling of the experimental space
traditionally done in high-throughput experimentation.

High-Throughput Measurement and Optimization of
Liquid−Liquid Extraction of Th4+. Due to the encouraging
results from the virtual optimization campaigns of UO22+
extraction with DEHiBA, high-throughput experimentation
coupled with Bayesian Optimization was deployed using the
LANL Super Separator to screen extraction conditions and
optimize the extraction of Th4+ by DEHBA into a 20 v% TBP/n-
dodecane organic phase. Figure 3 provides our initial four-
dimensional experimental input space where Th4+ distribution
ratios (DTh) were measured as a function of (1) initial [Th(aq)4+ ]
([Th]feed), (2) initial [HNO3(aq)], (3) initial [DEHBA(org)], and
(4) temperature. Here, the use of low [Th]feed, low
[DEHBA(org)], and a 20 v% TBP(constant)/n-dodecane organic
phase to act as phase modifier and a coextractant was chosen to
help prevent the third-phase formation. This choice kept us in a
more idealized scenario to show a proof-of-principle to the
Bayesian Optimization methodology.
In total, this experimental space can be discretized into 432

unique conditions within a typical experimental grid, resulting in
1296 measurements needing to be performed to completely
characterize the region (accounting for experiments performed
in triplicate). The experimental sampling locations and liquid−
liquid extraction optimization performance is also displayed in
Figure 3, where convergence of the DTh values was observed
after four complete experimental cycles (113 unique conditions
and 339 total measurements performed). Overall, a maximum
DTh value of 4.85 ± 0.8 was measured (Cycle 2) using the
experimental conditions of [Th]feed = 3.0 mM, [HNO3(aq)] = 4.0
M, [DEHBA(org)] = 40 mM, and temperature = 25 °C. A fifth
batch of predicted experimental conditions was generated from
the measurements and resulted in a singleDTh prediction of 4.58
± 0.12, while all other values were <3.19 ± 0.23. Since none of
these conditions were expected to improve upon our current
maximum DTh value, and the Gaussian Process model showed
accurate prediction inside the experimental space (Cycle 4,
Figure 3), this marked the end of our experimental optimization
campaign. Figure 4 displays the final Gaussian Process model
predictions over the experimental input space based on the

measured DTh values. The trends qualitatively follow previous
reports for Th4+ extraction with N,N-dialkyl monoamides,59−62

such as increases in [HNO3(aq)], [DEHBA(org)], and [Th]feed
leading to higher DTh values, while increasing the temperature
decreases the overall Th4+ extraction. Overall, examination of
the model’s predictions at 25 °C identifies a region of higherDTh
values (>3.0) corresponding to the experimental ranges of:
[Th]feed = 3.0−5.0 mM, [HNO3(aq)] = 4.0−5.0 M, and
[DEHBA] = 20−50 mM.
Previous literature has discussed the limitations of Bayesian

Optimization where the method can perform poorly and
potentially get trapped in local optima when optimizing over
large dimensional spaces (≥20 dimensions).26,65,66 As this study
was of relatively low dimension (four-dimensional), we expect
the identified optimal region to be the global maximum of our
initial experimental space. This can be supported by our virtual
Bayesian Optimization experimentation on the UO22+ with
DEHiBA dataset where we were able to always find the global
maximum for the DU value over a similar experimental input
space (Section S3c). Additionally, the overall experimental
trends identified in Figure 4 follow previous literature
observations for actinide separation by monoamides, further
supporting we have identified the global maximum DTh value.

Comparison to Other Optimization Approaches. As
robotic automation and high-throughput experimentation have
seen major growth in both the pharmaceutical and material
communities, only recently have these approaches been applied
to optimize reactions involving radioactive elements67 and the
separation of f-elements.68 In the work, both studies used high-
throughput experimentation to fully screen the experimental
space before determining the optimal conditions. By combining
our automated experiments with Bayesian Optimization, we
were able to significantly reduce the experimental time and effort
needed to optimize the separation conditions by 74% compared
to a full screening approach. To further explore the performance
of Bayesian Optimization, the final Gaussian Process model
predictions (Figure 4) were used as a surrogate response surface
to compare the method to different optimization approaches
(Section S5). Here, scanning the experimental space by varying
one-factor-at-a-time (OFAT) identified the maximum DTh after
a total of ∼120 experiments, while random sampling needed
∼220 experiments to identify the optimal conditions (Figure
S12). Additionally, response surface modeling using DoE full-
factorial sampling showed that even fitting a cubic polynomial
function to four-level factorial sampling (256 experiments),

Figure 4. Heat map showing the predicted DTh values from the final GP model.
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could not predict the location of highest DTh value within the
experimental space (Figure S13). As we were able to identify the
maximum DTh value in Cycle 2 (52 total experiments), this
shows the advantage of using Bayesian Optimization for liquid−
liquid extraction over other experimental optimization techni-
ques.

Importance of Keeping a “Human-in-the-Loop”.
During our experimental optimization campaign, a DTh value
of 6.58 ± 0.05 was measured at Cycle 2 (Section S4). Upon
reaching convergence of the DTh values inside our initial
experimental space after four experimental cycles, this measure-
ment led us to explore conditions beyond our initial bounds in
an effort to improve upon our currently highest measured DTh
value. Here, the Gaussian Process model predicted that nitric
acid concentrations beyond 5.0 M could yield even higher DTh
values, therefore, a new experimental batch using a tighter grid
centered around the 6.58 ± 0.05 value and expanding out 6.0 M
[HNO3(aq)] was generated. Upon measurement of this new
batch, noDTh values were observed >4.03, and a drastic decrease
in the model performance was observed (Cycle 5, Figure S11a).
Asmany of these measurements were performed at experimental
conditions similar to those that achieved the 6.58± 0.05 value, it
was suspected that this may have resulted from an anomalous
experiment and was contaminating the Gaussian Process model.
To investigate this further, the 6.58 experiment was removed
from the dataset and Gaussian Process model retraining was
performed at each cycle again. This resulted in improved
predictions in Cycles 4 and 5 (Figure S11b), strongly suggesting
an experimental anomaly. Overall, this demonstrates the
significant benefits of keeping a “human-in-the-loop” when
performing automated experiments.69 Here, examination of our
results after four experimental cycles caused us to adapt our
initial experimental space in an effort to improve the DTh values.
However, this shift in the campaign was unnecessary as it was
caused by an anomalous experiment contaminating the
Gaussian Process model. By keeping a human-in-the-loop and
consistently monitoring the performance of the Gaussian
Process model after each cycle, we were able to detect this
anomaly, remove it from the dataset, and finalize the campaign.

■ CONCLUSIONS
In this study, Bayesian Optimization was coupled with
automation-enabled high-throughput experimentation to opti-
mize experimental conditions for actinide extraction. Overall,
this work describes an alternative approach toward conducting
fundamental studies in separation science. By using the liquid−
liquid extraction of Th(aq)4+ with DEHBA in 20 v% TBP/n-
dodecane as a “proof-of principle” system, we estimate the
Bayesian Optimization method was able to save ∼74% of
experimental time and effort in optimizing the conditions within
the bounds of our initial experimental space. The approach can
be readily expanded to other experimental variables such as ionic
strength and scaled up to higher concentrations to simulate
industry conditions. Future work will examine applying the
method to other challenging separation methods, such as
chromatography, crystallization, and (co)precipitation, to
effectively optimize the procedures currently operating within
restrictive existing safety envelopes, leading to new methods
centered around economic and environmental sustainability.
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B.; Sheppard, T. D. The application of design of experiments (DoE)
reaction optimization and solvent selection in the development of new
synthetic chemistry. Org. Biomol. Chem. 2016, 14 (8), 2373−2384.
(20) Weissman, S. A.; Anderson, N. G. Design of Experiments (DoE)
and Process Optimization. A Review of Recent Publications. Org.
Process Res. Dev. 2015, 19 (11), 1605−1633.
(21) Yang, L.; Liu, S.; Chang, C.; Yang, S.; Shen, W. An efficient and
invertible machine learning-driven multi-objective optimization
architecture for light olefins separation system. Chem. Eng. Sci. 2024,
285, No. 119553.
(22) Yang, A.; Kong, Z. Y.; Sun, S.; Sunarso, J.; Ren, J.; Shen, W.
Design and Multiobjective Optimization of a Novel Double Extractive
DividingWall Column with a Side Reboiler Scheme for the Recovery of
Ethyl Acetate and Methanol from Wastewater. Ind. Eng. Chem. Res.
2023, 62 (44), 18591−18602.
(23) Qi, L.; Yang, A.; Kong, Z. Y.; Sun, S.; Shen, W. Insight on the
sustainable design and multi-objective optimization for separating the
ternary azeotropic mixture of toluene/n-butanol/water by natural
decanting coupled with pressure swing distillation. Sep. Purif. Technol.
2023, 313, No. 123434.
(24) Shen, T.; Teng, L.; Hu, Y.; Shen, W. Systematic screening
procedure and innovative energy-saving design for ionic liquid-based
extractive distillation process. Front. Chem. Sci. Eng. 2023, 17 (1), 34−
45.
(25) Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; Freitas, N. d.
Taking the Human Out of the Loop: A Review of Bayesian
Optimization. Proc. IEEE 2016, 104 (1), 148−175.
(26) Frazier, P. I. A tutorial on Bayesian optimization,
arXiv:1807.02811. arXiv.org e-Print archive. https://doi.org/10.
48550/arXiv.1807.02811 (accessed 2018).
(27) Snoek, J.; Larochelle, H.; Adams, R. P. Practical Bayesian
Optimization of Machine Learning Algorithms. Adv. Neural Inf. Process.
Syst. 2012, 25, 2951−2959.
(28) Frazier, P. I.; Wang, J. Bayesian Optimization for Materials
Design. In Information Science for Materials Discovery and Design;
Lookman, T.; Alexander, F. J.; Rajan, K., Eds.; Springer International
Publishing, 2016; pp 45−75.
(29) Liang, Q.; Gongora, A. E.; Ren, Z.; Tiihonen, A.; Liu, Z.; Sun, S.;
Deneault, J. R.; Bash, D.; Mekki-Berrada, F.; Khan, S. A.;
Hippalgaonkar, K.; Maruyama, B.; Brown, K. A.; Fisher Iii, J.;
Buonassisi, T. Benchmarking the performance of Bayesian optimization
across multiple experimental materials science domains. npj Comput.
Mater. 2021, 7 (1), 188.
(30) Zhang, Y.; Apley, D. W.; Chen, W. Bayesian Optimization for
Materials Design with Mixed Quantitative and Qualitative Variables.
Sci. Rep. 2020, 10 (1), No. 4924.
(31) Vahid, A.; Rana, S.; Gupta, S.; Vellanki, P.; Venkatesh, S.; Dorin,
T. New Bayesian-Optimization-Based Design of High-Strength 7xxx-
Series Alloys from Recycled Aluminum. JOM 2018, 70 (11), 2704−
2709.
(32) Li, C.; Rubín de Celis Leal, D.; Rana, S.; Gupta, S.; Sutti, A.;
Greenhill, S.; Slezak, T.; Height, M.; Venkatesh, S. Rapid Bayesian
optimization for synthesis of short polymer fiber materials. Sci. Rep.
2017, 7 (1), No. 5683.

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.4c06166
ACS Sustainable Chem. Eng. 2024, 12, 16692−16699

16698

https://doi.org/10.17226/25421?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/532435a
https://doi.org/10.1038/532435a
https://doi.org/10.1080/07366299308918184
https://doi.org/10.1080/07366299308918184
https://doi.org/10.1039/C7CS00574A
https://doi.org/10.1039/C7CS00574A
https://doi.org/10.1016/j.ccr.2012.04.029
https://doi.org/10.1016/j.ccr.2012.04.029
https://doi.org/10.2172/1844866?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1524/ract.1995.7071.s1.225
https://doi.org/10.1080/01496399708003198
https://doi.org/10.1080/01496399708003198
https://doi.org/10.1081/SEI-100103276
https://doi.org/10.1081/SEI-100103276
https://doi.org/10.1038/s41586-020-2442-2
https://doi.org/10.1002/adma.201907801
https://doi.org/10.1002/adma.201907801
https://doi.org/10.1002/adma.201907801
https://doi.org/10.1002/anie.201909987
https://doi.org/10.1002/anie.201909987
https://doi.org/10.1002/anie.201909989
https://doi.org/10.1002/anie.201909989
https://doi.org/10.1016/j.trechm.2019.02.007
https://doi.org/10.1016/j.trechm.2019.02.007
https://doi.org/10.1021/acs.chemmater.0c01153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c01153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C5OB01892G
https://doi.org/10.1039/C5OB01892G
https://doi.org/10.1039/C5OB01892G
https://doi.org/10.1021/op500169m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/op500169m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ces.2023.119553
https://doi.org/10.1016/j.ces.2023.119553
https://doi.org/10.1016/j.ces.2023.119553
https://doi.org/10.1021/acs.iecr.3c02191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.3c02191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.3c02191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.seppur.2023.123434
https://doi.org/10.1016/j.seppur.2023.123434
https://doi.org/10.1016/j.seppur.2023.123434
https://doi.org/10.1016/j.seppur.2023.123434
https://doi.org/10.1007/s11705-022-2234-3
https://doi.org/10.1007/s11705-022-2234-3
https://doi.org/10.1007/s11705-022-2234-3
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.48550/arXiv.1807.02811
https://doi.org/10.48550/arXiv.1807.02811
https://doi.org/10.1038/s41524-021-00656-9
https://doi.org/10.1038/s41524-021-00656-9
https://doi.org/10.1038/s41598-020-60652-9
https://doi.org/10.1038/s41598-020-60652-9
https://doi.org/10.1007/s11837-018-2984-z
https://doi.org/10.1007/s11837-018-2984-z
https://doi.org/10.1038/s41598-017-05723-0
https://doi.org/10.1038/s41598-017-05723-0
pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.4c06166?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(33) Rapp, J. T.; Bremer, B. J.; Romero, P. A. Self-driving laboratories
to autonomously navigate the protein fitness landscape.Nat. Chem. Eng.
2024, 1 (1), 97−107.
(34) Nambiar, A. M. K.; Breen, C. P.; Hart, T.; Kulesza, T.; Jamison,
T. F.; Jensen, K. F. Bayesian Optimization of Computer-Proposed
Multistep Synthetic Routes on an Automated Robotic Flow Platform.
ACS Cent. Sci 2022, 8 (6), 825−836.
(35) Graff, D. E.; Shakhnovich, E. I.; Coley, C. W. Accelerating high-
throughput virtual screening through molecular pool-based active
learning. Chem. Sci. 2021, 12 (22), 7866−7881.
(36) Pyzer-Knapp, E. O. Bayesian optimization for accelerated drug
discovery. IBM J. Res. Dev. 2018, 62 (6), 2:1−2:7.
(37) Bellamy, H.; Rehim, A. A.; Orhobor, O. I.; King, R. Batched
Bayesian Optimization for Drug Design in Noisy Environments. J.
Chem. Inf. Model. 2022, 62 (17), 3970−3981.
(38) Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.;
Alvarado, J. I. M.; Janey, J. M.; Adams, R. P.; Doyle, A. G. Bayesian
reaction optimization as a tool for chemical synthesis.Nature 2021, 590
(7844), 89−96.
(39) Torres, J. A. G.; Lau, S. H.; Anchuri, P.; Stevens, J. M.; Tabora, J.
E.; Li, J.; Borovika, A.; Adams, R. P.; Doyle, A. G. A Multi-Objective
Active Learning Platform and Web App for Reaction Optimization. J.
Am. Chem. Soc. 2022, 144 (43), 19999−20007.
(40) Christensen, M.; Yunker, L. P. E.; Adedeji, F.; Häse, F.; Roch, L.
M.; Gensch, T.; dos Passos Gomes, G.; Zepel, T.; Sigman, M. S.;
Aspuru-Guzik, A.; Hein, J. E. Data-science driven autonomous process
optimization. Commun. Chem. 2021, 4 (1), No. 112.
(41) Noack, M. M.; Doerk, G. S.; Li, R.; Fukuto, M.; Yager, K. G.
Advances in Kriging-Based Autonomous X-Ray Scattering Experi-
ments. Sci. Rep. 2020, 10 (1), No. 1325.
(42) Noack, M. M.; Doerk, G. S.; Li, R.; Streit, J. K.; Vaia, R. A.; Yager,
K. G.; Fukuto, M. Autonomous materials discovery driven by Gaussian
process regression with inhomogeneous measurement noise and
anisotropic kernels. Sci. Rep. 2020, 10 (1), No. 17663.
(43) Noack, M. M.; Yager, K. G.; Fukuto, M.; Doerk, G. S.; Li, R.;
Sethian, J. A. A Kriging-Based Approach to Autonomous Experimenta-
tion with Applications to X-Ray Scattering. Sci. Rep. 2019, 9 (1),
No. 11809.
(44) Noack, M. M.; Zwart, P. H.; Ushizima, D. M.; Fukuto, M.; Yager,
K. G.; Elbert, K. C.; Murray, C. B.; Stein, A.; Doerk, G. S.; Tsai, E. H. R.;
Li, R.; Freychet, G.; Zhernenkov, M.; Holman, H.-Y. N.; Lee, S.; Chen,
L.; Rotenberg, E.; Weber, T.; Goc, Y. L.; Boehm,M.; Steffens, P.; Mutti,
P.; Sethian, J. A. Gaussian processes for autonomous data acquisition at
large-scale synchrotron and neutron facilities. Nat. Rev. Phys. 2021, 3
(10), 685−697.
(45) Greenhill, S.; Rana, S.; Gupta, S.; Vellanki, P.; Venkatesh, S.
Bayesian Optimization for Adaptive Experimental Design: A Review.
IEEE Access 2020, 8, 13937−13948.
(46) Garud, S. S.; Karimi, I. A.; Kraft, M. Design of computer
experiments: A review. Comput. Chem. Eng. 2017, 106, 71−95.
(47) Ricard-McCutchan, E. Evaluated Nuclear Structure Data File
(ENSDF), 2022/02/14 ed.; National Nuclear Data Center at
Brookhaven National Laboratory: Nuclear Data Sheets, 2022.
(48)Wang, Y.; Abergel, R. J. Radiochemical Separation Techniques in
Classroom Settings. J. Chem. Educ. 2023, 100 (4), 1603−1612.
(49) Wang, Y.; Deblonde, G. J. P.; Abergel, R. J. Hydroxypyridinone
Derivatives: A Low-pH Alternative to Polyaminocarboxylates for
TALSPEAK-like Separation of Trivalent Actinides from Lanthanides.
ACS Omega 2020, 5 (22), 12996−13005.
(50) Wang, Y.; Zhang, Z.; Abergel, R. J. Hydroxypyridinone-based
stabilization of Np(IV) enabling efficient U/Np/Pu separations in the
Adapted PUREX process. Sep. Purif. Technol. 2021, 259, No. 118178.
(51) Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental
Analysis; Thomson Brooks/Cole, 2007.
(52) Harris, D. C. Quantitative Chemical Analysis; Macmillan, 2010.
(53) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion,
B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12,
2825−2830.

(54) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.;
Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 2020, 17 (3), 261−272.
(55) Ginsbourger, D.; Le Riche, R.; Carraro, L. Kriging Is Well-Suited
to Parallelize Optimization. In Computational Intelligence in Expensive
Optimization Problems; Tenne, Y.; Goh, C.-K., Eds.; Springer Berlin
Heidelberg, 2010; pp 131−162.
(56) Ginsbourger, D.; Le Riche, R.; Carraro, L. A. Multi-points
Criterion for Deterministic Parallel Global Optimization based on
Gaussian Processes. 2008.
(57) Schonlau, M. Computer Experiments and Global Optimization;
University of Waterloo, 1997.
(58) Siddall, T. H. III. Effects of structure of N,N-DIsubstituted
Amides on Their Extraction of Actinide and Zirconium Nitrates and of
Nitric Acid1. J. Phys. Chem. A 1960, 64 (12), 1863−1866.
(59) Pathak, P. N. N,N-Dialkyl amides as extractants for spent fuel
reprocessing: an overview. J. Radioanal. Nucl. Chem. 2014, 300 (1), 7−
15.
(60) McCann, K.; Drader, J. A.; Braley, J. C. Comparing Branched
versus Straight-chained Monoamide Extractants for Actinide Recovery.
Sep. Purif. Rev. 2018, 47 (1), 49−65.
(61) Manchanda, V. K.; Pathak, P. N. Amides and diamides as
promising extractants in the back end of the nuclear fuel cycle: an
overview. Sep. Purif. Technol. 2004, 35 (2), 85−103.
(62) Gasparini, G. M.; Grossi, G. Review Article Long Chain
Disubstituted Aliphatic Amides as Extracting Agents in Industrial
Applications of Solvent Extraction. Solvent Extr. Ion Exch. 1986, 4 (6),
1233−1271.
(63) Hall, G. B.; Bessen, N. P.; Zalupski, P. R.; Campbell, E. L.;
Grimes, T. S.; Peterman, D. R.; Lumetta, G. J. Extraction of Neptunium,
Plutonium, Americium, Zirconium, and Technetium by Di-(2-
Ethylhexyl)-Iso-Butyramide (DEHiBA) at High Metal Loadings.
Solvent Extr. Ion Exch. 2023, 41 (5), 545−563.
(64) Hall, G. B.; Campbell, E. L.; Bessen, N. P.; Graham, T. R.; Cho,
H.; RisenHuber, M.; Heller, F. D.; Lumetta, G. J. Extraction of Nitric
Acid and Uranium with DEHiBA under High Loading Conditions.
Inorg. Chem. 2023, 62 (17), 6711−6721.
(65) Eriksson, D.; Jankowiak, M. High-dimensional Bayesian
optimization with sparse axis-aligned subspaces. In Uncertainty in
Artificial Intelligence; PMLR, 2021; pp 493−503.
(66) Moriconi, R.; Deisenroth, M. P.; Sesh Kumar, K. S. High-
dimensional Bayesian optimization using low-dimensional feature
spaces. Mach. Learn. 2020, 109 (9), 1925−1943.
(67) Webb, E. W.; Cheng, K.; Winton, W. P.; Klein, B. J. C.; Bowden,
G. D.; Horikawa, M.; Liu, S. W.; Wright, J. S.; Verhoog, S.; Kalyani, D.;
Wismer, M.; Krska, S.W.; Sanford, M. S.; Scott, P. J. H. Development of
High-Throughput Experimentation Approaches for Rapid Radio-
chemical Exploration. J. Am. Chem. Soc. 2024, 146 (15), 10581−10590.
(68) An, L.; Yao, Y.; Hall, T. B.; Zhao, F.; Qi, L. Agile synthesis and
automated, high-throughput evaluation of diglycolamides for liquid−
liquid extraction of rare-earth elements. Green Chem. 2024, 26 (12),
7188−7197.
(69) Hysmith, H.; Foadian, E.; Padhy, S. P.; Kalinin, S. V.; Moore, R.
G.; Ovchinnikova, O.; Ahmadi, M. The future of self-driving
laboratories: From Human in the Loop Interactive AI to Gamification.
Digital Discovery 2024, 3, 621.

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.4c06166
ACS Sustainable Chem. Eng. 2024, 12, 16692−16699

16699

https://doi.org/10.1038/s44286-023-00002-4
https://doi.org/10.1038/s44286-023-00002-4
https://doi.org/10.1021/acscentsci.2c00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.2c00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D0SC06805E
https://doi.org/10.1039/D0SC06805E
https://doi.org/10.1039/D0SC06805E
https://doi.org/10.1147/JRD.2018.2881731
https://doi.org/10.1147/JRD.2018.2881731
https://doi.org/10.1021/acs.jcim.2c00602?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c00602?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41586-021-03213-y
https://doi.org/10.1038/s41586-021-03213-y
https://doi.org/10.1021/jacs.2c08592?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.2c08592?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s42004-021-00550-x
https://doi.org/10.1038/s42004-021-00550-x
https://doi.org/10.1038/s41598-020-57887-x
https://doi.org/10.1038/s41598-020-57887-x
https://doi.org/10.1038/s41598-020-74394-1
https://doi.org/10.1038/s41598-020-74394-1
https://doi.org/10.1038/s41598-020-74394-1
https://doi.org/10.1038/s41598-019-48114-3
https://doi.org/10.1038/s41598-019-48114-3
https://doi.org/10.1038/s42254-021-00345-y
https://doi.org/10.1038/s42254-021-00345-y
https://doi.org/10.1109/ACCESS.2020.2966228
https://doi.org/10.1016/j.compchemeng.2017.05.010
https://doi.org/10.1016/j.compchemeng.2017.05.010
https://doi.org/10.1021/acs.jchemed.2c01193?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jchemed.2c01193?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c00873?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c00873?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c00873?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.seppur.2020.118178
https://doi.org/10.1016/j.seppur.2020.118178
https://doi.org/10.1016/j.seppur.2020.118178
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1021/j100841a014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100841a014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100841a014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10967-014-2961-0
https://doi.org/10.1007/s10967-014-2961-0
https://doi.org/10.1080/15422119.2017.1321018
https://doi.org/10.1080/15422119.2017.1321018
https://doi.org/10.1016/j.seppur.2003.09.005
https://doi.org/10.1016/j.seppur.2003.09.005
https://doi.org/10.1016/j.seppur.2003.09.005
https://doi.org/10.1080/07366298608917921
https://doi.org/10.1080/07366298608917921
https://doi.org/10.1080/07366298608917921
https://doi.org/10.1080/07366299.2023.2215833
https://doi.org/10.1080/07366299.2023.2215833
https://doi.org/10.1080/07366299.2023.2215833
https://doi.org/10.1021/acs.inorgchem.3c00288?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.inorgchem.3c00288?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10994-020-05899-z
https://doi.org/10.1007/s10994-020-05899-z
https://doi.org/10.1007/s10994-020-05899-z
https://doi.org/10.1021/jacs.3c14822?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.3c14822?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.3c14822?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D4GC01146E
https://doi.org/10.1039/D4GC01146E
https://doi.org/10.1039/D4GC01146E
https://doi.org/10.1039/D4DD00040D
https://doi.org/10.1039/D4DD00040D
pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.4c06166?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

