Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Dec 15;481(Pt 3):689–708. doi: 10.1113/jphysiol.1994.sp020474

Storage and release of mechanical energy by contracting frog muscle fibres.

G A Cavagna 1, N C Heglund 1, J D Harry 1, M Mantovani 1
PMCID: PMC1155911  PMID: 7707236

Abstract

1. Stretching a contracting muscle leads to greater mechanical work being done during subsequent shortening by its contractile component; the mechanism of this enhancement is not known. 2. This mechanism has been investigated here by subjecting tetanized frog muscle fibres to ramp stretches followed by an isotonic release against a load equal to the maximum isometric tension, T(o). Shortening against T(o) was taken as direct evidence of an absolute increase in the ability to do work as a consequence of the previous stretch. 3. Ramp stretches (0.5-8.6% sarcomere strain, confined to the plateau of the isometric tension-length relationship) were given at different velocities of lengthening (0.03-1.8 sarcomere lengths s-1). Isotonic release to T(o) took place immediately after the end of the ramp, or 5-800 ms after the end of the largest ramp stretches. The length changes taking place after release were measured both at the fibre end and on a tendon-free segment of the fibre. The experiments were carried out at 4 and 14 degrees C. 4. After the elastic recoil of the undamped elastic elements, taking place during the fall in tension at the instant of the isotonic release, a well-defined shortening took place against T(o) (transient shortening against T(o)). 5. The amplitude and time course of transient shortening against T(o) were similar at the fibre end and in the segment, indicating that it is due to a properly of the sarcomeres and not due to stress relaxation of the tendons. 6. Transient shortening against T(o) increased with sarcomere stretch amplitude up to about 8 nm per half-sarcomere independent of stretch velocity. 7. When a short delay (5-20 ms) was introduced between the end of the stretch and the isotonic release, the transient shortening against T(o) did not change; after longer time delays, the transient shortening against T(o) decreased in amplitude. 8. The velocity of transient shortening against T(o) increased with temperature with a temperature coefficient, Q10, of approximately 2.5. 9. It is suggested that transient shortening against T(o) results from the release of mechanical energy stored within the damped element of the cross-bridges. The cross-bridges are brought into a state of greater potential energy not only during the ramp stretch, but also immediately afterwards, during the first phase of stress relaxation.

Full text

PDF
689

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagni M. A., Cecchi G., Colomo F., Tesi C. Plateau and descending limb of the sarcomere length-tension relation in short length-clamped segments of frog muscle fibres. J Physiol. 1988 Jul;401:581–595. doi: 10.1113/jphysiol.1988.sp017181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cavagna G. A., Citterio G. Effect of stretching on the elastic characteristics and the contractile component of frog striated muscle. J Physiol. 1974 May;239(1):1–14. doi: 10.1113/jphysiol.1974.sp010552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cavagna G. A., Citterio G., Jacini P. Proceedings: The additional mechanical energy delivered by the contractile component of the previously stretched muscle. J Physiol. 1975 Sep;251(1):65P–66P. [PubMed] [Google Scholar]
  4. Cavagna G. A. Effect of temperature and velocity of stretching on stress relaxation of contracting frog muscle fibres. J Physiol. 1993 Mar;462:161–173. doi: 10.1113/jphysiol.1993.sp019549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cavagna G. A., Mazzanti M., Heglund N. C., Citterio G. Mechanical transients initiated by ramp stretch and release to Po in frog muscle fibers. Am J Physiol. 1986 Oct;251(4 Pt 1):C571–C579. doi: 10.1152/ajpcell.1986.251.4.C571. [DOI] [PubMed] [Google Scholar]
  6. Edman K. A., Elzinga G., Noble M. I. Critical sarcomere extension required to recruit a decaying component of extra force during stretch in tetanic contractions of frog skeletal muscle fibers. J Gen Physiol. 1981 Oct;78(4):365–382. doi: 10.1085/jgp.78.4.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edman K. A., Elzinga G., Noble M. I. Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J Physiol. 1978 Aug;281:139–155. doi: 10.1113/jphysiol.1978.sp012413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ford L. E., Huxley A. F., Simmons R. M. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol. 1977 Jul;269(2):441–515. doi: 10.1113/jphysiol.1977.sp011911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  10. Katz B. The relation between force and speed in muscular contraction. J Physiol. 1939 Jun 14;96(1):45–64. doi: 10.1113/jphysiol.1939.sp003756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lombardi V., Piazzesi G. The contractile response during steady lengthening of stimulated frog muscle fibres. J Physiol. 1990 Dec;431:141–171. doi: 10.1113/jphysiol.1990.sp018324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morgan D. L. New insights into the behavior of muscle during active lengthening. Biophys J. 1990 Feb;57(2):209–221. doi: 10.1016/S0006-3495(90)82524-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Piazzesi G., Francini F., Linari M., Lombardi V. Tension transients during steady lengthening of tetanized muscle fibres of the frog. J Physiol. 1992 Jan;445:659–711. doi: 10.1113/jphysiol.1992.sp018945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sugi H., Tsuchiya T. Enhancement of mechanical performance in frog muscle fibres after quick increases in load. J Physiol. 1981;319:239–252. doi: 10.1113/jphysiol.1981.sp013904. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES