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ABSTRACT HIV-1 envelope glycoprotein (Env) conformation substantially impacts 
antibody-dependent cellular cytotoxicity (ADCC). Envs from primary HIV-1 isolates adopt 
a prefusion “closed” conformation, which is targeted by broadly neutralizing antibodies 
(bnAbs). CD4 binding drives Env into more “open” conformations, which are recognized 
by non-neutralizing Abs (nnAbs). To better understand Env–Ab and Env–CD4 interaction 
in CD4+ T cells infected with HIV-1, we simultaneously measured antibody binding and 
HIV-1 mRNA expression using multiparametric flow cytometry and RNA flow fluorescent 
in situ hybridization (FISH) techniques. We observed that env mRNA is almost exclusively 
expressed by HIV-1 productively infected cells that already downmodulated CD4. This 
suggests that CD4 downmodulation precedes env mRNA expression. Consequently, 
productively infected cells express “closed” Envs on their surface, which renders them 
resistant to nnAbs. Cells recognized by nnAbs were all env mRNA negative, indicating Ab 
binding through shed gp120 or virions attached to their surface. Consistent with these 
findings, treatment of HIV-1-infected humanized mice with the ADCC-mediating nnAb 
A32 failed to lower viral replication or reduce the size of the viral reservoir. These findings 
confirm the resistance of productively infected CD4+ T cells to nnAbs-mediated ADCC 
and question the rationale of immunotherapy approaches using this strategy.

IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) represents an effective 
immune response for clearing virally infected cells, making ADCC-mediating antibod­
ies promising therapeutic candidates for HIV-1 cure strategies. Broadly neutralizing 
antibodies (bNAbs) target epitopes present on the native "closed" envelope glycoprotein 
(Env), while non-neutralizing antibodies (nnAbs) recognize epitopes exposed upon Env–
CD4 interaction. Here, we provide evidence that env mRNA is predominantly expressed 
by productively infected cells that have already downmodulated cell-surface CD4. 
This indicates that CD4 downmodulation by HIV-1 precedes Env expression, making 
productively infected cells resistant to ADCC mediated by nnAbs but sensitive to 
those mediated by bnAbs. These findings offer critical insights for the development 
of immunotherapy-based strategies aimed at targeting and eliminating productively 
infected cells in people living with HIV.
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H ighly active antiretroviral therapy (ART) efficiently suppresses HIV-1 replication and 
significantly increase the life expectancy of people living with HIV-1 (PLWH) (1, 2). 

However, it has become evident that even lifelong ART cannot eradicate the virus. Viral 
reactivation and rebound can occur upon treatment interruption due to the presence 
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of a latent reservoir, persisting mainly in long-lived memory CD4+ T cells (3–6). New 
approaches aimed at eradicating or functionally curing HIV-1 infection by targeting 
and eliminating productively or latently infected cells are needed. Monoclonal antibod­
ies (mAbs) are attractive therapeutics for HIV cure strategies, since they target virus-
specific antigens and have the potential to harness host immune responses such as 
antibody-dependent cellular cytotoxicity (ADCC). The HIV-1 envelope glycoprotein (Env) 
is the only viral antigen that is present on the surface of HIV-1-infected cells, thus 
representing the main target for immunotherapy-based strategies (7, 8). In recent years, 
several clinical trials explored broadly neutralizing antibodies (bnAbs) as therapeutic 
agents to reduce the HIV-1 reservoir via Fc-mediated effector functions (9). Monotherapy 
or a combination of bnAbs targeting multiple regions of the Env trimer, including the 
V3 glycan supersite (10–1074, PGT121), the V2 apex (PGDM 1400, CAP256-VRC26), or 
the CD4 binding site (CD4bs) (3BNC117, N6, VRC01, VRC07-523), are currently under 
investigation. Administration of bnAbs to humans has been found to be safe and 
effective in lowering viremia and maintaining viral suppression for varying periods of 
time after treatment interruption (10–16). However, recent data suggest that bnAbs may 
not be as broad and/or effective as predicted, in part because of circulating viruses with 
pre-existing resistance to the administered bnAbs (9). So-called “non-neutralizing” Abs 
(nnAbs) have been evaluated as a potential alternative because some of them target 
highly conserved Env epitopes that are usually occluded in the “closed” trimer, including 
the coreceptor-binding site (CoRBS) (17–19), the inner domain of gp120 (20–22) or the 
gp41 immunodominant domain (23). These nnAbs are naturally elicited during HIV-1 
infection and can mediate potent Fc effector functions (23–29).

HIV-1 Env is a conformationally flexible molecule that transitions from an unligan­
ded “closed” State 1 to an “open” CD4-bound State 3 conformation (30–32) upon CD4 
interaction. Envs from most primary HIV-1 isolates adopt a “closed” conformation that is 
efficiently targeted by bnAbs, but is resistant to nnAbs (30, 33–37), which target epitopes 
that are occluded within the unliganded “closed” trimer. Env interaction with CD4 or 
small CD4-mimetic compounds are known to induce more “open” conformations, thus 
sensitizing infected cells to ADCC mediated by CD4-induced (CD4i) nnAbs (24, 25, 27, 28, 
34, 35, 37–43). To avoid exposing these nnAb epitopes, the Env trimer is stabilized by 
multiple intermolecular interactions, including between the V1, V2, and V3 variable loops 
as well as the gp120 β20–β21 element, which maintain a “closed” conformation (32, 44, 
45). In addition, HIV-1 expresses the accessory proteins Nef and Vpu, which indirectly 
modulate Env conformation by downregulating CD4 from the surface of infected cells, 
thus preventing a premature Env–CD4 interaction that would otherwise result in the 
exposure of CD4i Env epitopes (24, 27). Vpu-mediated counteraction of the restriction 
factor BST-2 (also named “tetherin”), known to tether viral particles at the surface of 
infected cells, also reduces cell-surface levels of Env (24, 27, 46, 47).

Despite advances in understanding Env–Ab and Env–CD4 interactions, the capacity of 
nnAbs to target and eliminate productively infected cells by ADCC remain controversial. 
Several studies reported that cells infected with primary viruses expressing functional 
Vpu and Nef proteins are resistant to ADCC mediated by CD4i nnAbs, because they 
maintain surface-expressed Env in a “closed” conformation (24, 25, 28, 33–43, 48, 49). 
Other studies report that CD4i nnAbs can mediate ADCC responses, but they have used 
infectious molecular clones (IMCs) that are defective for Nef expression (50–61). These 
IMCs contain reporter genes (e.g., the Renilla luciferase [LucR] gene) upstream of the 
nef gene, which significantly reduces Nef expression and thus CD4 downregulation from 
the surface of infected CD4+ target cells. The resulting premature Env–CD4 interaction 
promotes artificial exposure of otherwise occluded CD4i epitopes (40, 62, 63).

Here, we used multiparametric flow cytometry and RNA flow fluorescent in situ 
hybridization (FISH) techniques to characterize cell populations targeted by bNAbs and 
nnAbs in the context of primary CD4+ T cell infection. We show that env mRNA is 
specifically detected among cells that already downmodulated cell-surface CD4, which 
renders these cells refractory to recognition by nnAbs. Although some CD4+ cells are 
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bound by nnAbs, they are all negative for env mRNA, indicating that they are not 
productively infected, and nnAbs binding is mediated through the recognition of shed 
gp120 and/or viral particles coated at their cell surface. Similar results were obtained 
with ex vivo-expanded CD4+ T cells isolated from PLWH. Finally, the ADCC-mediating 
nnAb A32 failed to reduce HIV-1 replication and the size of the viral reservoir in a 
humanized mouse model (hu-mice) that supports Fc-effector functions. These findings 
raise questions about curative immunotherapy-based strategies that rely solely on 
nnAbs, specifically those targeting CD4i epitopes.

MATERIALS AND METHODS

The materials and methods have been previously described in references 25, 27, 28, 34, 
39, 42, 43, 64–66. They are summarized here for the convenience of the reader.

Cell lines and primary cells

The 293T human embryonic kidney cells (obtained from ATCC) were maintained at 
37°C under 5% CO2 in Dulbecco’s modified Eagle medium (Wisent, St. Bruno, QC, 
Canada), supplemented with 5% fetal bovine serum (VWR, Radnor, PA, USA) and 100 
U/mL of penicillin/streptomycin (Wisent). Human peripheral blood mononuclear cells 
(PBMCs) from HIV-negative and HIV-positive individuals obtained by leukapheresis and 
Ficoll-Paque density gradient isolation were cryopreserved in liquid nitrogen until further 
use. CD4+ T lymphocytes were purified from resting PBMCs by negative selection using 
immunomagnetic beads per the manufacturer’s instructions (StemCell Technologies, 
Vancouver, BC) and were activated with phytohemagglutinin-L (10 µg/mL) for 48 h and 
then maintained in RPMI 1640 (Thermo Fisher Scientific, Waltham, MA, USA) complete 
medium supplemented with rIL-2 (100 U/mL).

Antibody production

FreeStyle 293 F cells (Thermo Fisher Scientific) were grown in FreeStyle 293F medium 
(Thermo Fisher Scientific) to a density of 1  ×  106 cells/mL at 37°C with 8% CO2 with 
regular agitation (150  rpm). Cells were transfected with plasmids expressing the light 
and heavy chains of each mAb using ExpiFectamine 293 transfection reagent, as directed 
by the manufacturer (Thermo Fisher Scientific). One week later, the cells were pelleted 
and discarded. The supernatants were filtered (0.22-μm-pore-size filter), and antibodies 
were purified by protein A affinity columns, as directed by the manufacturer (Cytiva, 
Marlborough, MA, USA).

HIV-1 studies in humanized mice

NSG-15 mice with expression of the human IL15 gene in the NOD/ShiLtJ background 
were purchased from the Jackson Laboratory (Bar Harbor, ME, USA). The mice were 
bred and maintained under specific pathogen-free conditions. All animal studies were 
performed with authorization from the Institutional Animal Care and Use Committees 
(IACUC) of Yale University. NSG-15-Hu-PBL mice were engrafted as described (42). Briefly, 
3.5 × 106 PBMCs, purified by Ficoll density gradient centrifugation of healthy donor blood 
buffy coats (obtained from the New York Blood Bank) were injected IP in a 200-µL volume 
into 6- to 8-week-old NSG-15 mice, using a 1-cm3 syringe and a 25-gauge needle. Cell 
engraftment was tested 15 days post-transplant. Then, 100 µL of blood was collected 
by retroorbital bleeding. PBMCs were isolated by Ficoll density gradient centrifugation; 
stained with fluorescently labeled anti-human CD45 (BD Biosciences, Cat#: 555485), 
CD3 (Biolegend, Cat#: 300424), CD4 (Biolegend, Cat#: 317432), CD8 (BD Biosciences, 
Cat#: 561617), and CD56 (Biolegend, Cat#: 362508) antibodies; and analyzed by flow 
cytometry to confirm engraftment. Humanized mice were intraperitoneally challenged 
with 30,000 PFU of HIV-1JRCSF. Infection profile was analyzed routinely by retro-orbital 
bleeding and flow cytometric analysis of peripheral blood for human immune cells and 
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plasma viral load (PVL) analysis. For flow cytometry, 100 µL of blood was collected by 
retro-orbital bleeding at each time point. PBMCs were isolated by Ficoll density gradient 
centrifugation, and cells were stained with Fluor-conjugated antibodies as detailed 
above. PVL was measured at day 5, 8, and 11 post-infection, while HIV-1 reservoirs were 
measured at day 11 post-infection as previously described (42).

Plasmids and proviral constructs

Transmitted/Founder (T/F) IMC of patient CH077 was inferred and constructed as 
previously described (67). The generation of nef-defective CH077TF was previously 
described and consists in the introduction of premature stop codons in the nef 
reading frame using site-directed mutagenesis protocol (68). The CH077TF D368R 
was also generated by site-directed mutagenesis as previously described (43). Proviral 
constructs comprising an HIV-1 NL4.3-based isogenic backbone engineered for the 
insertion of heterologous env strain sequences and expression in cis of full-length Env 
(Env–IMCs) were previously described (69). The Env–IMCs utilized in the present study 
are those encoding Env from BaL (pNL-B.BaL.ecto), CH040 (pNL-B.CH040.ecto), CH058 
(pNL-B.CH058.ecto), SF162 (pNL-B.SF162.ecto). or YU2 (pNL-B.YU-2.ecto). The proviral 
plasmid pNL4.3 was used as control (70). The vesicular stomatitis virus G (VSV-G)-encod­
ing plasmid was previously described (71).

Viral production, infections, and ex vivo amplification

For in vitro infection, vesicular stomatitis virus G (VSV-G)-pseudotyped HIV-1 viruses 
were produced by co-transfection of 293T cells with an HIV-1 proviral construct and 
a VSV-G-encoding vector using the calcium phosphate method. Two days post-transfec­
tion, cell supernatants were harvested, clarified by low-speed centrifugation (300 × g 
for 5 min), and concentrated by ultracentrifugation at 4°C (100,605 × g for 1 h) over a 
20% sucrose cushion. Pellets were resuspended in fresh RPMI, and aliquots were stored 
at −80°C until use. Viruses were then used to infect activated primary CD4+ T cells from 
healthy HIV-1-negative donors by spin infection at 800 × g for 1 h in 96-well plates 
at 25°C. Viral preparations were titrated directly on primary CD4+ T cells to achieve 
similar levels of infection among the different IMCs tested (approximately 10% of p24+ 
cells). To expand endogenously infected CD4+ T cells, primary CD4+ T cells obtained 
from PLWH were isolated from PBMCs by negative selection. Purified CD4+ T cells were 
activated with PHA-L at 10  µg/mL for 48  h and then cultured for at least 6  days in RPMI 
1640 complete medium supplemented with rIL-2 (100  U/mL) to reach greater than 10% 
infection for the ADCC assay.

Antibodies

The following anti-Env Abs were used to stain HIV-1-infected primary CD4+ T cells: 
anti-gp41 F240; anti-cluster A A32, C11; anti-coreceptor binding site 17b; anti-gp120 
outer domain 2G12, anti-CD4 binding site VRC03, 3BNC117; anti-V3 glycan PGT121, 
PGT126, 10–1074; anti-V2 apex PG9; anti-gp120-gp41 interface PGT151. The HIV-IG 
polyclonal antibody consists of anti-HIV immunoglobulins purified from a pool of plasma 
from asymptomatic PLWH (NIH AIDS Reagent Program). Goat anti-human IgG (H + 
L) (Thermo Fisher Scientific) pre-coupled to Alexa Fluor 647 was used as secondary 
antibodies in flow cytometry experiments. Rabbit antisera raised against Nef (NIH AIDS 
Reagent Program) was used as primary antibodies in intracellular staining. Brillant 
Violet 421 (BV421)-conjugated donkey anti-rabbit antibodies (Biolegend) was used as 
secondary antibodies to detect Nef antisera binding by flow cytometry. Fluorescein 
isothiocyanate (FITC)- or phycoerythrin (PE)-conjugated mouse anti-human CD4 (clone 
OKT4; Biolegend) was used for cell-surface staining of HIV-1-infected primary CD4+ T 
cells, while PE- or FITC-conjugated mouse anti-HIV-1 p24 (clone KC57; Beckman Coulter) 
was used for intracellular staining.
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Flow cytometry analysis of cell-surface staining

Cell surface staining was performed at 48 h post-infection. Mock- or HIV-1-infected 
primary CD4+ T cells were incubated for 30 min at 37°C with anti-Env mAbs (5 µg/mL) 
or HIV-IG (50 µg/mL). Cells were then washed once with phosphate-buffered saline 
(PBS) and stained with the appropriate Alexa Fluor 647-conjugated secondary antibody 
(2 µg/mL) for 20 min at room temperature. Cells were then stained with FITC- or 
PE-conjugated mouse anti-CD4 Abs. After two PBS washes, cells were fixed in a 2% 
PBS–formaldehyde solution. Infected cells were then permeabilized using the Cyto­
fix/Cytoperm Fixation/Permeabilization Kit (BD Biosciences, Mississauga, ON, Canada) 
and stained intracellularly using PE- or FITC-conjugated mouse anti-p24 mAb (clone 
KC57; Beckman Coulter, Brea, CA, USA; 1:100 dilution). The percentage of infected cells 
(p24+) was determined by gating on the living cell population according to a viabil­
ity dye staining (Aqua Vivid; Thermo Fisher Scientific). Alternatively, cells were stained 
intracellularly with rabbit antisera raised against Nef (1:1,000) followed by BV421-conju­
gated anti-rabbit secondary antibody. Samples were acquired on an LSR II cytometer (BD 
Biosciences), and data analysis was performed using FlowJo v10.5.3 (Tree Star, Ashland, 
OR, USA).

Antibody-dependent cellular cytotoxicity (ADCC) assay

Measurement of ADCC using a fluorescence-activated cell sorting (FACS)-based infected 
cell elimination (ICE) assay was performed at 48 h post-infection. Briefly, HIV-1-infected 
primary CD4+ T cells were stained with AquaVivid viability dye and cell proliferation dye 
eFluor670 (Thermo Fisher Scientific) and used as target cells. Cryopreserved autolo­
gous PBMC effector cells, stained with cell proliferation dye eFluor450 (Thermo Fisher 
Scientific), were added at an effector:target ratio of 10:1 in 96-well V-bottom plates 
(Corning, Corning, NY). Anti-Env mAbs (5 µg/mL) was added to appropriate wells, and 
cells were incubated for 5 min at room temperature. The plates were subsequently 
centrifuged for 1 min at 300 × g, and incubated at 37°C, 5% CO2 for 5 h before being 
stained with FITC- or PE-conjugated mouse anti-CD4 Abs. After one PBS wash, cells 
were fixed in a 2% PBS–formaldehyde solution. Infected cells were then permeabilized 
using the Cytofix/Cytoperm Fixation/Permeabilization Kit (BD Biosciences, Mississauga, 
ON, Canada) and stained intracellularly using PE- or FITC-conjugated mouse anti-p24 
mAb (clone KC57; Beckman Coulter, Brea, CA, USA; 1:100 dilution). Productively infected 
cells were identified based on p24 and CD4 detection as described above. Samples were 
acquired on an LSR II cytometer (BD Biosciences), and data analysis was performed using 
FlowJo v10.5.3 (Tree Star). The percentage of ADCC was calculated with the following 
formula: [(% of CD4lowp24high cells in Targets plus Effectors) − (% of CD4lowp24high cells in 
Targets plus Effectors plus plasma or mAbs) / (% of CD4lowp24high cells in Targets) × 100] 
by gating on live target cells.

RNA flow-FISH analysis

All buffers and fixation reagents were provided with a kit, with the exception of flow 
cytometry staining buffer (2% FCS/PBS). The HIV-1 RNA flow-FISH assay was performed 
as previously described and as per manufacturer’s instructions (64–66). Briefly, cells 
were harvested 48 h post-infection and stained with the anti-Env mAbs A32 or PGT126 
as described above. Cells were then stained with Fixable Viability Dye (20 min, 4°C, 
Fixable LiveDead, eBioscience) and then with a mix containing a brilliant stain buffer 
(BD Biosciences) and the surface markers for CD4+ T cell detection (CD3 and CD4) and 
CD8/NK/B cells and macrophage exclusions (CD8, CD56, CD19, CD16) (30 min, 4°C). 
Samples were fixed, permeabilized with buffers provided by the manufacturer, and 
labeled intracellularly for the structural HIV-1 p24 protein with the anti-p24 clone KC57 
antibody (30 min RT followed by 30 min 4°C, Beckman Coulter). HIV-1 RNA probing 
was performed using PrimeFlow RNA Assay (ThermoFisher). HIV-1 RNA was labeled 
using HIV-1 env RNA (Thermofisher; catalog number VF6-6000978) and HIV-1 nef RNA 
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(Thermofisher; catalog number (VF4-6000647) probe sets. HIV-1 env RNA was designed 
based on CH077TF full env sequence, whereas HIV-1 nef RNA was based on consensus 
B HIV-1 sequence. Each probeset allows the hybridization of specific complementary 
branched DNA nanostructure with different excitation/emission spectra. The probeset 
was diluted 1:5 in diluent and hybridized to the target mRNAs for 2 h at 40°C. Samples 
were washed to remove excess probes and stored overnight in the presence of RNAsin. 
Signal amplification was achieved by performing sequential hybridization with DNA 
branches (i.e., Pre-Amplifier and Amplifier). The first DNA branch in the Pre-Amplifier Mix 
was added at a 1:1 ratio and was allowed to hybridize for 1.5 h at 40°C. Then the second 
DNA branch in the Amplifier Mix was added and hybridized for 1.5 h at 40°C (64–66). 
Amplified mRNAs were labeled with fluorescently tagged probes allowing hybridization 
for 1 h at 40°C. Samples were acquired on an LSRFortessa (BD Biosciences) and analyzed 
using FlowJo (BD, V10.7.0). Unspecific binding of the fluorescent-labeled branched probe 
in the multiplex kit can lead to a low level of false-positive background noise, which, if 
present, is detected across all the four channels corresponding to the types of labeled 
probes (AF488, AF594, AF647, AF750). To decrease background noise, we thus left the 
AF594 channel vacant and excluded false-positive events based on fluorescence in this 
channel before further gating. Gates were set on the HIV-uninfected donor control or 
unstimulated control where appropriate.

Statistical analysis

Statistics were analyzed using GraphPad Prism version 9.1.0 (GraphPad, San Diego, CA, 
USA). Every data set was tested for statistical normality, and this information was used to 
apply the appropriate (parametric or nonparametric) statistical test. P values < 0.05 were 
considered significant; significance values are indicated as *P < 0.05, **P < 0.01, ***P < 
0.001, ****P < 0.0001.

RESULTS

Expression of CD4, p24, and Nef defines recognition of HIV-1-infected CD4+ T 
cells by nnAbs and bnAbs

To characterize cell populations targeted by nnAbs and bnAbs in HIV-1-infected primary 
CD4+ T cells, we used multiparametric flow cytometry to simultaneously probe CD4 
and viral protein expression. Activated primary CD4+ T cells were mock infected or 
infected with the transmitted-founder virus CH077 (CH077TF). Two days post-infection, 
cells were stained with a panel of nnAbs and bnAbs, followed by appropriate secondary 
Abs. Cells were then stained for cell-surface CD4 prior to staining for intracellular HIV-1 
p24. Given that the nef gene is abundantly expressed during the early phase of the HIV-1 
replication cycle (72, 73), we also evaluated the expression of this accessory protein by 
intracellular staining as previously described (62). The different cell populations were 
gated based on cell-surface CD4 and intracellular p24 detection as shown in Fig. 1A. 
As expected, uninfected CD4highp24- cells were not recognized by bnAbs of various 
specificities (PGT126, PG9, 3BNC117, PGT151, and 2G12) (Fig. 1B through D) (Table 1). 
Interestingly, this population was efficiently recognized by CD4i nnAbs targeting the 
coreceptor-binding site (17b) or the gp120 inner domain (A32, C11) as well as a pool of 
purified immunoglobulins from PLWH (HIV-IG). However, the CD4highp24- cells were not 
recognized by the CD4i gp41-specific nnAbs F240. The absence of binding by bnAbs 
and F240 suggested that these cells were likely coated with shed gp120 rather than 
presenting CD4-bound cell-surface Env trimer. This is in line with previous work showing 
that uninfected CD4+ T cells expose CD4i epitopes on their cell surface after interacting 
with gp120 shed from productively infected cells within the same culture (34, 74, 75). 
Indeed, introduction of a CD4bs (D368R) mutation into CH077TF that prevents Env–CD4 
interaction (18, 24, 76), abrogated the recognition of the CD4highp24low population by all 
gp120-specific nnAbs tested (Fig. S1A and B).

In addition to productively infected CD4+ T cells, which efficiently downregula­
ted CD4 (CD4lowp24high), we identified a subset of CD4highp24low cells, as previously 
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reported (52, 59, 77–81). This CD4highp24low subset was efficiently recognized both by 
the gp120-specific nnAbs and HIV-IG, but was resistant to bnAbs binding (Fig. 1B and 
D). This population was also recognized by the gp41-specific F240 nnAb, suggesting the 
presence of trimeric Env bound to CD4. However, recognition of the CD4highp24low cells 
by CD4i nnAbs was substantially reduced upon the introduction of the D368R mutation 
(Fig. S1A and B). This mutation also specifically reduced the proportion of CD4highp24low 

cells (Fig. S1C). These findings, along with the observation that these cells do not express 
Nef (Fig. 2), suggest that CD4highp24low cells are not productively infected, but contain 
CD4–Env complexes on their surface resulting from the binding of shed gp120 and/or 
viral particles.

As expected, cells that expressed a high level of p24 (CD4lowp24high) were poorly 
recognized by nnAbs (Fig. 1B through D). We reasoned that this was because they 
efficiently downregulated cell-surface CD4, which precludes premature Env triggering, 
and thus prevents the exposure of normally occluded epitopes (24, 27, 34). CD4lowp24high 

cells also expressed Nef (Fig. 2) and were efficiently recognized by bnAbs, known to 
preferentially recognize Env in its “closed” conformation (Fig. 1B through D). However, 
when we used a nef-defective virus, these cells were efficiently recognized by nnAbs (Fig. 
1E through H), in agreement with previous observations (8, 27, 34, 38, 40, 62, 82).

To test whether our findings extend to IMCs widely used in the ADCC field (29, 36, 
54, 56, 77, 81, 83–85), we infected primary CD4+ T cells with viruses produced from a 
pNL4.3 backbone expressing different Envs, including BaL and NL4.3. As shown in Fig. 
S2A and B, the patterns of bnAbs and nnAbs binding were very similar to those observed 
for CH077TF. The CD4highp24− and CD4highp24low cell populations were preferentially 
recognized by the nnAbs, while the CD4lowp24high cells were efficiently targeted by the 
bnAbs. Interestingly, despite similar levels of productive infection (CD4lowp24high, Fig. 

FIG 1 Recognition of HIV-1-infected primary CD4+ T cells by bnAbs and nnAbs. Primary CD4+ T cells, mock infected or infected with the transmitted-founder 

virus CH077, either wild type (WT) or defective for Nef expression (nef-), were stained with a panel of bnAbs and nnAbs, followed with appropriate secondary 

Abs. Cells were then stained for cell-surface CD4 prior to detection of intracellular HIV-1 p24. (A, E) Example of flow cytometry gating strategy based on 

cell-surface CD4 and intracellular p24 detection. (B, F) Histograms depicting representative staining with bnAbs (green) and nnAbs (black). (C, G) Graphs shown 

represent the median fluorescence intensities (MFI) obtained for at least six independent staining with the different mAbs. Error bars indicate means ± standard 

errors of the means. (D, H) Graphs shown represent the mean MFI obtained with each mAb. Statistical significance was tested using Mann–Whitney U test (**P < 

0.01; ns, non-significant).
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S2C), an enrichment of the CD4highp24low population was detected in the context of 
infection with the NL4.3 and BaL Envs compared to Envs from primary viruses (CH058TF, 
CH040TF, SF162, and YU2) (Fig. S2D). The reasons for this are unclear but may be due to 
greater gp120 shedding of the tier 1 NL4.3 and BaL Env.

Taken together, our results indicate that cells recognized by nnAbs express high levels 
of CD4, are either p24low or p24−, and are negative for Nef expression. In contrast, bnAbs 
recognize cells that efficiently downregulate CD4 and express a high level of p24 and Nef 
proteins.

env mRNA is predominantly detected in cells that already downregulated 
CD4

To better understand the underlying mechanisms behind the differential recognition 
of infected cells by bNAbs versus nnAbs, we used a previously described RNAflow 
cytometric fluorescence in situ hybridization (RNA flow-FISH) method (64–66). This 
method identifies productively infected cells by detecting cellular HIV-1 mRNA using 
in situ RNA hybridization and intracellular Ab staining for the HIV-1 p24 protein. In 
the context of these experiments, env and nef mRNA probes were used to identify 
productively infected CD4+ T cells. Briefly, primary CD4 T cells were mock infected or 
infected with the CH077TF IMC. Two days post-infection, cells were stained for surface 
CD4 before fixation and permeabilization to enable detection of the HIV-1 p24 antigen 
and HIV-1 mRNAs. Cell populations were first defined based on their cell-surface CD4 
and intracellular p24 co-expression, as presented in Fig. 3A. Productively infected cells 
were identified as nef mRNA+/env mRNA+. The vast majority of cells with detectable 
cell-surface CD4 (CD4highp24− or CD4highp24low) were negative for HIV-1 mRNA (Fig. 3A 
and B), while cells that efficiently downmodulated CD4 (CD4lowp24low and CD4lowp24high) 
were enriched for nef and env mRNA transcripts (Fig. 3A and B; Fig. S3). When gating on 
productively infected cells based on nef and env mRNA detection, we confirmed that the 
CD4lowp24high cells represent the major source of productively infected cells (Fig. 3C and 
D). These results show that env mRNA is predominantly expressed by HIV-1-infected cells 
that already downregulated CD4 (CD4lowp24low and CD4lowp24high) (Fig. S3). This analysis 
also captured stages of infection (CD4lowp24low), where CD4 is already downmodulated, 
while env mRNA expression intensifies, suggesting that CD4 downmodulation precedes 
env mRNA expression.

TABLE 1 Antibody specificity

Antibody Epitope

bnAbs
  2G12 Outer domain of gp120
  PGT121 V3 glycan supersite
  PGT126 V3 glycan supersite
  10–1074 V3 glycan supersite
  PGT151 gp120-gp41 interface
  3BNC117 CD4-binding site
  VRC03 CD4-binding site
  PG9 V2 apex
nnAbs
  F240 gp41 immunodominant region
  17b Coreceptor binding site
  19b V3 crown
  A32 gp120 inner domain
  C11 gp120 inner domain
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Cells targeted by A32 are negative for HIV-1 mRNA

We next combined flow cytometry and RNA flow-FISH methods to compare the capacity 
of nnAbs and bnAbs to bind productively infected cells. Mock- or CH077TF-infected 
primary CD4 T cells were first stained with the nnAb A32 or the bNAb PGT126. Cells were 
then stained for cell-surface CD4 detection, intracellular p24, and HIV-1 mRNAs. Produc­
tively infected cells were identified based on the simultaneous detection of nef and env 
mRNA transcripts (Fig. 4A). As shown in Fig. 4B and C, productively infected cells (env/nef 
mRNA+ cells) were recognized by PGT126, but not by A32. In contrast, env/nef mRNA− 
cells were targeted by A32, but not by PGT126. Similar results were obtained when cells 
were classified by Ab recognition (Fig. 4D through F; Fig. S4), with the majority of 
PGT126+ cells co-expressing HIV-1 mRNA. In contrast, cells recognized by A32 were 
negative for env and nef mRNA (Fig. 4D through F; Fig. S4). These results indicate that 
cells targeted by A32 do not express env mRNA (Fig. S4), are not productively infected, 
and thus are likely coated with gp120 and/or viral particles. The observation that not all 
HIV-1 mRNA+ cells are recognized by PGT126 could be attributed to cells in an early 
stage of infection, where env is expressed, but the viral protein has not yet reached the 
cell surface. Supporting this interpretation, the CD4lowp24low that have already downmo­
dulated CD4 and positive for nef and env mRNA were not efficiently recognized by either 
PGT126 or A32 (Fig. S5).

FIG 2 Nef is expressed in HIV-1-infected cells undergoing CD4 downregulation and expressing high 

levels of p24. Primary CD4+ T cells, mock infected or infected with the transmitted-founder virus CH077, 

either WT or defective for Nef expression (nef-) were stained for cell-surface CD4 prior to detection 

of intracellular HIV-1 p24 and Nef expression. (A) Histograms depicting representative intracellular 

Nef staining when gating on CD4highp24−, CD4highp24low, or CD4lowp24high cells. In the context of cells 

infected with CH077TF nef-, in the absence of Nef-mediated CD4 downmodulation, the p24high remained 

CD4high (CD4highp24high). (B) Quantification of the median fluorescence intensities (MFI) obtained for 

six independent experiments. Error bars indicate means ± standard errors of the means. Statistical 

significance was tested using multiple Mann–Whitney tests with a Holm–Sidak post-test (**P < 0.01; ns, 

non-significant).
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Ex vivo expanded CD4+ T cells isolated from PLWH are resistant to ADCC 
responses mediated by nnAbs

Our results indicated that productively infected cells are principally CD4lowp24high, express 
nef and env mRNA, and are not recognized by nnAbs. To confirm these findings with 
primary clinical samples, we expanded CD4+ T cells from PLWH. Briefly, CD4+ T cells were 
isolated from six chronically infected individuals and activated ex vivo using PHA-L/IL-2 
(25, 39, 41). CD4+ T cells from people without HIV were used as controls. Viral replication 
was monitored over time by intracellular p24 staining (Fig. 5A). Upon expansion, CD4+ T 
cells were stained with a panel of bnAbs and nnAb (Table 1), followed by the appropriate 
secondary Abs. Cells were stained for cell-surface CD4 prior to the detection of intracellu­
lar HIV-1 p24 and Nef proteins (Fig. 5B; Fig. S6). Consistent with the results obtained with 
IMC infections (Fig. 2), productively infected CD4lowp24high cells were the only ones that 
were also positive for the Nef protein (Fig. S6). These cells were efficiently recognized by 
bnAbs and largely resistant to nnAbs binding (Fig. 5C through E). In contrast, nnAbs 
mainly recognized CD4high cells that were either p24− or p24low as well as negative for Nef 
expression (Fig. 5C through E; Fig. S6). To evaluate the susceptibility of productively 
infected cells to ADCC responses mediated by bnAbs and nnAbs, expanded endoge­
nously infected cells were used as target cells and autologous peripheral blood mononu­
clear cells (PBMCs) as effectors using a FACS-based ADCC assay (Fig. 6). Consistent with 
antibody binding, productively infected CD4lowp24high cells were resistant to ADCC 
mediated by nnAbs, but sensitive to those mediated by bnAbs.

FIG 3 HIV-1 late transcripts are mostly detected among cells that downregulated CD4. Purified primary CD4+ T cells, mock infected or infected with the 

transmitted-founder virus CH077 WT, were stained for cell-surface CD4 prior to detection of intracellular HIV-1 p24 and env mRNA and nef mRNA by RNA 

flow-FISH. (A) Representative example of flow cytometry gating strategy based on cell-surface CD4 and intracellular p24 detection and representative example 

of RNA flow-FISH detection of env and nef mRNA among the different cell populations. (B) Quantification of the percentage of env mRNA+ nef mRNA+ cells 

detected among the different cell populations in three different donors. (C) Alternatively, productively infected cells were first identified based on env and nef 

mRNA detection (D) Quantification of the percentage of CD4highp24−, CD4highp24low, CD4lowp24low, and CD4lowp24high cells among the env and nef mRNA+ cells 

with three different donors. Statistical significance was tested using one-way analysis of variance (ANOVA) with a Holm–Sidak post-test (****P < 0.0001; ns, 

non-significant).
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A32 does not affect HIV-1 replication or the size of HIV-1 reservoir in vivo

Our results indicate that nnAbs, such as A32, target nonproductively infected CD4+ T 
cells. It has been suggested that these cells could be in a very early stage of infection, 
during viral entry, before viral gene expression (86). Specifically, it has previously been 
shown that non-neutralizing Env epitopes, such as that targeted by A32, become 
transiently exposed during viral entry and could therefore represent a suitable target for 
ADCC at this stage (86). We hypothesized that if this was the case, then this cell popula­
tion should be eliminated by A32 and therefore decrease HIV-1 replication in vivo. To 
evaluate this possibility, we tested whether A32 affected viral replication in humanized 
mice (hu-mice). Briefly, NOD.Cg-Prkdcscid IL2rg−/− Tg(Hu-IL15) (NSG-15) hu-mice engrafted 
with human peripheral blood lymphocytes (hu-PBL) were infected with the primary 
isolate HIV-1JRCSF (Fig. 7A). This hu-mice model was previously shown to support HIV-1 
replication and antibody Fc-effector function in vivo (25, 87). Infected hu-mice received 
nnAb A32 administered subcutaneously (S.C.) at days 6 and 9 post-infection (Fig. 7A). As 
controls, infected mice were also treated with the bnAbs 3BNC117 or its Fc gamma 
receptor (FcγR) null binding variant (GRLR) (88). Hu-mice were monitored for plasma viral 
loads (PVLs) and peripheral CD4+ T cells overtime (Fig. 7B and C). In the absence of 
antibody treatment, mice became viremic, reaching an average PVL of 2.2 × 107 

copies/mL at day 11. As previously reported (42, 87), viral replication was associated with 
a loss of peripheral CD4+ T cells. Treatment with 3BNC117 (either WT or GRLR) reduced 
viral replication and partially restored CD4+ T cell levels in peripheral blood and several 
tissues. This is likely due to the neutralizing activities of both 3BNC117 variants. Although 
the GRLR mutations decrease FcγR binding, it does not affect the neutralizing efficacy of 
this antibody (88). In contrast, A32 was ineffective in reducing reduce viral replication or 
restoring CD4+ T cell levels (Fig. 7B through D). Interestingly, A32 treatment further 

FIG 4 Productively infected cells are resistant to recognition by A32. Purified primary CD4+ T cells, mock infected or infected with the transmitted-founder 

virus CH077 WT, were stained with A32 or PGT126, followed with appropriate secondary Abs. Cells were then stained for cell-surface CD4 prior to detection of 

intracellular HIV-1 p24 and env mRNA and nef mRNA by RNAflow FISH. (A–C) In a first analysis, HIV-infected cells were identified, then A32 and PGT126 binding 

was evaluated. (A) Example of RNAflow FISH gating strategy based on env and nef mRNA detection. (B) Example of antibody binding among the env/nef mRNA− 

and env/nef mRNA+ cell population. (C) Quantification of the percentage of cells recognized by either A32 or PGT126 among the env/nef mRNA− and env/nef 

mRNA+ cell population with three different donors. (D–F) In a second alternative analysis, Ab-binding cells were first identified, and the HIV-infection status 

was then evaluated. (D) Example of flow cytometry gating strategy based on A32 or PGT126 binding. (E) Example of env/nef mRNA detection among the cells 

recognized (Ab+) or not (Ab−) by indicated mAbs. (F) Quantification of the percentage of env/nef mRNA+ cells among the cells recognized (Ab+) or not (Ab−) by 

indicated mAbs with three donors. Statistical significance was tested using a two-way ANOVA with a Holm–Sidak post-test (*P < 0.05,**P < 0.01, ****P < 0.0001; 

ns, non-significant).
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reduced CD4+ T cell levels in tissues relative to mock-treated mice (Fig. 7D), consistent 
with its capacity to recognize and eliminate uninfected bystander cells coated with 
soluble gp120 via ADCC (34, 74, 75). This reduction in CD4 T cell count was particularly 
significant when CD4+ T cell levels were considered across all tissues in mice treated with 
A32 nnAb alone (Fig. S7). Finally, treatment with 3BNC117 WT led to a significant 
reduction in the HIV-1 reservoir in multiple tissues, a phenotype not observed with A32 
and not fully achieved by its FcγR null binding variant (3BNC117 GRLR, Fig. 7E). These 
results are in line with previous work demonstrating that bnAbs require Fc effector 
functions for in vivo activity (88). These results indicate that A32 does not reduce HIV-1 
replication or the size of the reservoir in hu-mice.

DISCUSSION

ADCC represents an effective immune response involved in the clearance of virally 
infected cells. This adaptive immune response relies on the capacity of Abs to act as a 
bridge between infected cells and effector cells. While the Abs recognize infected cells 
through binding of surface Env via their Fab domain, their Fc domain allows the recruit­
ment and the stimulation of FcγR bearing effector cells, leading to the killing of infected 
cells. ADCC-mediating Abs therefore represent attractive therapeutics for HIV cure 
strategies. However, the ability of Abs to recognize productively infected cells and to 
mediate ADCC responses depends on Env conformation (8). While bnAbs target epitopes 
on the prefusion “closed” Env trimer, nnAbs recognize conserved epitopes that are 

FIG 5 Ex vivo expanded CD4+ T cells isolated from PLWH are preferentially targeted by bNAbs. Ex vivo expanded CD4+ T cells from six PLWH were stained with 

bnAbs and nnAbs, followed by appropriate secondary Abs. Cells were then stained for surface CD4 prior to detection of intracellular HIV-1 p24. (A) Percentage 

of p24+ upon activation overtime. (B) Example of flow cytometry gating based on CD4 and p24 detection. (C) Histograms depicting representative staining with 

bnAbs (Green) and nnAbs (Black). (D) Median fluorescence intensities (MFI) obtained with primary CD4+ T cells from six PLWH. (E) Graphs shown represent the 

mean MFI obtained with each mAb. Each symbol represents a different HIV +donor. Statistical significance was tested using Mann–Whitney U test (*P < 0.05, 

****P < 0.0001).

Research Article mBio

November 2024  Volume 15  Issue 11 10.1128/mbio.01827-2412

https://doi.org/10.1128/mbio.01827-24


normally occluded but are exposed when Env interacts with CD4 and adopt an “open” 
conformation (24, 27, 30, 34–37). Here, we provide evidence that env mRNA expression is 
mainly restricted to cells that already downmodulated cell-surface CD4 (Fig. 3; Fig. S3). 
This prevents CD4i Env epitopes exposure on productively infected cells, thus contribu­
ting to their resistance to CD4i nnAbs.

Non-neutralizing Abs, such as those targeting the CoRBS and the inner domain of 
gp120 are elicited during natural infection due to exposure to “viral debris” acting as 
immunodominant decoy (24, 26, 29, 35, 89, 90). It is therefore not surprising that HIV-1 
has evolved mechanisms to prevent surface Env–CD4 interaction to avoid Env recogni­
tion by these nnAbs, which have potent Fc-effector functions. HIV-1 utilizes Nef, Vpu, and 
Env to decrease cell surface CD4 on infected cells (91). Nef is expressed at high levels 
early during infection from a multi-spliced transcript (72, 73) and downregulates CD4 by 
enhancing its internalization and lysosome degradation (92–96). Vpu and Env are 
expressed from a Rev-depended single-spliced bicistronic mRNA later during the viral life 
cycle (97). Both Vpu and Env interfere with the transport of newly synthesized CD4 to the 
cell surface (98–100). Using RNA flow-FISH methods, we show that env mRNA is almost 
exclusively detected in cells positive for nef mRNA that efficiently downregulated CD4. 
The majority of cells expressing HIV-1 mRNA substantially downregulated surface CD4 
and express high levels of p24 and Nef proteins (CD4lowp24high cells). This is consistent 
with previous findings demonstrating that CD4 is downmodulated from the surface of 
CD4 T cells positive for spliced env viral RNA in acutely infected PLWH (101). We also 
captured the stage of infection (CD4lowp24low) where CD4 is already downmodulated 
while env mRNA and p24 are not fully expressed. Importantly, these cells were not 
efficiently recognized by either PGT126 or A32, suggesting that the Env protein is not yet 
fully expressed at the cell surface (Fig. S5). This suggests that Nef-mediated CD4 down­
modulation precedes Env expression (Fig. 3; Fig. S3). Accordingly, productively infected 
cells failed to expose CD4i epitopes, explaining their resistance to ADCC mediated by 
nnAbs, while showing susceptibility to ADCC mediated by bNabs (Fig. 1 and 4 to 6). 
Furthermore, CD4 is also efficiently downregulated on the surface of latently infected 
cells upon reactivation with potent latency reversal agents (102), suggesting that 
reactivated cells should exhibit similar resistance to nnAbs-based therapy. Our findings, 
therefore, provide key insights for the development of immunotherapy-based cure 
strategies. Interestingly, a variation in bnAbs binding and ADCC was observed in ex 

FIG 6 Ex vivo expanded CD4+ T cells isolated from PLWH are resistant to ADCC mediated by nnAbs. Ex vivo expanded CD4 T cells from PLWH were used as 

target cells, while autologous PBMCs were used as effector cells in our FACS-based ADCC assay. (A) Graph shown represents the percentage of ADCC against 

the CD4lowp24high cells with the single mAbs and (B) nnAbs vs bnAbs. (A) Each symbol represents results obtained with cells from a different PLWH. Statistical 

significance was tested using unpaired t-test (****P < 0.0001).
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vivo-expanded CD4+ T cells from PLWH relative to in vitro-infected cells (Fig. 1 and 5). 
This variation likely reflects the heterogeneity of reactivated viruses present in the PLWH 
samples. As bnAbs target variable regions of Env, the observed differences may be due to 
variations in Env sequences among the reactivated viruses. Similarly, the variability in the 
recognition of CD4highp24- cells by the nnAbs could be attributed to differing levels of Env 
shedding by the reactivated viruses.

Our findings are also consistent with a growing number of studies demonstrating the 
importance of bnAbs in mediating ADCC against cells productively infected with primary 
HIV-1 isolates (33, 34, 36). nnAbs recognize productively infected cells only when CD4 
is not completely downregulated, as is the case in infections with Nef-defective virus 
(Fig. 1). This is also the case when nef-deficient IMCs are used for ADCC detection (29, 
50–61, 78, 80, 84). Most of these IMCs express the Renilla luciferase (LucR) reporter gene 
upstream of the nef sequence and use a T2A ribosome-skipping peptide to promote Nef 
expression (63). Despite documented evidence of reduced Nef expression (40, 62, 63), 

FIG 7 A32 nnAb does not impact viral replication or the size of the reservoir in vivo. (A) Experimental outline. NSG-15-Hu-PBL mice were infected with HIV-1 

JRCSF intraperitoneally. At days 6 and 9 post infection, mice were administered 1.5 mg of A32 or 3BNC117 (WT or GRLR) mAb subcutaneously (S.C.). (B) Mice 

were bled routinely for plasma viral load (PVL) and flow cytometry analysis. PVL levels were measured by quantitative real-time PCR (limit of detection = 300 

copies/mL, dotted line). (C) Percentage of CD4+ T cells in peripheral blood was evaluated by flow cytometry. At least six mice were used for each treatment. (D, E) 

Tissues of JRCSF-infected NSG-15 hu-PBL mice, treated or not with A32 or 3BNC117 (WT or GRLR), were harvested at day 11. (D) Percentage of CD4+ T cells was 

evaluated by flow cytometry. (E) CD4+ T cells were isolated for real-time PCR analysis of HIV DNA. Each dot represents the mean values ± SEM. S.C., subcutaneous; 

I.P., intraperitoneal; BM, bone marrow; mock treated, no antibody. Statistical significance was tested using one-way ANOVA with a Holm–Sidak post-test or a 

Kruskal–Wallis test with a Dunn’s post-test (*P < 0.05,**P < 0.01,***P < 0.001).
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these IMCs continue to be used in the ADCC field (52, 53, 55, 56, 58, 59, 103). While some 
studies have suggested that Vpu can compensate for the absence of Nef (52, 53), our 
findings refute this. Given its early expression and ability to target cell surface-expressed 
CD4 molecules, Nef plays the most prominent role in CD4 downmodulation (62, 91, 104). 
In the absence of Nef expression, we find that Vpu is not sufficient to downregulate 
cell-surface CD4, leading to CD4i epitope exposure and efficient nnAbs binding (Fig. 
1). Other studies reporting Fc-effector functions of nnAbs employed assays unable to 
differentiate the ADCC responses directed against HIV-1-infected cells versus uninfec­
ted bystander cells (46, 50, 84, 105, 106). The presence of uninfected bystander cells 
coated with gp120 shed from productively infected cells impacts ADCC measurement 
by introducing a significant bias toward CD4i nnAbs (34), which is also the case when 
ADCC assays rely solely on target cells coated with gp120 or inactivated virions (34, 51, 
61, 80, 81, 107, 108). Utilization of such assays, as well as nef-defective IMCs, contribute 
to the propagation of a misleading concept that nnAbs can effectively mediate ADCC 
against HIV-1-infected cells. nnAbs, such as A32, not only fail to eliminate HIV-1-infected 
cells but also have potentially detrimental effects by accelerating the elimination of 
uninfected bystander cells (34, 75), as shown in tissues of HIV-1-infected humanized mice 
(Fig. 7; Fig. S7). In this context, the absence of an antiviral effect of A32 in hu-mice is 
not surprising. Studies in non-human primate showed that elicitation of A32-like Abs by 
gp120 immunization or passive administration of A32 failed to confer protection against 
simian–human immunodeficiency virus challenges (85, 109). Similarly, a combination of 
anti-CoRBS and anti-cluster A (A32) nnAbs proved ineffective in delaying viral rebound 
after ART interruption in humanized mouse model supporting Fc effector functions (42).

The inability of A32 to recognize productively infected cells, to influence viral 
replication and reduce the size of reservoir in hu-mice, is a function of its epitope, which 
is occluded in the unliganded trimer. To our knowledge, exposure of this epitope at the 
surface of productively infected cells is possible in only two ways: either by membrane-
bound CD4 (27) or the combination of potent small CD4-mimetic compounds (CD4mc) 
and anti-CoRBS Abs (28). Of note, the cocktail of A32, 17b (CoRBS Ab), and CD4mc was 
reported to significantly reduce the size of the reservoir in hu-mice (42).

In conclusion, we show that env mRNA is almost exclusively expressed by pro­
ductively infected cells that downregulated cell-surface CD4. This suggests that CD4 
downmodulation precedes Env expression, thus preventing exposure of vulnerable 
CD4-induced Env epitopes and evading ADCC mediated by nnAbs. These results must 
be taken into account when considering the use of nnAbs for preventative or cure 
strategies.
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