# RESEARCH

# **Open Access**

# The voice of depression: speech features as biomarkers for major depressive disorder



Felix Menne<sup>1\*</sup>, Felix Dörr<sup>1</sup>, Julia Schräder<sup>2,3</sup>, Johannes Tröger<sup>1</sup>, Ute Habel<sup>2,3</sup>, Alexandra König<sup>1,4</sup> and Lisa Wagels<sup>2,3</sup>

# Abstract

**Background** Psychiatry faces a challenge due to the lack of objective biomarkers, as current assessments are based on subjective evaluations. Automated speech analysis shows promise in detecting symptom severity in depressed patients. This project aimed to identify discriminating speech features between patients with major depressive disorder (MDD) and healthy controls (HCs) by examining associations with symptom severity measures.

**Methods** Forty-four MDD patients from the Psychiatry Department, University Hospital Aachen, Germany and fiftytwo HCs were recruited. Participants described positive and negative life events, which were recorded for analysis. The Beck Depression Inventory (BDI-II) and the Hamilton Rating Scale for Depression gauged depression severity. Transcribed audio recordings underwent feature extraction, including acoustics, speech rate, and content. Machine learning models including speech features and neuropsychological assessments, were used to differentiate between the MDD patients and HCs.

**Results** Acoustic variables such as pitch and loudness differed significantly between the MDD patients and HCs (effect sizes  $\eta^2$  between 0.183 and 0.3, p < 0.001). Furthermore, variables pertaining to temporality, lexical richness, and speech sentiment displayed moderate to high effect sizes ( $\eta^2$  between 0.062 and 0.143, p < 0.02). A support vector machine (SVM) model based on 10 acoustic features showed a high performance (AUC = 0.93) in differentiating between HCs and patients with MDD, comparable to an SVM based on the BDI-II (AUC = 0.99, p = 0.01).

**Conclusions** This study identified robust speech features associated with MDD. A machine learning model based on speech features yielded similar results to an established pen-and-paper depression assessment. In the future, these findings may shape voice-based biomarkers, enhancing clinical diagnosis and MDD monitoring.

Keywords Precision psychiatry, Depression, Speech biomarkers, Machine learning

\*Correspondence:

felix.menne@ki-elements.de

Aachen University, Aachen, Germany

<sup>3</sup>Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany <sup>4</sup>Université Côte d'Azur, Centre Hospitalier et Universitaire, Clinique Gériatrique du Cerveau et du Mouvement, Centre Mémoire de Ressources et de Recherche, Nice, France



© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, wisit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Felix Menne

<sup>&</sup>lt;sup>1</sup>ki:elements GmbH, Bleichstr. 27, 66111 Saarbrücken, Germany <sup>2</sup>Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachan, University, Aachan, Germany

#### Background

Major depressive disorder (MDD) is one of the most prevalent psychiatric conditions, with varying prevalence rates across regions, affecting up to approximately 10% of the population [1]. The economic burden of MDD was estimated at \$326.2 billion for 2018 in the US alone [2]. Additionally, the condition is linked to lasting quality of life deficits even after remission [3] and persisting disability [4]. MDD stems from various factors, including genetic, biological, environmental, and psychological influences [5]. Among other symptoms, the disorder is characterised by persistent feelings of sadness, hopelessness, and a lack of interest or pleasure in daily activities [6]. Treatment options for MDD often involve a combination of psychotherapy, medication, and lifestyle changes [7].

Compared to other areas of medicine such as neurology, where objective biomarkers are well-established [8], psychiatry significantly lags behind, often relying on subjective assessments by patients and clinicians. However, recent advancements have demonstrated, for instance, that integrating neuroimaging, genetic, and clinical predictors through machine learning has enabled the prediction of therapeutic outcomes in depression patients with an accuracy of 0.82 [9]. A growing number of multimodal digital biomarkers have emerged to objectively assess behavioural or biological information for psychiatric conditions [10, 11]. Among these, speech analysis presents significant opportunities for studying disease-related characteristics [12], as psychiatric symptoms often manifest in speech and language. Speech has been recognised as a potential target in the context of predicting selfharm, suicidal behaviour, substance abuse, depression, and disease recurrence [13]. The relevant speech patterns might include speech rate, coherence, and content for various psychiatric conditions, such as depression, schizophrenia, or posttraumatic stress disorder [14-17]. Advances in computational linguistics, natural language processing, and speech recognition have facilitated the use of automatic speech analysis as an objective clinical measurement of psychiatric symptoms [18, 19].

Natural speech tasks can effectively elicit emotional responses by asking participants to describe events that recently triggered strong emotions. Unlike simple vocal exercises or reading tasks, these tasks can capture the acoustic effects of emotional changes [20]. Using emotion-induced speech tasks provides a wider range of emotional responses, such as recounting events that elicited significant emotions [21]. Specifically, temporal, prosodic and spectral features have been consistently reported to be associated with depression [22, 23]. These include speech characterised by monotony and flatness, i.e., a perception of being "lifeless". This has been attributed to reductions in the fundamental frequency f0 and

the f0 range [24, 25]. Additionally, MDD patients often exhibit reduced speech rates and utterance durations, possibly linked to psychomotor retardation [26, 27]. This association was shown for both depression severity and treatment response, mainly for temporal features such as longer pause times or slower speaking rates [26]. Moreover, deviations in voice quality markers, such as jitter and shimmer, as well as spectral features, have been observed in depressed individuals [28-31]. Linguistic changes have also been documented, including heightened self-referential speech and increased use of past tense verbs [15, 32]. Furthermore, depressed individuals tend to express more emotionally negative content and employ less complex vocabulary [33, 34]. Additionally, there is substantial evidence supporting the classification of depressive syndrome severity using speech biomarkers, whether through dimensional or categorical approaches [35, 36]. Significant speech features identified in such studies include temporal aspects [27], voice arousal [37], and language features [38]. This evidence demonstrates the relevance of speech changes in depression patients.

To envision the use of speech and language markers in regular clinical practice, validation against gold standard measures is essential. This study aimed to explore the differences in speech features between clinical and healthy subjects, assess the impact of depression on patients' speech, and examine how speech characteristics relate to symptom severity measures. Based on previous findings, we expect that certain speech features related to frequency, temporal aspects, voice quality, and content will effectively distinguish between healthy controls (HCs) and depressed patients. Additionally, we postulate that temporal speech features will differentiate between mildly and moderately depressed participants. Additionally, we hypothesise that a classification model incorporating selected speech features will outperform a baseline model based solely on demographic and clinical characteristics in distinguishing between the two groups.

#### Methods

#### Participants

The participants recruited for this study took part in an investigation of unconscious emotional conflict in patients with MDD [39]. Patients diagnosed with MDD were recruited at the Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany. Age- and sex-matched HCs were recruited through advertisements and flyers in Aachen. Demographic information was assessed with a questionnaire.

The internal ethics committee of the university hospital Aachen, Germany, approved the study (Ethik-Kommission an der Medizinischen Fakultät der RWTH Aachen; vote number EK 045-19). All study procedures were

conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all participants prior to participation in the study. All participants received 45 Euros of financial compensation.

#### **Clinical assessment**

Using a clinical interview and the German version of the Structured Clinical Interview based on the DSM-V (SCID-V [40]) the diagnostic assessments were conducted by trained psychologists.

On the day of the study visit, the severity of symptoms was assessed based on self-reports using the Beck Depression Inventory (BDI-II [41]) as well as medication status, clinical assessment and interviews using the Hamilton Depression Rating Scale (HAMD, 21-item version [42]). The classification of patients as mildly or moderately depressed was based on the number of clinical symptoms according to the DSM-5 criteria. A diagnosis of mild depression requires the presence of five symptoms, while moderate depression is indicated by six to seven symptoms [40]. The total score on the HAMD was used as a supplementary tool to assist in determining the severity of depression.

#### Procedure

The data were collected over a period of 18 months at the Department of Psychiatry, Psychotherapy, Psychosomatics, Medical Faculty RWTH Aachen University. The included participants were invited to a 3.5-hour measurement appointment.

Participants underwent a series of neuropsychological tests and psychopathological rating scales before performing two tasks in a 3-tesla MRI scanner while simultaneously recording electroencephalography. The findings on this paradigm are presented in Schräder et al., 2024 [39], whereas this paper focuses on speech as an exploratory secondary analysis. The neuropsychological tests included the Trail-Making-Test A/B (TMT A/B [43]) to assess processing speed and executive functioning. Furthermore, the Digit Span (DS) forwards and backwards test, a subtest of the Wechsler Memory Scale (WMS-R [44]), was conducted to measure short-term and working memory. Additionally, clinical and mood variables were assessed through the State-Trait Anxiety Inventory (STAI [45]). Afterwards, the participants completed the speech task.

Healthy controls were identified by combining data from the clinical interview and questionnaire scores. If there were indications of a clinically significant psychiatric or somatic condition, participants were advised to seek appropriate clinical care. This included, but was not limited to, conditions affecting voice and speech, such as reading disabilities, speech delays or vocal cord disorders.

#### Speech assessment and processing

Participants were asked to talk about both a positive and a negative event in their lives, a paradigm used in previous studies to elicit emotion in speech [46, 47]. The instructions ("Can you tell me in one minute about a positive/negative event in your life?"; see also Supplementary file for the original German version) were pre-recorded by a psychologist and played from a tablet, ensuring consistent instructions across both experiments. The responses were recorded using the tablet's internal microphone. To compute the acoustic and linguistic features, the extraction scripts were implemented in Python 3.9, based on our own speech processing library "Sigma". The extraction code is available upon reasonable request.

We investigated several categories of acoustic and linguistic speech features that were previously associated with symptoms of depression [15, 26, 27, 29, 34, 48]. Speech attributes were categorised into groups, sorted distinctly by negative and positive story (refer to Table 1 for groupings and corresponding attributes).

These included acoustic components such as frequency, energy and spectral features. The frequency features consist of variables associated with the so-called formants F0 to F3. F0 is commonly perceived as voice pitch [49]. The specific formants F1, F2 and F3 make up the expression of vowel sounds [50]. Energy features pertain to attributes such as jitter, which reflects voice instability, shimmer, which indicates changes in voice loudness or intensity, and the harmonics-to-noise ratio (HNR [51]). Spectral features describe characteristics of speech frequencies, such as the mel frequency cepstral coefficient (MFCC), a measure used for speaker identification [52].

Additionally, we employed features delineated by our research team concerning the temporal dimensions of speech [47], which encompass timing-related traits of verbal expression, such as duration, rhythm, and temporal patterns [53].

Moreover, we used linguistic attributes, including pronouns, adjectives, adverbs, and conjunctions. These categories, termed lexical richness, syntactic complexity, and word types, were defined by our research team [54].

Finally, to capture emotional response, we explored sentiment, i.e. positive or negative emotional tones. For this purpose, we used an external Python library called Stanza [55]. This library taps into extensive language models, particularly neural networks employing contextualised word embeddings. Preexisting language models identify word categories and determine whether sentences convey positivity, neutrality, or negativity. Stanza, an open-source Python natural language processing (NLP) toolkit, was developed by the Stanford NLP Group [56], supporting analysis across 66 diverse human languages.

#### Table 1 Categories of analysed categories with associated speech features

| Feature group | Feature                        | Explanation                                                                                                                            |
|---------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Energy        |                                |                                                                                                                                        |
|               | apq3_shimmer                   | Three-point period amplitude perturbation quotient (short-term amplitude                                                               |
|               |                                | variability in vocal fold vibrations).                                                                                                 |
|               | apq5_shimmer                   | Five-point period amplitude perturbation quotient.                                                                                     |
|               | apq11_shimmer                  | Eleven-point period amplitude perturbation quotient.                                                                                   |
|               | dda_shimmer                    | Dynamic Decline Amplitude Shimmer (average absolute differences be-<br>tween the amplitudes of consecutive periods)                    |
|               | hnr_mean                       | Mean Harmonic-to-Noise Ratio (HNR) in decibels, calculated using the ceps-<br>tral analysis of the acoustic signal.                    |
|               | hnr_sd                         | Standard deviation of hnr_mean.                                                                                                        |
|               | local_shimmer                  | Cycle-to-cycle variability in amplitude (as percentage of the average amplitude).                                                      |
|               | loudness_mean                  | Mean speech loudness.                                                                                                                  |
|               | loudness_sd                    | Standard deviation of loudness_mean.                                                                                                   |
|               | rate_loudness_peaks            | Frequency of loudness peaks in a given time period.                                                                                    |
|               | shimmer_local_dB_mean          | Cycle-to-cycle variability in amplitude in decibels.                                                                                   |
|               | shimmer_local_dB_sd            | Standard deviation of difference of shimmer_local_dB_mean.                                                                             |
| Frequency     |                                |                                                                                                                                        |
|               | ddp_jitter                     | Dynamic Decline Perturbation in jitter (average absolute differences be-<br>tween the fundamental frequencies of consecutive periods). |
|               | f0_range                       | Range of the fundamental frequency (F0) of vocal fold vibrations.                                                                      |
|               | f1_bandwidth_mean              | Mean bandwidth of F1 formant.                                                                                                          |
|               | f1_bandwidth_sd                | Standard deviation of f1_bandwidth_mean.                                                                                               |
|               | f1_frequency_mean              | Mean frequency of F1 formant.                                                                                                          |
|               | f1_frequency_sd                | Standard deviation of f1_frequency_mean.                                                                                               |
|               | f2_bandwidth_mean              | Mean bandwidth of F2 formant.                                                                                                          |
|               | f2_bandwidth_sd                | Standard deviation of f2_bandwidth_mean.                                                                                               |
|               | f2_frequency_mean              | Mean frequency of F2 formant.                                                                                                          |
|               | f2_frequency_sd                | Standard deviation of f2_frequency_mean.                                                                                               |
|               | f3_bandwidth_mean              | Mean bandwidth of F3 formant.                                                                                                          |
|               | f3_bandwidth_sd                | Standard deviation of f3_bandwidth_mean.                                                                                               |
|               | f3_frequency_mean              | Mean frequency of F3 formant.                                                                                                          |
|               | f3_frequency_sd                | Standard deviation of f3_frequency_mean.                                                                                               |
|               | jitter_local_mean              | Deviations in individual consecutive F0 period lengths (perceived as uneven or irregular voice).                                       |
|               | jitter_local_sd                | Standard deviation of jitter_local_mean.                                                                                               |
|               | local_absolute_jitter          | Cycle-to-cycle variability in the fundamental frequency of vocal fold vibrations.                                                      |
|               | pitch_coefficient_of_variation | Coefficient of variation of pitch.                                                                                                     |
|               | pitch_first_quartile           | First quartile of pitch.                                                                                                               |
|               | pitch_kurtosis                 | Degree of peakedness or flatness of the fundamental frequency (F0) distribution.                                                       |
|               | pitch_linear_regression_mse    | Mean squared error of a linear regression model applied to fundamental frequency (F0) values.                                          |
|               | pitch_linear_regression_offset | Intercept of a linear regression model applied to fundamental frequency (F0) values.                                                   |
|               | pitch_linear_regression_slope  | Slope coefficient of a linear regression model applied to the fundamental frequency (F0) values.                                       |
|               | pitch_max                      | Maximum pitch.                                                                                                                         |
|               | pitch_mean                     | Mean pitch.                                                                                                                            |
|               | pitch_min                      | Minimum pitch.                                                                                                                         |
|               | pitch_percentile_1             | First percentile of pitch.                                                                                                             |
|               | pitch_percentile_20            | 20th percentile of pitch.                                                                                                              |
|               | pitch_percentile_20_80_range   | Range of 20th to 80th percentile of pitch.                                                                                             |
|               | pitch_percentile_80            | 80th percentile of pitch.                                                                                                              |

# Table 1 (continued)

| pitch_percentic_99         90th percentic of pitch.           pitch_q2_q1_ange         Range of 1st to 99th percentice of pitch.           pitch_q3_q2_mage         Range of 1st to 99th percentice of pitch.           pitch_q3_q2_mage         Range of 1st to 99th percentice of pitch.           pitch_q3_q2_mage         Range of 1st to 99th percentice of pitch.           pitch_scord_quartile         Scord quartile of pitch.           pitch_scord_quartile         Scord quartile of pitch.           pitch_stord         Quartile of pitch.           pitch_stord         Scord quartile of pitch.           pitch_stord         Scord quartile of pitch.           pitch_thid_quartile         Third quartile of pitch.           pitch_thid_quartile         Third quartile of pitch.           pitch_thid_quartile         Third quartile of pitch.           pitch_third_quartile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feature group    | Feature                        | Explanation                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| pitch_go_q_Lange         Range of it to 30th parted of pitch.           pitch_go_q_Lange         Range of it to 30th quartile of pitch.           pitch_go_q_Lange         Range of 2nd to 3d quartile of pitch.           pitch_go_q_Lange         Range of 2nd to 3d quartile of pitch.           pitch_go_q_Lange         Range of 2nd to 3d quartile of pitch.           pitch_second_quartile         Second quartile of pitch.           pitch_second_quartile         Standard deviation of pitch.           pitch_go_q_Lange         Range of pitch.           pitch_go_q_Lange         Range of pitch.           pitch_go_q_Lange         Standard deviation of pitch.           pitch_go_q_Lange         Range of pitch.           pitch_go q_Lange         Range of nuch massing the i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | pitch_percentile_99            | 99th percentile of pitch.                                                                                                                            |
| pitch_Q2_d1_ange         Bange of its to 2 di quarile of pitch.           pitch_Q3_d2_range         Bange of its to 2 di quarile of pitch.           pitch_g3_d2_range         Bange of 2nd to 3rd quarile of pitch.           pitch_second_quarile         Second quarile of pitch.           pitch_second_quarile         Second quarile of pitch.           pitch_second_quarile         Second quarile of pitch.           pitch_second_quarile         Third quarile of pitch.           pitch_second_quarile         Third quarile of pitch.           pop5_jitter         Realize Areage Perturbation quartient, quaritifying the cycle-to-cycle variation in the indiamental frequency (F0) divide load to boations.           varial_memor         Vocal temory, measuring the intensity of low-fequency E0 modulation, within to 1-51-51/2 band.           Lostel Riches         Brunets Index, measure of lexical diversity.           honores tati         Honores statistic, measure of lexical diversity.           number_consecutive_repetitions         Proportion of unique works (types) to total words (televen) in a test or speech sample.           word_frequency_mean         Average emotional valence of the angeody.           word_frequency_mean         Average emotional valence of the angeody.           word_frequency_mean         Average emotional valence of the angeody.           word_frequency_mean         Average emotional valence of the angeody. <td></td> <td>pitch_percentile_1_99_range</td> <td>Range of 1st to 99th percentile of pitch.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | pitch_percentile_1_99_range    | Range of 1st to 99th percentile of pitch.                                                                                                            |
| pitch_g3_g1_ange         Range of the 3bd quartile of pitch.           pitch_g3_g2_ange         Range of pitch 3bd quartile of pitch.           pitch_gac_farmed         Range of pitch.           pitch_second_quartile         Second quartile of pitch.           pitch_side         Standard deviation of pitch.           pitch_gitq_quartile         Their dynafte of pitch.           pitch_gitq_quartile         Their dynafte of pitch.           pitch_gitq_quartile         Their dynafte of pitch.           pitch_gitq_quartile         Relative Average Parturbation guartile, quartify the cycle-to-cycle variation in the findamental frequency (FB) of vacal fold whorations.           vocal_termor         Vacal termor, massare to assess the leaded informations.           vocal_termor         Vacal fold whorations.           vocal_termor         Vacal termor, massare to assess the leaded information.           nonne_stat         Honore, stat           nonne_stat         Honore, stat           nonne_stat         Honore, stat           nonne_stat         Honore, stat           word_frequency_ange         Rege of word frequency_mean.           word_frequency_ange         Average endorion forword used, word frequency_mean.           negative_wenter_e_atio         Number of sentences that are labeled as negative in elabion to all sentences.           poli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | pitch_q2_q1_range              | Range of 1st to 2nd quartile of pitch.                                                                                                               |
| pitch_ang         Range of pitch.           pitch_ang         Range of pitch.           pitch_second_quartile         Second quartile of pitch.           pitch_steeness         Asymmetry of the fundamental frequency (F0) distribution.           pitch_site         pitch_site           pitch_site         Sackard deviation of pitch.           pitch_site         Pitch_site           pitch_site         Pitch_site           quartile         Third quartile of pitch.           rep_i_site         Repeat Pitch and pitch.           rep_i_site         Repeat Pitch and pitch.           rep_i_site         Repaint Pitch and pitch.           rep_i_site         Repaint Pitch and pitch.           rep_i_site         Repaint Pitch and Pitch and Pitch.           rep_i_site         Repaint Pitc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | pitch_q3_q1_range              | Range of 1st to 3rd quartile of pitch.                                                                                                               |
| pitch_arage         Bange of pitch.           pitch_second_quartile         Second quartile of pitch.           pitch_second_quartile         Asymmetry of the fundamental frequency (F0) distribution.           pitch_tid         Standard deviation of pitch.           pitch_tid         Their quartile of pitch.           pack_litter         Relative Average Perturbation quartient quartifying the cycle-to-cycle variation in the fundamental frequency (F0) distributions.           rap_jitter         Relative Average Perturbation quarties the cycle-to-cycle variation in the fundamental frequency (F0) discal fold vibrations.           vocal_termor         Vocal termor, measuring the intensity of low-affequency F0 modulation, within the 15-15 Hz band.           brunets_index         Brunet's Index, measure of leakal diversity.           honore_stat         Brunet's Index, measure of leakal diversity.           number_consecutive_repotitions         Number of consecutive repotitions.           vord_count         Number of vords used.           word_frequency_mane         Average emotional valence of the softward to all set or speech sample.           neagative_sentence_ratio         Number of sentences that are blacked as negative.           word_frequency_mane         Average emotional valence of the sentences (indicating if the whole answer was in general more positive neutral, or negative.           neagative_sentence_ratio         Number of sentences that are blacked as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | pitch_q3_q2_range              | Range of 2nd to 3rd quartile of pitch.                                                                                                               |
| pitch_second_quartile         Second quartile of pitch.           pitch_stewness         Asymmetry of the Andamental frequency (F0) distribution.           pitch_std         Standard deviation of pitch.           pitch_std         Third quartile of pitch.           pap5_jitter         Five point period perturbation quotient, quantifying the cycle-to-cycle variability in the fundamental frequency (F0) of vocal fold vibrations.           rap_jitter         Relative Average Perturbation pitch.           vocal Lemor         Vocal temor, measuring the intensity of low-frequency F0 modulation.           terinda Temor         Vocal temor, measuring the intensity of low-frequency F0 modulation.           number_consecutive_repatitions         Number of consecutive repatitions.           number_consecutive_repatitions         Number of consecutive repatitions.           vocal_frequency_mean         Mean occurrence rate of ackh word token, calculated as the mean frequency frequency_mean.           word_frequency_maan         Wean occurrence rate of ackh word token, calculated as the mean frequency frequency_mean.           word_frequency_maan         Wean occurrence rate of ackh word token, calculated as the mean frequency frequency_mean.           word_frequency_maan         Wean occurrence rate of ackh word token, calculated as the mean frequency frequency_mean.           word_frequency_maan         Wean occurrence rate of ackh word token, calculated as the mean frequency frequency_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | pitch_range                    | Range of pitch.                                                                                                                                      |
| ptch_skewness         Asymmetry of the fundamental frequency (#0) distribution.           ptch_tdd         Standard deviation of ptch.           ptch_thid_quartile         Third quartile of ptch.           ptch_thid_quartile         Third quartile of ptch.           rep3_litter         Relative Average Perturbation quotient, quantifying the cycle-to-cycle variation in the fundamental frequency (#0) divati divations.           rap_litter         Relative Average Perturbation jitter, to quantify the cycle-to-cycle variation in the fundamental frequency (#0) divati divations.           twocal_termor         Vocal termor, measuring the intensity of low-frequency F0 modulation, within the 15-15 Hz band.           twocal_termor         Vocal termor, measuring the intensity of low-frequency F0 modulation, quartile diversity.           number_consecutive_repetitions         Number of consecutive repetitions.           number_consecutive_repetitions         Number of words used.           word_frequency_mean         Rean occurnence rate of each word threquency_mean.           word_frequency_range         Range of word_frequency_mean.           word_frequency_range         Standard deviation of word fieded as nearbition to all sentences.           patities_sentence_ratio         Number of sentences that are labeled as positive in relation to all sentences.           nearbities_energy_rate         Average of the MeI-frequency_cepstral_Coefficient 1           severage_mfices_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | pitch_second_quartile          | Second quartile of pitch.                                                                                                                            |
| pitch_thid_quartile         Standard deviation of pitch.           pitch_thid_quartile         Third quartile of pitch.           pitch_thid_quartile         Five point period perturbation quotient, quartifying the cycle-to-cycle variability in the fundamental frequency (F0) of vocal fold vibrations.           rap_litter         Relative Average Perturbation fliptic to quantify the cycle-to-cycle variability in the fundamental frequency (F0) of vocal fold vibrations.           vocal_tremor         Vocal tremor, measuing the intensity of flow-frequency F0 modulation, defined as the peak magnitude of F0 modulation within the 15–15 Hz band.           Lexical Richess         Brunets_Index         Huners's statistic, measure of lexical diversity.           number_consecutive_reportitions         Number of consecutive reportitions.           vocal_count         Number of words used.           word_count         Number of words used.           word_frequency_range         Range of word_frequency_mean.           word_frequency_range         Range of word_frequency_mean.           word_frequency_ratio         wasin general more positive_nerulation on all sentences.           positive_sentence_ratio         Number of sentences that are labeled as negative in relation to all sentences.           word_frequency_range         Range of word_frequency_mean.           word_frequency_range         Range of word_frequency_mean.           word_frequency_ratio         Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | pitch_skewness                 | Asymmetry of the fundamental frequency (F0) distribution.                                                                                            |
| pilch_third_quartile     Third quartile of pitch.       pp5_jitter     Five-point period perturbation quantifying the cycle-to-cycle variability in the fundamental frequency (F0) of vocal fold vibrations.       vocal_tremor     Vocal tremor, measuring the intensity of fold vocal fold vibrations.       texical Richness     Brunet's Index, measure of lexical diversity.       honore_stat     Brunet's Index, measure of lexical diversity.       honore_ctat     Brunet's Index, measure of lexical diversity.       number_consecutive_repetitions     Number of consecutive repetitions.       vord_frequency_mean     Relative werage for words (types) to total words (tokens) in a text or speech sample.       word_frequency_mean     Renore's statistic, measure to ach word token, calculated as the mean frequency of all tokens across the uterance.       word_frequency_difference_mean     Range of word_frequency_mean.       word_frequency_difference_mean     Sandard deviation of word (frequency_mean.       settiment     Average emotional valence of the sontences (indicating if the whole answer was in general more positive, neutral, require).       spectral     Average motional valence of the sontences (indicating if the whole answer was in general more positive, neutral, relation to all sentences.       spectral     Average of the Ndel Frequency-Ceptral-Coefficient 1 (Measurement to capture fundamental frequency.Ceptral-Coefficient 2.       vord_frequency_difference_natio     Number of sentences that are labeled as positive in relation to all sentences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | pitch_std                      | Standard deviation of pitch.                                                                                                                         |
| ppg5_jitter         Five-point period perturbation quotient, quantifying the cycle-to-cycle variability in the fundamental frequency (F0) of vocal field vibrations.           rap_jitter         Relative Average Perturbation jitter, to quantify the cycle-to-cycle variation in the fundamental frequency (F0) of vocal field vibrations.           vocal_tremor         World Method States           Lexical Richness         Functs_index           Inters_index         Brunet's Index, measure of lexical diversity.           number_consecutive_repetitions.         Number of consecutive repetitions.           type_token_ratio         Proportion of unique words (types) to total words (tokens) in a test or speech sample.           word_count         Number of words used.           word_frequency_range         Range of word_frequency_mean.           word_frequency_range         Range of word_frequency_mean.           watif_equency_range         Number of sentences that are labeled as neutral in relation to all sentences.           pestitive_sentence_ratio         Number of sentences that are labeled as neutral in relation to all sentences.           pestitive_sentence_ratio         Number of sentences that are labeled as neutral in relation to all sentences.           pestitive_sentence_ratio         Number of sentences that are labeled as negative.           pestitive_sentence_ratio         Number of sentences that are labeled as negative.           pestitive_sentence_ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | pitch_third_quartile           | Third quartile of pitch.                                                                                                                             |
| rap_jitter     Relative Average Perturbation jitter, to cycle to-cycle variation<br>in the fundamental frequency (F0) of vocal fold vibrations.       vocal_tremor     Vocal tremor, measuing the intensity of low-frequency F0 modulation,<br>defined as the peak magnitude of F0 modulation within the 1.5-15 Hz band.       Lexical Richness     Brunets_index     Brunets index, measure of lexical vibrations.       honore_stat     Honoré's statistic, measure of lexical vibrations.       honore_stat     Honoré's statistic, measure of lexical vibrations.       word_count     Number of consecutive repetitions.       word_frequency_mean     Mean occurrence rate of each word token, calculated as the mean fre-<br>quency of al tokens across the uterance.       word_frequency_range     Range of word_frequency_mean.       word_frequency_sd     Standard deviation of word token, calculated as the mean fre-<br>quency of al tokens across the uterance.       word_frequency_sd     Standard deviation of word frequency_mean.       sentiment     warage emotional valence of the sentences (indicating if the whole answer<br>wasin general more positive, neutral, or negativo.       negative_sentence_ratio     Number of sentences that are labeled as positive in relation to all sentences.       positive_sentence_ratio     Number of sentences that are labeled as positive in relation to all sentences.       spectral     alph_ratio_mean       apha_ratio_dad     Standard deviation of the word-coefficient 1.       aph_ratio_mean     Average of the Mel-Frequency-Ceptral-Coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | ppq5_jitter                    | Five-point period perturbation quotient, quantifying the cycle-to-cycle vari-<br>ability in the fundamental frequency (F0) of vocal fold vibrations. |
| vcal_tremor         Vcal_tremor, measuing the intensity of modulation within the 1.5–15 Hz band.           Lexical Richness         brunets_index         Brunets index           brunets_index         Brunets index         Brunets index           honore_stat         Honore'statistic, measure of lexical diversity.           number_consecutive_repetitions         Number of consecutive repetitions.           vord_count         Number of consecutive repetitions.           word_frequency_mean         gaec of word, frequency_mean.           word_frequency_range         Range of word, frequency_mean.           word_frequency_sd         Standard deviation of word, frequency, mean.           mean_sentiment         Average emotional valence of the sentences (indicating if the whole answer was in general more positive, neutral, or negative).           negative_sentence_ratio         Number of sentences that are labeled as negative in relation to all sentences.           positive_sentence_ratio         Number of sentences that are labeled as positive in relation to all sentences.           spectral         alpha_ratio_sd         Standard deviation of alph_ratio_emerg.           average_mfices_1         Average of the Mel-Frequency-Cepstral-Coefficient 1.           spectral         alpha_ratio_sd         Standard deviation of alpha_ratio_mean.           average_mfices_2         Average of the Mel-Frequency-Cepstral-Coefficient 1. <td></td> <td>rap_jitter</td> <td>Relative Average Perturbation jitter, to quantify the cycle-to-cycle variation<br/>in the fundamental frequency (F0) of vocal fold vibrations.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | rap_jitter                     | Relative Average Perturbation jitter, to quantify the cycle-to-cycle variation<br>in the fundamental frequency (F0) of vocal fold vibrations.        |
| Lexical Richness         vertex         vertex         longex         statustic           brunes_index         Honorés statistic, measure of lexical diversity.         honore_stat         Honorés statistic, measure to assess the lexical richness or diversity.           number_consecutive_repetitions         Number of consecutive repetitions.         types) to total words (tokens) in a text or speech sample.           word_count         Number of words used.         Word_frequency_man         Rean occurrence rate of each word token, calculated as the mean frequency of all tokens across the utterance.           word_frequency_mage         Range of word_frequency_mean.         Word_frequency_mean.           Sentiment         Average emotional valence of the sentences (indicating if the whole answer was in general more positive, neutral, or negative).           negative_sentence_ratio         Number of sentences that are labeled as negative in relation to all sentences.           spectral         alpha_ratio_mean         Mean of the ratio of the summed energy from 50–1000 Hz and 1–5 kHz.           alpha_ratio_mean         Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to capture fundamental frequency-Cepstral-Coefficient 2.           average_mfccs_1         Average of the Mel-Frequency-Cepstral-Coefficient 2.           average_mfccs_4         Average of the Mel-Frequency-Cepstral-Coefficient 2.           average_mfccs_4         Average of the Mel-Frequency-Cepstral-Coefficient 2.      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | vocal_tremor                   | Vocal tremor, measuring the intensity of low-frequency F0 modulation, defined as the peak magnitude of F0 modulation within the 1.5–15 Hz band.      |
| brunets_index         Brunets index, measure of lexical diversity.           honore_stat         Honoré's statistic, measure of assess the lexical richness or diversity.           number_consecutive_repetitions         Number of consecutive repetitions.           type_token_ratio         Proportion of unique words (types) to total words (tokens) in a text or speech sample.           word_count         Number of words used.           word_frequency_mean         Mean occurrence rate of each word token, calculated as the mean frequency of all tokens actors the utterance.           word_frequency_range         Range of word_frequency_mean.           word_frequency_sd         Standard deviation of word_frequency_mean.           sentiment         Average emotional valence of the sentences (indicating if the whole answer was in general more positive, neutral or negative in relation to all sentences. neutral_sentence_ratio           number of sentences that are labeled as negative in relation to all sentences.         Number of sentences that are labeled as positive in relation to all sentences.           spectral         alpha_ratio_mean         Mean of the ratio of the summed energy from 50-1000 Hz and 1-5 kHz.           spectral         alpha_ratio_sd         Standard deviation of alpha_ratio.           average_mfics_1         Average of the Mel-Frequency-Ceptral-Coefficient 1.           average_mfics_4         Average of the Mel-Frequency-Ceptral-Coefficient 1.           average_mfics_4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lexical Richness | 5                              |                                                                                                                                                      |
| honore_stat       Honords statistic, measure to assess the lexical richness or diversity.         number_consecutive_repetitions       Number of consecutive repetitions.         type_token_ratio       Proportion of unique words (types) to total words (tokens) in a text or speech sample.         word_count       Number of words used.         word_frequency_mean       Mean occurrence rate of each word token, calculated as the mean frequency of all tokens across the uterance.         word_frequency_range       Range of word_frequency_mean.         word_frequency_sd       Standard deviation of word_frequency_mean.         sentiment       Average emotional valence of the sentences (indicating if the whole answer was in general more positive, neutral or negative).         negative_sentence_ratio       Number of sentences that are labeled as negative in relation to all sentences.         spectral       alpha_ratio_mean       Mean of the ratio of the summed energy fors 0-1000 Hz and 1-5 kHz.         alpha_ratio_sd       Standard deviation of alpha_ratio_mean.       senture to capture fundamental frequency-Ceptral-Coefficient 1 (Measurement to capture fundamental frequency-Ceptral-Coefficient 2.         average_mfccs_1       Average of the Mel-Frequency-Ceptral-Coefficient 3.         average_mfccs_2       Average of the Mel-Frequency-Ceptral-Coefficient 4.         n_relative_energy_mean       Average of the Mel-Frequency-Ceptral-Coefficient 4.         n_relative_energy_mean       Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | brunets_index                  | Brunet's Index, measure of lexical diversity.                                                                                                        |
| number_consecutive_repetitions       Number of consecutive repetitions.         type_token_ratio       Proportion of unique words (types) to total words (tokens) in a text or speech sample.         word_count       Number of words used.         word_frequency_mean       Mean occurrence rate of each word token, calculated as the mean frequency of all tokens across the utterance.         word_frequency_range       Range of word_frequency_mean.         word_frequency_sd       Standard deviation of word_frequency_mean.         Sentiment       Average emotional valence of the sentences (indicating if the whole answer was in general more positive, neutral or negative).         neutral_sentence_ratio       Number of sentences that are labeled as negative in relation to all sentences.         spectral       alpha_ratio_mean         alpha_ratio_mean       Weange of the matio of laba_ratio_mean.         sertimest       verage of the Mel-Frequency-Ceptral-Coefficient 1 (Measurement to capture fundamental frequency-Ceptral-Coefficient 1.         average_mfccs_1       Average of the Mel-Frequency-Ceptral-Coefficient 3.         average_mfccs_4       Average of the Mel-Frequency-Ceptral-Coefficient 4.         fl_relative_energy_mean       Average of the Mel-Frequency-Ceptral-Coefficient 4.         il_relative_energy_mean       Average of the Mel-Frequency-Ceptral-Coefficient 4.         il_relative_energy_mean       Average of the Mel-Frequency-Ceptral-Coefficient 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | honore_stat                    | Honoré's statistic, measure to assess the lexical richness or diversity.                                                                             |
| type_token_ratio         Proportion of unique words (types) to total words (tokens) in a text or speech sample.           word_count         Number of words used.           word_frequency_mean         Mean occurrence rate of each word token, calculated as the mean frequency of all tokens across the utterance.           word_frequency_range         Range of word_frequency_mean.           word_frequency_range         Range of word_frequency_mean.           sentiment         Average emotional valence of the sentences (indicating if the whole answer was in general more positive, neutral, or negative.           negative_sentence_ratio         Number of sentences that are labeled as neutral in relation to all sentences.           positive_sentence_ratio         Number of sentences that are labeled as neutral in relation to all sentences.           spectral         Average of the Mel-frequency-Cepstral-Coefficient 1 (Measurement to capture fundamental frequency-Cepstral-Coefficient 1.           average_mfccs_1         Average of the Mel-frequency-Cepstral-Coefficient 2.           average_mfccs_3         Average of the Mel-frequency-Cepstral-Coefficient 2.           average_mfccs_4         Average of the Mel-frequency-Cepstral-Coefficient 3.           average_mfccs_4         Average of the Mel-frequency-Cepstral-Coefficient 4.           fl_relative_energy_sd         Standard deviation of fl_relative_energy_mean.           f2_relative_energy_mean         Average of the Mel-frequency-Cepstral-Coefficient 4. </td <td></td> <td>number_consecutive_repetitions</td> <td>Number of consecutive repetitions.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | number_consecutive_repetitions | Number of consecutive repetitions.                                                                                                                   |
| word_count Number of words used.<br>word_frequency_mean Quercy of all tokens across the utterance.<br>word_frequency_range Range of word_frequency_mean.<br>word_frequency_sd Standard deviation of word_frequency_mean.<br>Sentiment Average emotional valence of the sentences (indicating if the whole answer was in general more positive, neutral, or negative).<br>negative_sentence_ratio Number of sentences that are labeled as negative in relation to all sentences.<br>positive_sentence_ratio Number of sentences that are labeled as negative in relation to all sentences.<br>positive_sentence_ratio Number of sentences that are labeled as negative in relation to all sentences.<br>positive_sentence_ratio Number of sentences that are labeled as negative in relation to all sentences.<br>positive_sentence_ratio Number of sentences that are labeled as negative in relation to all sentences.<br>positive_sentence_ratio Number of sentences that are labeled as negative in relation to all sentences.<br>Spectral alpha_ratio_mean Mean of the ratio of the summed energy from 50–1000 Hz and 1–5 kHz.<br>alpha_ratio_sd Standard deviation of alpha_ratio_mean.<br>average_mfccs_1 Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to<br>capture fundamental frequency-Cepstral-Coefficient 3.<br>average_mfccs_4 Average of the Mel-Frequency-Cepstral-Coefficient 4.<br>f1_relative_energy_mean Average of the Mel-Frequency-Cepstral-Coefficient 4.<br>f1_relative_energy_mean Average relative energy of the first formant (F1), reflecting the prominence<br>of F1 resonance.<br>f2_relative_energy_sd Standard deviation of f1_relative_energy_mean.<br>f2_relative_energy_sd Standard deviation of f2_relative_energy_mean.<br>h1_a3_harmonic_difference_mean Mean of the ratio of energy of the high formant (F3), reflecting the prominence<br>of F3 resonance.<br>B_relative_energy_sd Standard deviation of f3_relative_energy_mean.<br>h1_a3_harmonic_difference_mean Mean of the ratio of energy of the high formant (F3), reflecting the prominence<br>of F3 resonance.<br>B_relative_energy_sd Standard deviation of |                  | type_token_ratio               | Proportion of unique words (types) to total words (tokens) in a text or speech sample.                                                               |
| word_frequency_mean       Mean occurrence rate of each word token, calculated as the mean fre-<br>quency of all tokens across the uttrance.         word_frequency_range       Range of word_frequency_mean.         Sentiment       Average emotional valence of the sentences (indicating if the whole answer<br>was in general more positive, neutral, or negative).         negative_sentence_ratio       Number of sentences that are labeled as neutral in relation to all sentences.         positive_sentence_ratio       Number of sentences that are labeled as neutral in relation to all sentences.         spettral       alpha_ratio_rmean         alpha_ratio_mean       Mean of the ratio of the summed energy from 50–1000 Hz and 1–5 kHz.         alpha_ratio_mean       Standard deviation of alpha_ratio_foed as positive in relation to all sentences.         average_mfccs_1       Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to<br>capture fundamental frequency-Cepstral-Coefficient 2.         average_mfccs_2       Average of the Mel-Frequency-Cepstral-Coefficient 3.         average_mfccs_4       Average of the Mel-Frequency-Cepstral-Coefficient 4.         f1_relative_energy_mean       Average relative energy of the first formant (F1), reflecting the prominence<br>of F1 resonance.         f2_relative_energy_sd       Standard deviation of f1_relative_energy_mean.         f2_relative_energy_sd       Standard deviation of f3_relative_energy_mean.         f2_relative_energy_sd       Standard deviation of f3_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | word_count                     | Number of words used.                                                                                                                                |
| word_frequency_range       Range of word_frequency_mean.         word_frequency_sd       Standard deviation of word_frequency_mean.         Sentiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | word_frequency_mean            | Mean occurrence rate of each word token, calculated as the mean fre-<br>quency of all tokens across the utterance.                                   |
| word_frequency_sd       Standard deviation of word_frequency_mean.         Sentiment       Average emotional valence of the sentences (indicating if the whole answer was in general more positive, neutral, or negative).         negative_sentence_ratio       Number of sentences that are labeled as negative in relation to all sentences.         neutral_sentence_ratio       Number of sentences that are labeled as negative in relation to all sentences.         spectral       alpha_ratio_mean         alpha_ratio_mean       Mean of the ratio of the summed energy from 50-1000 Hz and 1-5 kHz.         alpha_ratio_sd       Standard deviation of alpha_ratio_mean.         average_mfccs_1       Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to capture fundamental frequency-characteristics of human speech).         average_mfccs_2       Average of the Mel-Frequency-Cepstral-Coefficient 3.         average_mfccs_4       Average relative energy of the first formant (F1), reflecting the prominence of F1 resonance.         f1_relative_energy_sd       Standard deviation of f1_relative_energy_mean.         f2_relative_energy_sd       Standard deviation of f2_relative_energy_mean.         f2_relative_energy_sd       Standard deviation of f1_relative_energy_mean.         f2_relative_energy_sd       Standard deviation of f1_relative_energy_mean.         f2_relative_energy_sd       Standard deviation of f2_relative_energy_mean.         f3_relative_energy_sd       S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | word_frequency_range           | Range of word_frequency_mean.                                                                                                                        |
| Sentiment       Average motional valence of the sentences (indicating if the whole answer was in general more positive, neutral, or negative).         negative_sentence_ratio       Number of sentences that are labeled as negative in relation to all sentences.         positive_sentence_ratio       Number of sentences that are labeled as negative in relation to all sentences.         spectral       alpha_ratio_mean         alpha_ratio_ad       Standard deviation of alpha_ratio_mean.         average_mfccs_1       Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to capture fundamental frequency characteristics of human speech).         average_mfccs_2       Average of the Mel-Frequency-Cepstral-Coefficient 2.         average_mfccs_3       Average of the Mel-Frequency-Cepstral-Coefficient 3.         average_mfccs_4       Average of the Mel-Frequency-Cepstral-Coefficient 4.         f1_relative_energy_mean       Average relative energy of the first formant (F1), reflecting the prominence of F1 resonance.         f2_relative_energy_mean       Average relative energy of the second formant (F2), reflecting the prominence of F1 resonance.         f3_relative_energy_mean       Average relative energy of the third formant (F3), reflecting the prominence of F3 resonance.         f3_relative_energy_mean       Average relative energy of the third formant (F3), reflecting the prominence of F1 resonance.         f3_relative_energy_mean       Average relative energy of the second formant (F3), reflecting the prominence of F1 res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | word_frequency_sd              | Standard deviation of word_frequency_mean.                                                                                                           |
| mean_sentiment       Average emotional valence of the sentences (indicating if the whole answer was in general more positive, neutral, or negative).         negative_sentence_ratio       Number of sentences that are labeled as negative in relation to all sentences.         positive_sentence_ratio       Number of sentences that are labeled as neutral in relation to all sentences.         Spectral       Alpha_ratio_mean       Mean of the ratio of the summed energy from 50–1000 Hz and 1–5 kHz.         alpha_ratio_sd       Standard deviation of alpha_ratio_mean.       average_mfccs_1         average_mfccs_2       Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to capture fundamental frequency characteristics of human speech).         average_mfccs_3       Average of the Mel-Frequency-Cepstral-Coefficient 2.         average_mfccs_4       Average of the Mel-Frequency-Cepstral-Coefficient 3.         average_mfccs_4       Average of the Mel-Frequency-Cepstral-Coefficient 4.         f1_relative_energy_mean       Average relative energy of the first formant (F1), reflecting the prominence of F1 resonance.         f1_relative_energy_mean       Average relative energy of the second formant (F2), reflecting the prominence of F3 resonance.         f2_relative_energy_mean       Average relative energy of the third formant (F3), reflecting the prominence of F3 resonance.         f3_relative_energy_mean       Average relative energy of the third formant (F3), reflecting the prominence of F3 resonance.         f3_rela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sentiment        |                                |                                                                                                                                                      |
| negative_sentence_ratioNumber of sentences that are labeled as negative in relation to all sentences.<br>Number of sentences that are labeled as neutral in relation to all sentences.SpectralNumber of sentences that are labeled as positive in relation to all sentences.<br>Number of sentences that are labeled as positive in relation to all sentences.SpectralMean of the ratio of the summed energy from 50-1000 Hz and 1-5 kHz.<br>alpha_ratio_sd<br>average_mfccs_1average_mfccs_1Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to<br>capture fundamental frequency characteristics of human speech).average_mfccs_2Average of the Mel-Frequency-Cepstral-Coefficient 3.<br>average_mfccs_4average_mfccs_4Average of the Mel-Frequency-Cepstral-Coefficient 4.<br>Average relative energy of the first formant (F1), reflecting the prominence<br>of F1 resonance.f1_relative_energy_meanAverage relative energy of the second formant (F2), reflecting the prominence<br>of F2 resonance.f2_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>of F2 resonance.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>of F3 resonance.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>of F3 resonance.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>of F3 resonance.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>of F3 resonance.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | mean_sentiment                 | Average emotional valence of the sentences (indicating if the whole answer was in general more positive, neutral, or negative).                      |
| neutral_sentence_ratioNumber of sentences that are labeled as neutral in relation to all sentences.SpectralNumber of sentences that are labeled as positive in relation to all sentences.SpectralAlpha_ratio_meanMean of the ratio of the summed energy from 50–1000 Hz and 1–5 kHz.alpha_ratio_sdStandard deviation of alpha_ratio_mean.average_mfccs_1Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to capture fundamental frequency characteristics of human speech).average_mfccs_2Average of the Mel-Frequency-Cepstral-Coefficient 2.average_mfccs_4Average of the Mel-Frequency-Cepstral-Coefficient 3.average_mfccs_4Average of the Mel-Frequency-Cepstral-Coefficient 4.f1_relative_energy_meanAverage relative energy of the first formant (F1), reflecting the prominence of F1 resonance.f1_relative_energy_meanAverage relative energy of the second formant (F2), reflecting the prominence of F2 resonance.f2_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence of F3 resonance.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence of F3 resonance.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence of F3 resonance.f3_relative_energy_sdStandard deviation of f3_relative_energy_mean.h1_a3_harmonic_difference_meanMean of the ratio of energy of the highest harmonic in the third formant range (A3).h1_a3_harmonic_difference_sdStandard deviation of f1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | negative_sentence_ratio        | Number of sentences that are labeled as negative in relation to all sentences.                                                                       |
| positive_sentence_ratio       Number of sentences that are labeled as positive in relation to all sentences.         Spectral       alpha_ratio_mean       Mean of the ratio of the summed energy from 50–1000 Hz and 1–5 kHz.         alpha_ratio_sd       Standard deviation of alpha_ratio_mean.         average_mfccs_1       Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to capture fundamental frequency characteristics of human speech).         average_mfccs_2       Average of the Mel-Frequency-Cepstral-Coefficient 2.         average_mfccs_3       Average of the Mel-Frequency-Cepstral-Coefficient 3.         average_mfccs_4       Average of the Mel-Frequency-Cepstral-Coefficient 4.         f1_relative_energy_mean       Average relative energy of the first formant (F1), reflecting the prominence of F1 resonance.         f2_relative_energy_mean       Average relative energy of the second formant (F2), reflecting the prominence of F2 resonance.         f2_relative_energy_mean       Average relative energy of the second formant (F3), reflecting the prominence of F3 resonance.         f3_relative_energy_mean       Average relative energy of the third formant (F3), reflecting the prominence of F3 resonance.         f3_relative_energy_mean       Mean of the ratio of energy of the highest harmonic in the third formant range (A3).         h1_a3_harmonic_difference_mean       Mean of the ratio of energy of the highest harmonic in the third formant range (A3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | neutral_sentence_ratio         | Number of sentences that are labeled as neutral in relation to all sentences.                                                                        |
| Spectral       alpha_ratio_mean       Mean of the ratio of the summed energy from 50–1000 Hz and 1–5 kHz.         alpha_ratio_sd       Standard deviation of alpha_ratio_mean.         average_mfccs_1       Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to capture fundamental frequency characteristics of human speech).         average_mfccs_2       Average of the Mel-Frequency-Cepstral-Coefficient 2.         average_mfccs_3       Average of the Mel-Frequency-Cepstral-Coefficient 3.         average_mfccs_4       Average of the Mel-Frequency-Cepstral-Coefficient 4.         f1_relative_energy_mean       Average of the Mel-Frequency-Cepstral-Coefficient 4.         f2_relative_energy_mean       Average of the Mel-Frequency-Cepstral-Coefficient 4.         f2_relative_energy_mean       Average relative energy of the first formant (F1), reflecting the prominence of F1 resonance.         f2_relative_energy_mean       Average relative energy of the second formant (F2), reflecting the prominence of F2 resonance.         f2_relative_energy_mean       Average relative energy of the third formant (F3), reflecting the prominence of F3 resonance.         f3_relative_energy_sd       Standard deviation of f3_relative_energy_mean.         h1_a3_harmonic_difference_mean       Mean of the ratio of energy of the highest harmonic in the third formant range (A3).         h1_a3_harmonic_difference_sd       Standard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | positive_sentence_ratio        | Number of sentences that are labeled as positive in relation to all sentences.                                                                       |
| alpha_ratio_meanMean of the ratio of the summed energy from 50-1000 Hz and 1-5 kHz.alpha_ratio_sdStandard deviation of alpha_ratio_mean.average_mfccs_1Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to<br>capture fundamental frequency characteristics of human speech).average_mfccs_2Average of the Mel-Frequency-Cepstral-Coefficient 2.average_mfccs_3Average of the Mel-Frequency-Cepstral-Coefficient 3.average_mfccs_4Average of the Mel-Frequency-Cepstral-Coefficient 4.f1_relative_energy_meanAverage relative energy of the first formant (F1), reflecting the prominence<br>of F1 resonance.f1_relative_energy_sdStandard deviation of f1_relative_energy_mean.f2_relative_energy_meanAverage relative energy of the second formant (F2), reflecting the promi-<br>nence of F2 resonance.f2_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the promi-<br>nence of F3 resonance.f3_relative_energy_sdStandard deviation of f3_relative_energy_mean.h1_a3_harmonic_difference_meanMean of the ratio of energy of the<br>first F0 harmonic (H1) to the energy of the highest harmonic in the third<br>formant range (A3).h1_a3_harmonic_difference_sdStandard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spectral         |                                |                                                                                                                                                      |
| alpha_ratio_sdStandard deviation of alpha_ratio_mean.average_mfccs_1Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to<br>capture fundamental frequency characteristics of human speech).average_mfccs_2Average of the Mel-Frequency-Cepstral-Coefficient 2.average_mfccs_3Average of the Mel-Frequency-Cepstral-Coefficient 3.average_mfccs_4Average of the Mel-Frequency-Cepstral-Coefficient 4.f1_relative_energy_meanAverage relative energy of the first formant (F1), reflecting the prominence<br>of F1 resonance.f1_relative_energy_meanAverage relative energy of the second formant (F2), reflecting the promi-<br>nence of F2 resonance.f2_relative_energy_sdStandard deviation of f2_relative_energy_mean.f3_relative_energy_sdStandard deviation of f3_relative_energy_mean.f3_relative_energy_sdStandard deviation of f3_relative_energy_mean.h1_a3_harmonic_difference_meanMean of the ratio of energy of the highest harmonic in the third<br>formant range (A3).h1_a3_harmonic_difference_sdStandard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | alpha_ratio_mean               | Mean of the ratio of the summed energy from 50–1000 Hz and 1–5 kHz.                                                                                  |
| average_mfccs_1Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to<br>capture fundamental frequency characteristics of human speech).average_mfccs_2Average of the Mel-Frequency-Cepstral-Coefficient 2.average_mfccs_3Average of the Mel-Frequency-Cepstral-Coefficient 3.average_mfccs_4Average of the Mel-Frequency-Cepstral-Coefficient 4.f1_relative_energy_meanAverage relative energy of the first formant (F1), reflecting the prominence<br>of F1 resonance.f1_relative_energy_meanAverage relative energy of the second formant (F2), reflecting the promi-<br>nence of F2 resonance.f2_relative_energy_meanAverage relative energy of the second formant (F2), reflecting the promi-<br>nence of F2 resonance.f2_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the promi-<br>nence of F3 resonance.f3_relative_energy_sdStandard deviation of f3_relative_energy_mean.h1_a3_harmonic_difference_meanMean of the ratio of energy of the<br>first F0 harmonic (H1) to the energy of the highest harmonic in the third<br>formant range (A3).h1_a3_harmonic_difference_sdStandard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | alpha_ratio_sd                 | Standard deviation of alpha_ratio_mean.                                                                                                              |
| average_mfccs_2Average of the Mel-Frequency-Cepstral-Coefficient 2.average_mfccs_3Average of the Mel-Frequency-Cepstral-Coefficient 3.average_mfccs_4Average of the Mel-Frequency-Cepstral-Coefficient 4.f1_relative_energy_meanAverage relative energy of the first formant (F1), reflecting the prominence<br>of F1 resonance.f1_relative_energy_sdStandard deviation of f1_relative_energy_mean.f2_relative_energy_sdAverage relative energy of the second formant (F2), reflecting the promi-<br>nence of F2 resonance.f2_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the promi-<br>nence of F2 resonance.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>of F3 resonance.f3_relative_energy_sdStandard deviation of f3_relative_energy_mean.h1_a3_harmonic_difference_meanMean of the ratio of energy of the<br>first F0 harmonic (H1) to the energy of the highest harmonic in the third<br>formant range (A3).h1_a3_harmonic_difference_sdStandard deviation of f1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | average_mfccs_1                | Average of the Mel-Frequency-Cepstral-Coefficient 1 (Measurement to<br>capture fundamental frequency characteristics of human speech).               |
| average_mfccs_3Average of the Mel-Frequency-Cepstral-Coefficient 3.average_mfccs_4Average of the Mel-Frequency-Cepstral-Coefficient 4.f1_relative_energy_meanAverage relative energy of the first formant (F1), reflecting the prominence<br>of F1 resonance.f1_relative_energy_sdStandard deviation of f1_relative_energy_mean.f2_relative_energy_meanAverage relative energy of the second formant (F2), reflecting the promi-<br>nence of F2 resonance.f2_relative_energy_meanStandard deviation of f2_relative_energy_mean.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>of F3 resonance.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | average_mfccs_2                | Average of the Mel-Frequency-Cepstral-Coefficient 2.                                                                                                 |
| average_mfccs_4Average of the Mel-Frequency-Cepstral-Coefficient 4.f1_relative_energy_meanAverage relative energy of the first formant (F1), reflecting the prominence<br>of F1 resonance.f1_relative_energy_sdStandard deviation of f1_relative_energy_mean.f2_relative_energy_meanAverage relative energy of the second formant (F2), reflecting the promi-<br>nence of F2 resonance.f2_relative_energy_sdStandard deviation of f2_relative_energy_mean.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>of F3 resonance.f3_relative_energy_sdStandard deviation of f3_relative_energy_mean.h1_a3_harmonic_difference_meanMean of the ratio of energy of the<br>first F0 harmonic (H1) to the energy of the highest harmonic in the third<br>formant range (A3).h1_a3_harmonic_difference_sdStandard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | average_mfccs_3                | Average of the Mel-Frequency-Cepstral-Coefficient 3.                                                                                                 |
| f1_relative_energy_meanAverage relative energy of the first formant (F1), reflecting the prominence<br>of F1 resonance.f1_relative_energy_sdStandard deviation of f1_relative_energy_mean.f2_relative_energy_meanAverage relative energy of the second formant (F2), reflecting the promi-<br>nence of F2 resonance.f2_relative_energy_sdStandard deviation of f2_relative_energy_mean.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>of F3 resonance.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>of F3 resonance.f3_relative_energy_sdStandard deviation of f3_relative_energy_mean.h1_a3_harmonic_difference_meanMean of the ratio of energy of the<br>first F0 harmonic (H1) to the energy of the highest harmonic in the third<br>formant range (A3).h1_a3_harmonic_difference_sdStandard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | average_mfccs_4                | Average of the Mel-Frequency-Cepstral-Coefficient 4.                                                                                                 |
| f1_relative_energy_sdStandard deviation of f1_relative_energy_mean.f2_relative_energy_meanAverage relative energy of the second formant (F2), reflecting the prominence of F2 resonance.f2_relative_energy_sdStandard deviation of f2_relative_energy_mean.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence of F3 resonance.f3_relative_energy_sdStandard deviation of f3_relative_energy_mean.h1_a3_harmonic_difference_meanMean of the ratio of energy of the highest harmonic in the third formant range (A3).h1_a3_harmonic_difference_sdStandard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | f1_relative_energy_mean        | Average relative energy of the first formant (F1), reflecting the prominence of F1 resonance.                                                        |
| f2_relative_energy_meanAverage relative energy of the second formant (F2), reflecting the prominence of F2 resonance.f2_relative_energy_sdStandard deviation of f2_relative_energy_mean.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence of F3 resonance.f3_relative_energy_sdStandard deviation of f3_relative_energy_mean.h1_a3_harmonic_difference_meanMean of the ratio of energy of the highest harmonic in the third formant range (A3).h1_a3_harmonic_difference_sdStandard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | f1_relative_energy_sd          | Standard deviation of f1_relative_energy_mean.                                                                                                       |
| f2_relative_energy_sdStandard deviation of f2_relative_energy_mean.f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>of F3 resonance.f3_relative_energy_sdStandard deviation of f3_relative_energy_mean.h1_a3_harmonic_difference_meanMean of the ratio of energy of the<br>first F0 harmonic (H1) to the energy of the highest harmonic in the third<br>formant range (A3).h1_a3_harmonic_difference_sdStandard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | f2_relative_energy_mean        | Average relative energy of the second formant (F2), reflecting the promi-<br>nence of F2 resonance.                                                  |
| f3_relative_energy_meanAverage relative energy of the third formant (F3), reflecting the prominence<br>of F3 resonance.f3_relative_energy_sdStandard deviation of f3_relative_energy_mean.h1_a3_harmonic_difference_meanMean of the ratio of energy of the<br>first F0 harmonic (H1) to the energy of the highest harmonic in the third<br>formant range (A3).h1_a3_harmonic_difference_sdStandard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | f2_relative_energy_sd          | Standard deviation of f2_relative_energy_mean.                                                                                                       |
| f3_relative_energy_sd Standard deviation of f3_relative_energy_mean.<br>h1_a3_harmonic_difference_mean Mean of the ratio of energy of the<br>first F0 harmonic (H1) to the energy of the highest harmonic in the third<br>formant range (A3).<br>h1_a3_harmonic_difference_sd Standard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | f3_relative_energy_mean        | Average relative energy of the third formant (F3), reflecting the prominence of F3 resonance.                                                        |
| h1_a3_harmonic_difference_mean<br>h1_a3_harmonic_difference_mean<br>h1_a3_harmonic_difference_sd<br>Mean of the ratio of energy of the<br>first F0 harmonic (H1) to the energy of the highest harmonic in the third<br>formant range (A3).<br>Standard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | f3_relative_energy_sd          | Standard deviation of f3_relative_energy_mean.                                                                                                       |
| h1_a3_harmonic_difference_sd Standard deviation of h1_a3_harmonic_difference_mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | h1_a3_harmonic_difference_mean | Mean of the ratio of energy of the<br>first F0 harmonic (H1) to the energy of the highest harmonic in the third<br>formant range (A3).               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | h1_a3_harmonic_difference_sd   | Standard deviation of h1_a3_harmonic_difference_mean.                                                                                                |

#### Table 1 (continued)

| Feature group | Feature                                   | Explanation                                                                                                                      |
|---------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|               | h1_h2_harmonic_difference_mean            | Mean of the ratio of energy of the first F0 harmonic (h1) to the energy of the biohest harmonic in the second formant range (H2) |
|               | h1 h2 harmonic difference sd              | Standard deviation of h1 h2 harmonic difference mean                                                                             |
|               | hammarborg index mean                     | $P_{1}$                                                                                                                          |
|               |                                           | bands. Parameter to assess the spectral balance of a voice.                                                                      |
|               | hammarberg_index_sd                       | Standard deviation of Hammarberg Index.                                                                                          |
|               | spectral_slope_0_500_mean                 | Mean of the linear regression slope of the logarithmic power spectrum within the two given bands.                                |
|               | spectral_slope_0_500_sd                   | Standard deviation of spectral_slope_0_500_mean.                                                                                 |
|               | spectral_slope_500_1500_mean              | Mean of the linear regression slope of the logarithmic power spectrum within the two given bands.                                |
|               | spectral_slope_500_1500_sd                | Standard deviation of Slope V500-1500.                                                                                           |
| Syntactic     |                                           |                                                                                                                                  |
| Complexity    |                                           |                                                                                                                                  |
|               | mean_number_subordinate_clauses           | Number of subordinate clauses used.                                                                                              |
|               | proportion_verb_phrase_with_objects       | Proportion of phrases with the verb being directed towards an object (e.g.<br>She ate a delicious meal).                         |
|               | proportion_verb_phrase_with_subjects      | Proportion of phrases with the verb being performed by the subject (e.g.<br>She slept peacefully).                               |
|               | verb_phrase_with_aux_and_vp_rate          | Ratio of verb phrases that include both auxiliary verbs and main verbs (e.g.<br>She has finished her homework).                  |
|               | verb_phrase_with_aux_rate                 | Ratio of verb phrases that include an auxiliary verb.                                                                            |
| Temporal      | _,                                        |                                                                                                                                  |
| -             | duration                                  | Length of audio recording.                                                                                                       |
|               | length_continuously_unvoiced_regions_mean | Mean of continuously unvoiced regions.                                                                                           |
|               | length_continuously_unvoiced_regions_sd   | Standard deviation of length_continuously_unvoiced_regions_mean.                                                                 |
|               | length_continuously_voiced_regions_mean   | Mean of continuously voiced regions.                                                                                             |
|               | length_continuously_voiced_regions_sd     | Standard deviation of length_continuously_voiced_regions_mean.                                                                   |
|               | number_of_pauses                          | Number of pauses in between speech segments based on speech intervals.                                                           |
|               | pause_durations_mean                      | Mean length of pauses.                                                                                                           |
|               | pause_durations_sd                        | Standard deviation of pause duration.                                                                                            |
|               | pause_durations_sum                       | Sum of pause lengths over whole utterance.                                                                                       |
|               | pause_rate                                | Frequency of pauses within a spoken utterance.                                                                                   |
|               | speech_ratio                              | Ratio of utterance to duration.                                                                                                  |
|               | utterance_durations_mean                  | Mean length of utterances.                                                                                                       |
|               | utterance_durations_sd                    | Standard deviation of utterance durations.                                                                                       |
|               | utterance_durations_sum                   | Sum of utterance durations.                                                                                                      |
| Word Types    |                                           |                                                                                                                                  |
|               | adjective_rate                            | Relative frequency (ratio to total words spoken) of adjectives used.                                                             |
|               | adposition_rate                           | Ratio of adpositions used.                                                                                                       |
|               | adverb_rate                               | Ratio of adverbs used.                                                                                                           |
|               | conjunction_rate                          | Ratio of conjunctions used.                                                                                                      |
|               | determiner_rate                           | Ratio of determiners (articles, demonstratives, possessives) used.                                                               |
|               | inflected_verb_rate                       | Ratio of inflected verbs used.                                                                                                   |
|               | noun_rate                                 | Ratio of nouns used.                                                                                                             |
|               | pronoun_rate                              | Ratio of pronouns used.                                                                                                          |
|               | proper_noun_rate                          | Ratio of proper nouns used.                                                                                                      |
|               | verb_rate                                 | Ratio of verbs used.                                                                                                             |

# Statistical analysis

The statistical analyses were conducted with the Python package scipy.stats (v1.11.4, Linux v5.10.0). For the analysis of demographic and clinical data, we reported non-parametric group comparisons between HC, mild and

moderate depression via Kruskal-Wallis tests. Where the overall effect was significant, we examined the pairwise differences between groups by Mann-Whitney U tests.

To test for group differences in speech features between HCs and patients with MDD (both mildly and moderately

depressed patients combined), Kruskal-Wallis H tests were conducted.  $\eta$ 2 serves as a measure of effect size.  $\eta$ 2 values of 0.01 are considered small, 0.06 medium and values>0.14 are considered high effect sizes. Correlating speech features with age and TMT-A and conducting group comparisons with sex as outcome, revealed significant influences of sex and TMT-A (for detailed results on sex and TMT-A, see Supp. Tables 1 and 2). Thus, further analyses were controlled for sex to account for acoustic differences and TMT-A as a measure of potential psychomotor retardation [57].

Furthermore, we tested for group differences in speech features between the two groups with mild and moderate depression, controlling for age, sex, and TMT-A score.

To test for associations between speech features and the BDI-II score, Spearman rank sum correlations with Spearman's  $\rho$  as a measure of correlation were computed.  $\rho$  can take values between -1 and +1, whereas  $\pm 1$  is considered a perfect positive/negative correlation. This analysis was conducted without stratifying for groups (i.e., across all participants, whether healthy or depressed). We controlled for age, sex, and TMT-A.

To examine the incremental utility of the selected speech features over a baseline model, classification models were created to discriminate between HCs and patients MDD and, additionally, between patients with mild and moderate depression. First, a "baseline model" consisting of age, sex and years of education as well as TMT A/B, DS Forwards/Backwards, and the MWT-B was used. Second, a BDI model including only the BDI-II questionnaire scores was used. The third model we defined was a speech model consisting of linguistic and acoustic features extracted from the story-telling task. To select features, we decided to sort the features based on their mutual information with the outcome and select the

|  | Table 2 | Demograp | hic and | clinical | scores |
|--|---------|----------|---------|----------|--------|
|--|---------|----------|---------|----------|--------|

10 best [58]. To avoid overfitting, we computed the performance metrics Balanced Accuracy and the Area under the Receiver-Operator Characteristic Curve (AUC) based on a 10-fold cross validation approach where the sample is split into 10 groups of equal size and one of the groups is left out for validation of the model. This process is repeated 10 times such that each group was once used for validation. To test for significant differences between the models, we computed pairwise permutation tests.

All *p*-values reported were adjusted for multiple hypothesis testing using the Benjamini-Hochberg procedure [59]. To do so, the features were clustered in categories as presented in Table 1 and the *p*-values were adjusted separately for each of the categories.

#### Results

A total of forty-four patients were included in the study. Of these, twenty-nine were defined as mildly depressed according to the clinical interview and the HAMD, and fifteen suffered from moderate depression. Fifty-two participants were defined as HCs. The demographic and clinical information of the participants can be found in Table 2.

# Group differences in speech features between HCs and MDD patients

Several features emerged as significantly different between HCs and depressed patients (see Table 3). The greatest effect sizes were observed for the acoustic features. For instance, the pitch linear regression slopes for positive ( $\eta$ 2=0.31, adjusted p<0.001) and negative ( $\eta$ 2=0.30, p<0.001) storytelling. This variable reflects the intonation pattern of speech over time, i.e., a positive slope indicates that the pitch tends to rise over time, while a negative slope indicates a decreasing pitch.

|                      | Total         | Healthy      | Mild         | Moderate      | Kruskal- | p-value | post-hoc-tests       |
|----------------------|---------------|--------------|--------------|---------------|----------|---------|----------------------|
|                      |               | Controls     | Depression   | Depression    | Wallis H |         |                      |
| n                    | 96            | 52           | 29           | 15            | -        | -       | -                    |
| Age                  | 26.16 (6.65)  | 26.17 (7.08) | 26.1 (5.85)  | 26.2 (7.0)    | 0.248    | 0.883   | -                    |
| Years of education   | 13.29 (2.28)  | 14.06 (2.24) | 12.24 (2.23) | 12.67 (1.5)   | 12.371   | 0.002   | HC>mild=moderate     |
| % female             | 39.6          | 63.5         | 51.7         | 73.3          | 3.035    | 0.219   | -                    |
| BDI-II               | 14.66 (13.53) | 3.94 (3.13)  | 23.96 (9.18) | 30.87 (11.31) | 66.241   | < 0.001 | HC < mild = moderate |
| HAMD                 | 19.84 (5.52)  | -            | 16.55 (3.22) | 25.33 (2.82)  | 30.84    | < 0.001 | mild < moderate      |
| TMT-A                | 19.73 (5.02)  | 20.59 (5.52) | 18.06 (4.23) | 19.9 (3.86)   | 5.896    | 0.052   | -                    |
| STAI-X1              | 39.67 (10.89) | 32.53 (6.11) | 46.04 (9.87) | 50.13 (8.57)  | 42.09    | < 0.001 | HC < mild = moderate |
| STAI-X2              | 44.19 (14.57) | 32.06 (6.63) | 54.79 (5.78) | 62.4 (8.18)   | 67.177   | < 0.001 | HC < mild < moderate |
| MWT-B                | 28.79 (3.1)   | 29.26 (2.7)  | 27.5 (3.81)  | 29.73 (2.02)  | 5.556    | 0.062   | -                    |
| Digit Span Backwards | 7.67 (2.61)   | 8.06 (2.63)  | 6.93 (2.58)  | 7.73 (2.46)   | 3.496    | 0.174   | -                    |
| Digit Span Forwards  | 11.45 (2.55)  | 11.82 (2.44) | 11.0 (2.64)  | 11.0 (2.7)    | 1.781    | 0.41    | -                    |

The values are given as the means±standard deviations in brackets. Gender shares are given as percentages. The nonparametric Kruskal-Wallis H test was used to determine group differences. Post-hoc comparisons were conducted by Mann-Whitney U tests; BDI-II=Beck Depression Scale; HAMD=Hamilton Depression Rating Scale; TMT-A=Trail making test A; STAI X1/X2=state-trait anxiety inventory sub-scales 1 and 2; MWT-B=Mehrfachwahl-Wortschatz-Intelligenztest B (multiple choice Vocabulary Intelligence Test version B)

# Table 3 Group differences (Kruskal-Wallis H test) between HCs (0) and depressed patients [1]

|                                               | Total  | 0      | 1      | н      | р     | η2    | Adj. p  |
|-----------------------------------------------|--------|--------|--------|--------|-------|-------|---------|
| N                                             | 96     | 52     | 44     |        |       |       |         |
| pitch_linear_regression_slope_pos             | -0.01  | -0.02  | -0.01  | 30.091 | 0.0   | 0.309 | < 0.001 |
| pitch_linear_regression_slope_neg             | -0.01  | -0.01  | 0.0    | 29.449 | 0.0   | 0.303 | < 0.001 |
| alpha_ratio_mean_pos                          | 8.76   | 8.68   | 8.97   | 27.797 | 0.0   | 0.285 | < 0.001 |
| f3_relative_energy_mean_pos                   | -22.63 | -21.88 | -24.54 | 26.418 | 0.0   | 0.27  | < 0.001 |
| f3_relative_energy_mean_neg                   | -22.98 | -22.57 | -24.77 | 24.127 | 0.0   | 0.246 | < 0.001 |
| hammarberg_index_sd_neg                       | 8.42   | 8.56   | 8.23   | 21.94  | 0.0   | 0.223 | < 0.001 |
| loudness_sd_pos                               | 12.07  | 16.03  | 9.37   | 21.256 | 0.0   | 0.215 | < 0.001 |
| h1_h2_harmonic_difference_mean_neg            | 5.86   | 4.68   | 6.56   | 20.851 | 0.0   | 0.211 | < 0.001 |
| rate_loudness_peaks_neg                       | 0.27   | 0.62   | 0.06   | 20.584 | 0.0   | 0.208 | < 0.001 |
| loudness_mean_pos                             | -51.09 | -53.95 | -48.36 | 20.318 | 0.0   | 0.206 | < 0.001 |
| alpha_ratio_mean_neg                          | 9.11   | 8.49   | 9.57   | 20.185 | 0.0   | 0.204 | < 0.001 |
| loudness_sd_neg                               | 12.02  | 17.07  | 9.31   | 19.725 | 0.0   | 0.199 | < 0.001 |
| length_continuously_unvoiced_regions_mean_neg | 0.11   | 0.12   | 0.09   | 19.014 | 0.0   | 0.192 | < 0.001 |
| loudness_mean_neg                             | -51.83 | -55.65 | -49.11 | 18.567 | 0.0   | 0.187 | < 0.001 |
| apg5 shimmer pos                              | 8.1    | 7.45   | 9.75   | 17.691 | 0.0   | 0.178 | < 0.001 |
| rate_loudness_peaks_pos                       | 0.26   | 0.46   | 0.06   | 17.322 | 0.0   | 0.174 | < 0.001 |
| apg11_shimmer_neg                             | 13.53  | 12.01  | 17.35  | 16.356 | 0.0   | 0.163 | < 0.001 |
| apg5_shimmer_neg                              | 8.41   | 7.43   | 9.91   | 16.237 | 0.0   | 0.162 | < 0.001 |
| length_continuously_unvoiced_regions_sd_neg   | 0.1    | 0.11   | 0.08   | 15.942 | 0.0   | 0.159 | < 0.001 |
| apg11_shimmer_pos                             | 13.58  | 11.95  | 15.93  | 15.074 | 0.0   | 0.15  | < 0.001 |
| apg3_shimmer_neg                              | 6.14   | 5.5    | 7.31   | 14.733 | 0.0   | 0.146 | < 0.001 |
| dda_shimmer_neg                               | 18.41  | 16.51  | 21.94  | 14.733 | 0.0   | 0.146 | < 0.001 |
| apg3 shimmer pos                              | 6.17   | 5.62   | 7.03   | 14.341 | 0.0   | 0.142 | < 0.001 |
| dda shimmer pos                               | 18.52  | 16.86  | 21.1   | 14.341 | 0.0   | 0.142 | < 0.001 |
| pitch_skewness_neg                            | 0.18   | 0.4    | 0.07   | 17.567 | 0.0   | 0.176 | 0.001   |
| f1_frequency_sd_neg                           | 337.51 | 322.01 | 357.19 | 16.475 | 0.0   | 0.165 | 0.001   |
| h1_h2_harmonic_difference_mean_pos            | 5.67   | 4.8    | 6.27   | 15.825 | 0.0   | 0.158 | 0.001   |
| length_continuously_unvoiced_regions_mean_pos | 0.11   | 0.12   | 0.1    | 15.592 | 0.0   | 0.155 | 0.001   |
| pitch_kurtosis_neg                            | 0.4    | 0.88   | 0.13   | 15.074 | 0.0   | 0.15  | 0.001   |
| pitch_percentile_20_pos                       | 98.43  | 96.1   | 101.09 | 14.79  | 0.0   | 0.147 | 0.001   |
| utterance_durations_mean_pos                  | 0.19   | 0.17   | 0.24   | 14.733 | 0.0   | 0.146 | 0.001   |
| hammarberg_index_mean_pos                     | 25.61  | 24.59  | 26.74  | 14.508 | 0.0   | 0.144 | 0.001   |
| pitch_max_pos                                 | 299.85 | 321.75 | 273.75 | 14.564 | 0.0   | 0.144 | 0.001   |
| pitch_percentile_80_pos                       | 182.38 | 186.98 | 172.7  | 14.564 | 0.0   | 0.144 | 0.001   |
| duration_neg                                  | 29.48  | 25.05  | 47.46  | 14.452 | 0.0   | 0.143 | 0.001   |
| utterance_durations_sd_pos                    | 0.13   | 0.11   | 0.17   | 14.452 | 0.0   | 0.143 | 0.001   |
| brunets_index_neg                             | 9.81   | 9.01   | 10.82  | 14.229 | 0.0   | 0.141 | 0.001   |
| positive_sentence_ratio_neg                   | 0.43   | 0.33   | 0.5    | 14.091 | 0.0   | 0.139 | 0.001   |
| word_frequency_mean_neg                       | 4.82   | 4.82   | 4.82   | 14.008 | 0.0   | 0.138 | 0.001   |
| utterance_durations_mean_neg                  | 0.19   | 0.18   | 0.22   | 13.463 | 0.0   | 0.133 | 0.001   |
| utterance_durations_sum_neg                   | 11.7   | 8.3    | 18.68  | 13.195 | 0.0   | 0.13  | 0.001   |
| duration_pos                                  | 19.66  | 16.14  | 27.98  | 13.035 | 0.0   | 0.128 | 0.001   |
| mean_sentiment_neg                            | 0.33   | 0.22   | 0.5    | 12.824 | 0.0   | 0.126 | 0.001   |
| hammarberg_index_sd_pos                       | 8.44   | 8.79   | 7.89   | 12.876 | 0.0   | 0.126 | 0.001   |
| utterance_durations_sd_neg                    | 0.13   | 0.12   | 0.16   | 12.666 | 0.0   | 0.124 | 0.001   |
| utterance_durations_sum_pos                   | 8.06   | 6.37   | 12.1   | 12.251 | 0.0   | 0.12  | 0.001   |
| shimmer_local_dB_sd_neg                       | 1.37   | 1.37   | 1.37   | 11.995 | 0.001 | 0.117 | 0.001   |
| pitch_percentile_20_neg                       | 95.05  | 95.05  | 95.7   | 13.735 | 0.0   | 0.135 | 0.002   |
| pitch_skewness_pos                            | 0.28   | 0.54   | 0.03   | 13.302 | 0.0   | 0.131 | 0.002   |
| hammarberg_index_mean_neg                     | 25.75  | 24.51  | 27.39  | 12.824 | 0.0   | 0.126 | 0.002   |
| f2_relative_energy_mean_neg                   | -17.42 | -17.29 | -17.67 | 11.691 | 0.001 | 0.114 | 0.002   |
| pause_durations_sd_neg                        | 0.31   | 0.31   | 0.33   | 10.707 | 0.001 | 0.103 | 0.002   |

#### Table 3 (continued)

|                                             | Total   | 0       | 1       | Н      | р     | η2    | Adj. p |
|---------------------------------------------|---------|---------|---------|--------|-------|-------|--------|
| length_continuously_unvoiced_regions_sd_pos | 0.1     | 0.11    | 0.09    | 10.707 | 0.001 | 0.103 | 0.002  |
| hnr_mean_neg                                | -105.49 | -105.92 | -104.54 | 10.42  | 0.001 | 0.1   | 0.002  |
| shimmer_local_dB_sd_pos                     | 1.35    | 1.35    | 1.35    | 10.42  | 0.001 | 0.1   | 0.002  |
| neutral_sentence_ratio_neg                  | 0.4     | 0.5     | 0.28    | 10.184 | 0.001 | 0.098 | 0.002  |
| pitch_max_neg                               | 291.94  | 310.67  | 257.4   | 11.893 | 0.001 | 0.116 | 0.003  |
| pitch_percentile_80_neg                     | 179.08  | 186.3   | 166.57  | 11.893 | 0.001 | 0.116 | 0.003  |
| honore_stat_neg                             | 1785.46 | 1910.71 | 1689.43 | 10.611 | 0.001 | 0.102 | 0.003  |
| pitch_kurtosis_pos                          | 0.75    | 0.93    | 0.43    | 12.046 | 0.001 | 0.118 | 0.004  |
| spectral_slope_500_1500_sd_neg              | 5.26    | 5.26    | 5.21    | 10.184 | 0.001 | 0.098 | 0.004  |
| speech_ratio_neg                            | 0.41    | 0.35    | 0.46    | 9.045  | 0.003 | 0.086 | 0.005  |
| negative_sentence_ratio_pos                 | 0.0     | 0.0     | 0.0     | 9.698  | 0.002 | 0.093 | 0.007  |
| f2_relative_energy_mean_pos                 | -16.82  | -16.56  | -17.21  | 9.178  | 0.002 | 0.087 | 0.009  |
| pause_rate_pos                              | 0.46    | 0.48    | 0.41    | 7.973  | 0.005 | 0.074 | 0.009  |
| pause_durations_sd_pos                      | 0.24    | 0.23    | 0.24    | 7.89   | 0.005 | 0.073 | 0.009  |
| f1_relative_energy_sd_pos                   | 8.14    | 8.19    | 8.1     | 8.738  | 0.003 | 0.082 | 0.01   |
| number_consecutive_repetitions_pos          | 0.0     | 0.0     | 0.0     | 9.629  | 0.002 | 0.092 | 0.012  |
| brunets_index_pos                           | 9.16    | 8.63    | 9.73    | 8.651  | 0.003 | 0.081 | 0.012  |
| word_frequency_mean_pos                     | 4.78    | 4.81    | 4.74    | 8.014  | 0.005 | 0.075 | 0.012  |
| pause_rate_neg                              | 0.48    | 0.5     | 0.47    | 6.969  | 0.008 | 0.063 | 0.013  |
| average_mfccs_3_neg                         | 18.25   | 15.07   | 20.6    | 7.726  | 0.005 | 0.072 | 0.014  |
| spectral_slope_0_500_mean_neg               | 0.26    | 0.26    | 0.31    | 7.685  | 0.006 | 0.071 | 0.014  |
| f3_frequency_mean_neg                       | 2911.24 | 2945.12 | 2894.73 | 8.825  | 0.003 | 0.083 | 0.016  |
| f1_frequency_sd_pos                         | 325.89  | 315.88  | 333.83  | 8.913  | 0.003 | 0.084 | 0.017  |
| honore_stat_pos                             | 1698.73 | 1683.99 | 1721.88 | 6.891  | 0.009 | 0.063 | 0.017  |
| hnr_mean_pos                                | -102.54 | -104.31 | -96.65  | 6.068  | 0.014 | 0.054 | 0.018  |
| h1_a3_harmonic_difference_mean_neg          | -20.28  | -18.23  | -22.21  | 6.853  | 0.009 | 0.062 | 0.019  |
| speech_ratio_pos                            | 0.43    | 0.4     | 0.49    | 6.287  | 0.012 | 0.056 | 0.019  |
| f3_relative_energy_sd_pos                   | 9.95    | 10.18   | 9.64    | 7.125  | 0.008 | 0.065 | 0.021  |
| spectral_slope_500_1500_sd_pos              | 5.07    | 5.07    | 5.12    | 6.814  | 0.009 | 0.062 | 0.022  |
| word_count_pos                              | 47.0    | 39.0    | 64.0    | 6.068  | 0.014 | 0.054 | 0.022  |
| pitch_percentile_99_pos                     | 239.49  | 264.87  | 218.92  | 8.098  | 0.004 | 0.076 | 0.023  |
| pitch_percentile_1_99_range_pos             | 167.98  | 193.61  | 151.81  | 7.89   | 0.005 | 0.073 | 0.023  |
| jitter_local_mean_pos                       | 0.04    | 0.04    | 0.04    | 7.767  | 0.005 | 0.072 | 0.023  |
| length_continuously_voiced_regions_mean_pos | 0.19    | 0.18    | 0.2     | 5.676  | 0.017 | 0.05  | 0.024  |
| pitch_std_pos                               | 41.54   | 47.35   | 37.34   | 7.442  | 0.006 | 0.069 | 0.025  |
| average_mfccs_2_pos                         | 11.04   | 9.78    | 11.69   | 6.141  | 0.013 | 0.055 | 0.027  |
| h1_h2_harmonic_difference_sd_pos            | 7.67    | 7.87    | 7.1     | 6.104  | 0.013 | 0.054 | 0.027  |
| length_continuously_voiced_regions_sd_pos   | 0.27    | 0.25    | 0.29    | 5.23   | 0.022 | 0.045 | 0.028  |
| average_mfccs_2_neg                         | 13.12   | 11.87   | 14.76   | 5.676  | 0.017 | 0.05  | 0.034  |
| h1_a3_harmonic_difference_sd_neg            | 8.89    | 9.26    | 8.76    | 5.468  | 0.019 | 0.048 | 0.036  |

9.23 Variables are listed in descending order for effect size and adjusted pvalue. Pos=positive story; neg=negative story. H=measure for Kruskal-Wallis H test; p=unadjusted pvalue;  $\eta$ 2=effect size; Adj. p=pvalue adjusted for multiple hypothesis testing according to the Benjamini-Hochberg procedure. For brevity, only features with adj. p<0.05 are reported here. The full list can be found in suppl. Table 3

8.45

8.99

Depressed participants showed a lower slope in the positive story compared to the HCs, but a greater slope in the negative story. Furthermore, we found significant features pertaining to the alpha ratio with effect sizes  $\eta^2 > 0.20$ (p < 0.001) for both negative and positive storytelling. The alpha ratio is defined as the ratio of spectrum intensity above and below 1000 Hz and is influenced by vocal loudness [60]. Additionally, the mean loudness of positive  $(\eta 2=0.21, p<0.001)$  and negative  $(\eta 2=0.19, p<0.001)$ 

h1\_a3\_harmonic\_difference\_sd\_pos

storytelling significantly differed between groups, with depressed participants talking louder in both conditions.

0.02

0.047

0.037

5.399

There were differences in temporal features such as the duration of utterances (positive story:  $\eta 2=0.15$ , p=0.001; negative story:  $\eta$ 2=0.13, p=0.001), with depressed participants speaking longer. Additionally, differences were observed in the pause rate, defined as the total length of pauses divided by the total length of speech, including pauses. In our data, we noted a lower pause rate in

depressed individuals for positive ( $\eta$ 2=0.07, p<0.01) and negative stories ( $\eta$ 2=0.06, p<0.015).

Furthermore, depressed participants used more words (mean=64) than HCs did (mean=39,  $\eta$ 2=0.54, p=0.02) in the positive story. This trend was also evident in the negative story, although it did not achieve statistical significance (depressed mean=109, HC mean=52,  $\eta$ 2=0.01, p=0.6). However, the difference in the number of words produced between positive and negative stories was more noticeable in depressed participants.

We observed significant differences in lexical richness between the groups. The Brunet's index (BI) indicates richer language with lower numbers [61]. According to our data, the BI was greater in depressed participants in the negative ( $\eta$ 2=0.14 p=0.001) and the positive ( $\eta$ 2=0.08 p=0.012) story.

Furthermore, we assessed speech sentiment, which evaluates whether the emotional tone of the words used is predominantly positive, negative, or neutral. In our analysis, we discovered several features that significantly differed between groups, such as the positive sentence ratio in the negative story. Depressed participants used more positive sentences (ratio=0.5) than HCs did (ratio=0.33,  $\eta$ 2=0.14, adjusted *p*=0.001). This effect did not achieve statistical significance for the positive story (HC/ depressed ratio=0.5, *p*=0.7). Additionally, differences were observed in the neutral sentence ratio ( $\eta$ 2=0.1, adjusted *p*=0.02), with healthy participants employing more neutral sentences in negative storytelling. Again,

this effect was not significant for the positive story (p=0.7).

# Group differences in speech features between mildly and moderately depressed patients

Various features exhibited high effect sizes when comparing mildly and moderately depressed individuals. However, none of the effects reached statistical significance ( $\alpha < 0.05$ ). Among the variables with high effect sizes, most were related to pauses, such as pause rate, number of pauses, and pause duration ( $\eta$ 2>0.093). Moderately depressed individuals showed more and longer pauses than those with mild depression. Additionally, those with moderate depression spoke at a lower volume than individuals with mild depression ( $\eta 2 = 0.093$ ). Variables related to voice quality also displayed differences, such as shimmer (indicating irregularities in the loudness of the voice), with moderately depressed individuals showing higher values than those with mild depression ( $\eta$ 2=0.066). All these listed effects were derived from the negative, not the positive story. For a detailed breakdown, the full results are available in Supplementary Table 4.

#### Correlations between speech features and the BDI-II

Different speech features exhibited low to moderate correlations with the BDI-II (Fig. 1). For instance, variables pertaining to the MFCCS, both in negative and positive storytelling, demonstrated correlations (r) between 0.32 and 0.4, p<0.001, respectively. Furthermore, features such as jitter (irregularity in pitch, which can manifest



**Fig. 1** Lollipop plots depicting results of Spearman rank sum correlations (*r*) between speech features and the BDI-II. Variables are colour-coded according to the captions, based on the categories defined in Table 1. For brevity, only features with adj. *p* < 0.05 are depicted here. All results including effect sizes and *p* values can be found in Supp. Table 5

as a wavering or unstable quality in the voice; r>0.51, p<0.001, respectively) in the positive story and shimmer (irregularity in amplitude, leading to fluctuations in loudness or intensity; r>0.40, p<0.001, respectively) in both the positive and negative stories showed moderate correlations. Another feature showing a significant correlation was loudness, both in positive (r=0.40, p<0.001) and negative storytelling (r=0.35, p<0.001). The highest correlations were found for the minimal pitch in positive (r=-0.53, p<0.001) and negative (r=-0.54, p<0.001) storytelling. The complete list of correlation results can be found in Supp. Table 5.

#### **Classification models**

For each of the six classifications, several models were computed to select the one with the best performance with regard to the Balanced Accuracy (BA) and receiver operating characteristics - area under the curve (ROC-AUC). The models tested were random forest, extra trees, support vector machines (SVMs), linear models (LMs) and decision trees (DTs).

For detailed results of the comparison of HCs versus patients with MDD, refer to Table 4; Fig. 2. The best performing speech model consisted of 10 features, 7 of which were selected over all LOOCV iterations (rate\_ loudness\_peaks\_neg, vocal\_tremor\_neg, pitch\_min\_neg, average\_mfccs\_1\_pos, apq5\_shimmer\_pos, h1\_a3\_harmonic\_difference\_mean\_pos, pitch\_min\_pos). Notably, all seven features included over all iterations were identified as significant in the group comparisons and correlations (p < 0.05, respectively).

For detailed results of the comparison of mild vs. moderately depressed patients, refer to Table 4; Fig. 3. The speech DT model consisted of 50 features (for feature names and number of selections by means of LOOCV, see Supp. Table 6) and had a BA of 0.68 and an AUC of 0.69. In this instance, 15 of the 50 features included in the model were identified as significant in the group comparisons and correlations. Of these, two features—rate\_ loudness\_peaks\_neg and pitch\_min\_neg—were also part of the SVM model to distinguish between depressed and healthy participants. The results of the permutation tests used to assess differences between ROC curves are presented in Table 5. For the HC vs. MDD models, there was no significant difference between the BDI-II and the speech model. However, both models significantly differed from the baseline models.

#### Discussion

In this research, we aimed to assess speech characteristics in a sample of depressed individuals and healthy controls. We examined group differences and correlations between specific speech features and BDI-II scores. Additionally, we developed classification models to differentiate between depressed and healthy participants based on speech features that show similar group discrimination effectiveness compared to classical measures such as the BDI-II. Our findings suggest that various speech features are significantly associated with depression when compared to healthy individuals.

The most prominent group differences between HCs and patients with MDD were demonstrated in variables pertaining to pitch slope, both for the positive and negative stories. For the negative story, we found a slope of zero in depressed participants (compared to -0.01 in HCs, p < 0.001), which is in line with existing data indicating a flatter pitch slope in depressed patients than in HCs [23]. Additionally, we found further variables related to pitch, such as kurtosis and skewness, to be lower in depressed participants than in healthy controls, both in the negative and the positive story conditions. Low kurtosis suggests a flatter distribution, indicating a more consistent pitch over the whole of the recording. Negative skewness indicates a longer left tail of the audio signal, meaning more instances of lower pitch values. These data indicate a generally flatter and monotonous speech in the depressed sample.

Furthermore, our analyses demonstrated the strongest correlations between depressive symptoms (BDI-II) and the minimum pitch in both the negative and positive stories. These results are generally in line with the literature demonstrating lower pitch variability and pitch slope in depressed individuals than in HCs [23, 29, 62]. A more recent study, however, demonstrated contrasting results,

| Table 4 | Performance | metrics for | different | classification | models |
|---------|-------------|-------------|-----------|----------------|--------|
|---------|-------------|-------------|-----------|----------------|--------|

| Comparison            | Model               | k features selected | BA   | ROC-AUC | Sensitivity | Specificity |
|-----------------------|---------------------|---------------------|------|---------|-------------|-------------|
| HC vs. MDD            | Baseline model (LM) | 9                   | 0.62 | 0.72    | 0.56        | 0.68        |
|                       | Speech Model (SVM)  | 10                  | 0.88 | 0.93    | 0.81        | 0.94        |
|                       | BDI-II Model (SVM)  | 1                   | 0.94 | 0.99    | 0.91        | 0.98        |
| Mild vs. moderate MDD | Baseline model (DT) | 9                   | 0.66 | 0.64    | 0.47        | 0.86        |
|                       | Speech Model (LM)   | 50                  | 0.56 | 0.62    | 0.33        | 0.79        |
|                       | BDI-II Model (XT)   | 1                   | 0.61 | 0.55    | 0.40        | 0.82        |

BA=balanced accuracy; DT=decision trees; LM=Linear Model; ROC-AUC=Receiver operating characteristic - area under the curve; SVM=support Vector Machine; XT=Extra Trees



Fig. 2 Receiver operating characteristic curves and areas under the curve (ROC-AUC) for HC vs. Depressed classification models. Legend: HC=healthy controls; baseline=linear model consisting of demographic and clinical data; all\_features=SVM speech model; bdi\_control=SVM model with BDI-II as the only variable

showing that in MDD patients undergoing sleep deprivation therapy, lower pitch variability was linked to lower depression severity [63]. However, it is worth noting that in this study, the authors assessed within-patient variability while undergoing a specific intervention, whereas the aforementioned studies usually examined variability between participants and treatment as usual.

Interestingly, in our sample, depressed participants spoke significantly louder in both story conditions than did HCs. This is in contrast to most evidence stating that MDD patients on average talk in a lower voice than HCs [28, 31, 64]. We hypothesise various influencing factors that might contribute to these contrasting findings, such as age or task. Our sample was relatively young on average ( $26\pm6.5$  years). It has been previously demonstrated that symptomatology in MDD varies with age [65, 66], which in turn might also be reflected in speech. Additionally, the paradigms used in studies assessing emotionally charged speech were similar but not identical. For our study presented here, we asked participants to describe a negative and a positive experience they had throughout their lives, whereas for instance Wang and colleagues (2019) asked participants to "please share with us your most wonderful moment and describe it in detail." [31]. For some features, we found differences between the negative and positive stories, which is likely a factor to be considered for the evaluation of speech variables. Additionally, it is worth noting that in our cohort we found that moderately depressed individuals talked in a lower voice than did those with mild depression, although this effect did not reach statistical significance. Alpert and colleagues (2001) reported that depressed individuals talked more loudly than HCs did, although this effect did not reach significance [67].

We found various temporal features associated with the diagnosis of depression, such as utterance duration



# Mild vs Moderate Depression

Fig. 3 Receiver operating characteristic curves and areas under the curve (ROC-AUC) for Mild vs. Moderately Depressed classification models. Legend: baseline = Decision Tree Model consisting of demographic and clinical data; all\_features = Speech Linear Model; bdi\_control = Extra Trees model with BDI-II as the only variable

**Table 5** Results of permutation tests to assess the statistical significance of differences between the area under the ROC curves for the HC (Healthy Controls) vs. MDD (major depressive disorder) classification models, and mild vs. moderate MDD patients.  $\Delta$  = numerical difference

| difference                   |       |         |         |
|------------------------------|-------|---------|---------|
| Models                       | Δ     | p       | Adj. p  |
| HC vs. MDD                   |       |         |         |
| BDI-II vs. Speech features   | 0.06  | 0.005   | 0.01    |
| BDI-II vs. Baseline          | 0.28  | < 0.001 | < 0.001 |
| Speech features vs. Baseline | 0.21  | < 0.001 | < 0.001 |
| Mild vs. Moderate Depression |       |         |         |
| BDI-II vs. Speech features   | -0.07 | 0.66    | 0.79    |
| BDI-II vs. Baseline          | 0.09  | 0.54    | 0.79    |
| Speech features vs. Baseline | -0.02 | 0.91    | 0.91    |
|                              |       |         |         |

P = unadjusted p value; Adj. p = p value adjusted for multiple hypothesis testing according to the Benjamini-Hochberg procedure

and pause rate. Our data indicate a lower pause rate for the negative and positive story conditions in depressed individuals than in HCs. This result is seemingly in opposition to the literature describing longer pause times in depressed patients than in HCs [26, 27, 68, 69]. However, our variable "pause rate" is not necessarily comparable to the variables described in the cited publications which focused on the absolute pause duration uncorrected for the total length of speech. In fact, according to our data, group differences (MDD vs. HC) in the absolute variable "pause duration" were not significantly different for either negative or positive storytelling. Additionally, it should be considered that by controlling for the TMT-A, the effect of psychomotor retardation and its effect on speech [70] might have been mitigated. Furthermore, in our data, depressed individuals displayed more pauses than HCs did. This effect, however, did not reach statistical significance in either story condition (p=0.11 and p=0.28, respectively), which is in line with the literature [71, 72].

In our analysis, we noted a difference in word count between MDD patients and HCs. Among HCs, the mean discrepancy in word count between positive and negative narratives was 12 words. However, for those with MDD, the difference was more pronounced, standing at 45 words, with 109 words for the negative story and 64 words for the positive story. These findings align with literature illustrating a tendency for increased use of negative emotion words among individuals experiencing depression compared to HCs [73].

Our speech machine learning model consisting of 10 acoustic features to differentiate between depressed and healthy individuals achieved a performance level that is comparable to the BDI-II model, with an AUC of 0.93 versus 0.99. While our speech model is statistically significantly lower (p=0.01), it still demonstrates strong potential in identifying depression through speech indicators, especially when compared to similar approaches, which yielded lower results (0.66 [74], 0.71 [75], and 0.8 [76]). However, it is worth noting that these studies used different paradigms and samples, thus limiting comparability. Our LM classification based on 50 speech features to differentiate between mildly and moderately depressed patients yielded an AUC of 0.62 compared to the BDI-II XT model with an AUC of 0.55. This numerical superiority, however, did not reach statistical significance (p=0.79). To our knowledge, there is limited literature on machine learning models for differentiating individuals with mild-stage MDD from those with moderatestage MDD. One study by Shin et al. (2021) investigated the utility of twenty-one voice features to discriminate between minor and major depression [77]. A multilayer processing machine learning method yielded an AUC of 65.9%, similar to our results. However, all of the patients participating in our study suffered from various stages of MDD, in contrast to the differentiation into minor and major depression by Shin and colleagues. Work by Hashim et al. (2017) demonstrated temporal speech features to be predictive of HAMD scores in female patients [78]. For male patients, a combination of temporal and spectral features was predictive of HAMD scores, and temporal features were predictive of BDI-II scores. However, this dimensional approach differed from our categorisation into mild and moderately depressed individuals. Notably, the overlap of features selected for the two classification models that best differentiate between healthy and depressed individuals, as well as between mild and moderately depressed individuals, was minimal, with only two items selected for both models. These results underscore the relevance of distinct speech components in conducting this sort of comparisons. Specifically, the model that differentiates between HC and individuals with MDD consisted solely of acoustic features. In contrast, the model used to distinguish between mild and moderately depressed patients included additional features related to sentiment, word types, and temporal variables.

There are limitations to this study. Since this was an exploratory analysis, no power calculation was performed, which may limit the statistical interpretability and robustness of the findings. No longitudinal data accounting for intraindividual differences are available, which may also allow for a better understanding of treatment response effects on speech. Future research should also focus on associations of speech features with depression on a symptom rather than a syndrome level, i.e., not solely amalgamating symptoms to a numeric score. In addition, our approach to eliciting emotional speech by prompting participants to tell a negative/positive story may limit comparability to other studies where different paradigms were utilised.

#### Conclusions

Our data show that speech features are associated with depression and that a machine learning model can differentiate between depressed patients and healthy individuals with high accuracy. This performance derived from a two-minute speech recording is comparable to that of an established depression assessment, the BDI-II. Compared to a 10- to 15-minute pen-and-paper assessment, automated speech analysis offers various advantages, such as greater objectivity [79]. Another factor is brevity, which is especially important for trial participants [80]. Furthermore, our approach allows remote access and anonymity without the need for clinician resources to evaluate the questionnaire. In addition, the automated assessment of free speech enables access to qualitative information and may feel less intrusive or clinical, potentially leading to greater engagement and openness from the individual.

Another promising application is remote symptom monitoring, where speech-based markers can be used for continuous, real-time assessment, aiding in early detection of mood changes or depressive relapses. For instance, integrating these markers into smartphone applications could allow patients to be monitored longitudinally outside clinical settings, promoting early intervention. Recent studies, such as Ciampelli et al. (2023), demonstrate that automatic speech recognition (ASR), compared to manual transcribing in combination with semantic natural language processing, effectively analyses speech features without significantly reducing diagnostic accuracy [81]. This technology holds potential for scalable, remote monitoring, enhancing clinical utility and accessibility [82]. Implementing ASR systems for remote depression management could transform treatment by providing clinicians with ongoing, objective assessments, thus improving intervention timeliness and overall patient outcomes.

Future research endeavours in speech analysis among individuals with depression and other psychiatric disorders should consider the development of a standardised speech task protocol. A consortium approach could aid in establishing a common framework. This protocol would ideally incorporate emotionally loaded stimuli while minimising the inclusion of personal information to ensure participant privacy and data protection. Such a standardised protocol would not only facilitate the comparison of results across studies but also streamline the transfer and processing of participant data, ultimately advancing the understanding of voice and speech characteristics in psychiatric disorders. To move towards precision medicine in psychiatry, these findings may aid in the creation of voice-based biomarkers that can enhance the clinical diagnosis and monitoring of psychiatric disorders.

#### Abbreviations

| ASR     | Automatic speech recognition                             |
|---------|----------------------------------------------------------|
| BA      | Balanced accuracy                                        |
| BDI-II  | Beck Depression Inventory 2nd edition                    |
| BI      | Brunet's index                                           |
| DT      | Decision Trees                                           |
| HAMD    | Hamilton Depression Rating Scale                         |
| HC      | Healthy Controls                                         |
| LM      | Linear Model                                             |
| LOOCV   | Leave-one-out cross-validation                           |
| MDD     | Major Depressive Disorder                                |
| MFCC    | Mel-frequency cepstral coefficient                       |
| NLP     | Natural Language Processing                              |
| ROC-AUC | Receiver operating characteristic - area under the curve |
| STAI    | State-Trait-Anxiety Inventory                            |
| SVM     | Support Vector Machine                                   |
| TMT     | A/B Trail-Making-Test Versions A/B                       |
| WMS-R   | Wechsler Memory Scale-Revised                            |
| XT      | Extra Trees                                              |

#### **Supplementary Information**

The online version contains supplementary material available at https://doi.or g/10.1186/s12888-024-06253-6.

Supplementary Material 1

#### Acknowledgements

We want to thank all the participants of the study. Moreover, we want to acknowledge the kind support provided by the Brain Imaging Facility of the Interdisciplinary Center for Clinical Research within the Faculty of Medicine at RWTH Aachen University and want to thank Fynn Wagels, Marie Kranz and Lennard Herzberg very much for assisting with the measurements.

#### Author contributions

FM was responsible for the conceptualisation and original drafting of the manuscript. FD was responsible for data curation, data analysis and for the creation of figures and tables. JS was responsible for data acquisition and contributed to reviewing and writing of the manuscript. JT was responsible for supervision and data analysis. UH was responsible for funding acquisition and supervision. AK was responsible for conceptualisation and supervision and contributed to reviewing and writing of the manuscript. LW was responsible for project administration and data acquisition and contributed to reviewing and writing of the manuscript. LW was responsible for project administration and data acquisition and contributed to reviewing and writing of the manuscript. All the authors have read and approved the final manuscript.

#### Funding

Funding for the study was provided by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) 667892/JO 1453/2 – 1. This work was also supported by the FZJ-NST Bilateral Cooperation Program funded by the Forschungszentrum Jülich and the National Research Council of Science & Technology (Global-22-001). Furthermore, the study was partly funded by ki: elements GmbH, Saarbrücken, Germany.

#### Data availability

Anonymised questionnaire data are available on GitHub (https://github.com /JuliaSchraeder/UnconsciousBias). The speech data generated and analysed during the current study are not publicly available for privacy reasons. The code for speech feature extraction is not publicly available for intellectual property reasons but is available from the corresponding author upon reasonable request.

#### Declarations

#### Ethics approval and consent to participate

The study was approved by the internal ethics committee of the university hospital Aachen, Germany (Ethik-Kommission an der Medizinischen Fakultät der RWTH Aachen; vote number EK 045 – 19). All study procedures were conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all participants prior to participation in the study.

#### **Consent for publication**

Not applicable.

#### **Competing interests**

FM, FD, JT and AK are employees of ki: elements GmbH. JS, LW and UH have no competing interests to declare.

Received: 3 July 2024 / Accepted: 4 November 2024 Published online: 12 November 2024

#### References

- de la Torre JA, Vilagut G, Ronaldson A, Serrano-Blanco A, Martín V, Peters M, et al. Prevalence and variability of current depressive disorder in 27 European countries: a population-based study. Lancet Public Health. 2021;6(10):e729–38.
- Greenberg PE, Fournier AA, Sisitsky T, Simes M, Berman R, Koenigsberg SH, et al. The economic burden of adults with major depressive disorder in the United States (2010 and 2018). PharmacoEconomics. 2021;39(6):653–65.
- IsHak WW, Mirocha J, James D, Tobia G, Vilhauer J, Fakhry H, et al. Quality of life in major depressive disorder before/after multiple steps of treatment and one-year follow-up. Acta Psychiatr Scand. 2015;131(1):51–60.
- Iancu SC, Wong YM, Rhebergen D, van Balkom AJLM, Batelaan NM. Longterm disability in major depressive disorder: a 6-year follow-up study. Psychol Med. 2020;50(10):1644–52.
- Marx W, Penninx BWJH, Solmi M, Furukawa TA, Firth J, Carvalho AF, et al. Major depressive disorder. Nat Rev Dis Primer. 2023;9(1):1–21.
- American Psychiatric Association. DSM–5 Task Force. Diagnostic and statistical manual of mental disorders (DSM–5<sup>®</sup>). American Psychiatric Association; 2013. p. 947.
- Marwaha S, Palmer E, Suppes T, Cons E, Young AH, Upthegrove R. Novel and emerging treatments for major depression. Lancet. 2023;401(10371):141–53.

- Hansson O, Blennow K, Zetterberg H, Dage J. Blood biomarkers for Alzheimer's disease in clinical practice and trials. Nat Aging. 2023;3(5):506–19.
- Lee Y, Ragguett RM, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018;241:519–32.
- 10. Jacobson NC, Weingarden H, Wilhelm S. Digital biomarkers of mood disorders and symptom change. Npj Digit Med. 2019;2(1):1–3.
- Schultebraucks K, Yadav V, Galatzer-Levy IR. Utilization of Machine Learning-Based Computer Vision and Voice Analysis To Derive Digital Biomarkers of Cognitive Functioning in Trauma survivors. Digit Biomark. 2020;16–23.
- Malgaroli M, Schultebraucks K. Artificial intelligence and posttraumatic stress disorder (PTSD): an overview of advances in research and emerging clinical applications. Eur Psychol. 2020;25(4):272–82.
- 13. Kappen M, Vanderhasselt MA, Slavich GM. Speech as a promising biosignal in precision psychiatry. Neurosci Biobehav Rev. 2023;148:105121.
- de Boer JN, Voppel AE, Brederoo SG, Schnack HG, Truong KP, Wijnen FNK, et al. Acoustic speech markers for schizophrenia-spectrum disorders: a diagnostic and symptom-recognition tool. Psychol Med. 2023;53(4):1302–12.
- Koops S, Brederoo SG, de Boer JN, Nadema FG, Voppel AE, Sommer IE. Speech as a Biomarker for Depression. CNS Neurol Disord Drug Targets. 2023;22(2):152–60.
- Marmar CR, Brown AD, Qian M, Laska E, Siegel C, Li M, et al. Speech-based markers for posttraumatic stress disorder in US veterans. Depress Anxiety. 2019;36(7):607–16.
- 17. Eyben F, Scherer KR, Schuller BW, Sundberg J, Andre E, Busso C, et al. The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing. IEEE Trans Affect Comput. 2016;7(2):190–202.
- König A, Tröger J, Mallick E, Mina M, Linz N, Wagnon C, et al. Detecting subtle signs of depression with automated speech analysis in a non-clinical sample. BMC Psychiatry. 2022;22(1):830.
- König A, Mina M, Schäfer S, Linz N, Tröger J. Predicting Depression Severity from spontaneous Speech as prompted by a virtual Agent. Eur Psychiatry. 2023;66(S1):S157–8.
- Cummins N, Scherer S, Krajewski J, Schnieder S, Epps J, Quatieri TF. A review of depression and suicide risk assessment using speech analysis. Speech Commun. 2015;71:10–49.
- Gupta R, Malandrakis N, Xiao B, Guha T, Van Segbroeck M, Black M et al. Multimodal Prediction of Affective Dimensions and Depression in Human-Computer Interactions. In: Proceedings of the 4th International Workshop on Audio/Visual Emotion Challenge. Orlando Florida USA: ACM; 2014 [cited 2024 Jun 5];33–40. https://doi.org/10.1145/2661806.2661810
- Ettore E, Müller P, Hinze J, Riemenschneider M, Benoit M, Giordana B, et al. Digital phenotyping for Differential diagnosis of major depressive episode: Narrative Review. JMIR Ment Health. 2023;10(1):e37225.
- Low DM, Bentley KH, Ghosh SS. Automated assessment of psychiatric disorders using speech: a systematic review. Laryngoscope Investig Otolaryngol. 2020;5(1):96–116.
- 24. Horwitz R, Quatieri TF, Helfer BS, Yu B, Williamson JR, Mundt J. On the relative importance of vocal source, system, and prosody in human depression. 2013 IEEE Int Conf Body Sens Netw. 2013;1–6.
- 25. Kiss G, Vicsi K. Mono- and multi-lingual depression prediction based on speech processing. Int J Speech Technol. 2017;20(4):919–35.
- Mundt JC, Vogel AP, Feltner DE, Lenderking WR. Vocal acoustic biomarkers of depression severity and treatment response. Biol Psychiatry. 2012;72(7):580–7.
- Yamamoto M, Takamiya A, Sawada K, Yoshimura M, Kitazawa M, Liang K, ching et al. Using speech recognition technology to investigate the association between timing-related speech features and depression severity. Hashimoto K, editor. PLOS ONE. 2020;15(9):e0238726.
- Alghowinem S, Goecke R, Wagner M, Epps J, Breakspear M, Parker G. Detecting depression: A comparison between spontaneous and read speech. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. ieeexplore.ieee.org; 2013;7547–51.
- Cummins N, Sethu V, Epps J, Schnieder S, Krajewski J. Analysis of acoustic space variability in speech affected by depression. Speech Commun. 2015;75:27–49.
- Taguchi T, Tachikawa H, Nemoto K, Suzuki M, Nagano T, Tachibana R, et al. Major depressive disorder discrimination using vocal acoustic features. J Affect Disord. 2018;225:214–20.

- Wang J, Zhang L, Liu T, Pan W, Hu B, Zhu T. Acoustic differences between healthy and depressed people: a cross-situation study. BMC Psychiatry. 2019;19(1):300.
- Trifu R, Nemes B, Bodea-Haţegan C, Cozman D. Linguistic indicators of language in major depressive disorder (MDD). An evidence based research. J Evid-Based Psychother. 2017;17:105–28.
- Arevian AC, Bone D, Malandrakis N, Martinez VR, Wells KB, Miklowitz DJ et al. Clinical state tracking in serious mental illness through computational analysis of speech. Scilingo EP, editor. PLOS ONE. 2020;15(1):e0225695.
- Shinohara S, Nakamura M, Omiya Y, Higuchi M, Hagiwara N, Mitsuyoshi S, et al. Depressive Mood Assessment Method based on emotion level derived from Voice: comparison of Voice Features of Individuals with Major Depressive Disorders and Healthy Controls. Int J Environ Res Public Health. 2021;18(10):5435.
- Stasak B, Epps J, Cummins N, Goecke R. An Investigation of Emotional Speech in Depression Classification. In: Interspeech 2016. ISCA; 2016 [cited 2024 Oct 16];485–9. https://www.isca-archive.org/interspeech\_2016/stasak16\_interspeech\_html
- Aharonson V, de Nooy A, Bulkin S, Sessel G. Automated Classification of Depression Severity Using Speech - A Comparison of Two Machine Learning Architectures. In: 2020 IEEE International Conference on Healthcare Informatics (ICHI). 2020 [cited 2024 Oct 16];1–4. https://ieeexplore.ieee.org/document /9374335
- 37. Shinohara S, Toda H, Nakamura M, Omiya Y, Higuchi M, Takano T, et al. Evaluation of the severity of Major Depression using a Voice Index for Emotional Arousal. Sensors. 2020;20(18):5041.
- Kwon N, Kim S. Depression Severity Detection Using Read Speech with a Divide-and-Conquer Approach. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2021 [cited 2024 Oct 16];633–7. https://ieeexplore.ieee.org/document/9629868
- Schräder J, Herzberg L, Jo HG, Hernandez-Pena L, Koch J, Habel U et al. Neurophysiological pathways of unconscious emotion Processing in Depression: insights from a simultaneous electroencephalography-functional magnetic resonance imaging measurement. Biol Psychiatry Cogn Neurosci Neuroimaging. 2024;S2451–9022(24)00193–9.
- Beesdo-Baum K, Zaudig M, Wittchen HU. SCID–5-CV Strukturiertes Klinisches Interview für DSM–5-Störungen–Klinische Version: Deutsche Bearbeitung des Structured Clinical Interview for DSM–5 Disorders–Clinician Version von Michael B. First, Janet BW Williams, Rhonda S. Karg, Robert L. Hogrefe; 2019 [cited 2024 Apr 22]. https://www.testzentrale.de/shop/strukturiertes-klinisch es-interview-fuer-dsm–5r-stoerungen-klinische-version.html
- 41. Beck AT, Steer RA, Brown G. Beck Depression Inventory–II (BDI-II). 1996 [cited 2024 May 13]. https://doi.org/10.1037/t00742-000
- Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–61.
- Reitan RM. The relation of the trail making test to organic brain damage. J Consult Psychol. 1955;19(5):393–4.
- Härting C. Wechsler-Gedächtnistest Revidierte Fassung: WMS-R; manual ; deutsche Adaptation Der Revidierten Fassung Der Wechsler Memory scale. Huber; 2000;125.
- Spielberger C, Gorsuch R, Lushene R, Vagg P, Jacobs G. Manual for the statetrait anxiety inventory (form Y1 – Y2). Palo Alto, CA: Consulting Psychologists Press; 1983;IV.
- König A, Mallick E, Tröger J, Linz N, Zeghari R, Manera V, et al. Measuring neuropsychiatric symptoms in patients with early cognitive decline using speech analysis. Eur Psychiatry. 2021;64(1):e64.
- König A, Linz N, Zeghari R, Klinge X, Tröger J, Alexandersson J, et al. Detecting apathy in older adults with cognitive disorders using automatic speech analysis. J Alzheimers Dis. 2019;69(4):1183–93.
- Cummins N, Dineley J, Conde P, Matcham F, Siddi S, Lamers F, et al. Multilingual markers of depression in remotely collected speech samples: a preliminary analysis. J Affect Disord. 2023;341:128–36.
- Ladefoged P. Elements of acoustic phonetics. 2nd ed. Chicago: University of Chicago Press; 1996. p. 216.
- Ladefoged P, Johnson K. A course in Phonetics. 6th Edition. Boston, MA, USA: Michael Rosenberg; 2011.
- 51. Teixeira JP, Oliveira C, Lopes C. Vocal acoustic analysis jitter, Shimmer and HNR parameters. Procedia Technol. 2013;9:1112–22.
- 52. Nakagawa S, Asakawa K, Wang L. Speaker recognition by combining MFCC and phase information. In: Interspeech 2007. ISCA; 2007 [cited 2024 May 16];2005–8. https://www.isca-archive.org/interspeech\_2007/nakagawa07\_int erspeech.html

- Zellner B. Pauses and the temporal structure of Speech. Fundamentals of speech synthesis and speech recognition. Chichester: John Wiley; 1994. pp. 41–62.
- Lindsay H, Tröger J, König A. Language Impairment in Alzheimer's Disease— Robust and Explainable Evidence for AD-Related Deterioration of Spontaneous Speech Through Multilingual Machine Learning. Front Aging Neurosci. 2021 May 19 [cited 2024 Apr 22];13. https://www.frontiersin.org/articles/http s://doi.org/10.3389/fnagi.2021.642033
- 55. Qi P, Zhang Y, Zhang Y, Bolton J, Manning CD. Stanza: A Python Natural Language Processing Toolkit for Many Human Languages. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Online: Association for Computational Linguistics; 2020 [cited 2023 Oct 26];101–8. https://aclanthology.org/2020.acl-demos.14
- 56. Socher R, Perelygin A, Wu J, Chuang J, Manning CD, Ng A et al. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In: Yarowsky D, Baldwin T, Korhonen A, Livescu K, Bethard S, editors. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle, Washington, USA: Association for Computational Linguistics; 2013 [cited 2024 Jun 26];1631–42. Available from: https://aclanthology.org/D 13-1170.
- Buyukdura JS, McClintock SM, Croarkin PE. Psychomotor retardation in depression: Biological underpinnings, measurement, and treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):395–409.
- Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information. Phys Rev E. 2004;69(6):066138.
- Benjamini Y, Hochberg Y. Controlling the false Discovery rate: a practical and powerful Approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.
- Sundberg J, Nordenberg M. Effects of vocal loudness variation on spectrum balance as reflected by the alpha measure of long-term-average spectra of speech. J Acoust Soc Am. 2006;120(1):453–7.
- 61. Brunet E. Le Vocabulaire de Jean Giraudoux. In: Structure Et Evolution. Geneve; 1978 [cited 2024 May 16]. Available from: https://books.google.de/b ooks?hl=en&lr=&id=t1COajFe6I0C&oi=fnd&pg=PA1&ots=ttkEfKdxvL&sig=RjT ZhHnw-gBG8xYzQm97mugD1W8&redir\_esc=y#v=onepage&q&f=false
- Sanchez MH, Vergyri D, Ferrer L, Richey C, Garcia P, Knoth B et al. Using prosodic and spectral features in detecting depression in elderly males. In: Twelfth Annual Conference of the International Speech Communication Association. isca-speech.org; 2011.
- 63. Wadle LM, Ebner-Priemer UW, Foo JC, Yamamoto Y, Streit F, Witt SH, et al. Speech features as predictors of momentary depression severity in patients with depressive disorder undergoing sleep deprivation therapy: ambulatory Assessment Pilot Study. JMIR Ment Health. 2024;11:e49222.
- 64. Wang Y, Liang L, Zhang Z, Xu X, Liu R, Fang H et al. Fast and accurate assessment of depression based on voice acoustic features: a cross-sectional and longitudinal study. Front Psychiatry. 2023 [cited 2023 Jun 21];14. https://www.frontiersin.org/articles/https://doi.org/10.3389/fpsyt.2023.1195276
- 65. Hybels CF, Landerman LR, Blazer DG. Age differences in symptom expression in patients with major depression. Int J Geriatr Psychiatry. 2012;27(6):601–11.
- Wagner S, Wollschläger D, Dreimüller N, Engelmann J, Herzog DP, Roll SC, et al. Effects of age on depressive symptomatology and response to antidepressant treatment in patients with major depressive disorder aged 18 to 65 years. Compr Psychiatry. 2020;99:152170.
- 67. Alpert M, Pouget ER, Silva RR. Reflections of depression in acoustic measures of the patient's speech. J Affect Disord. 2001;66(1):59–69.

- 68. Esposito A, Esposito AM, Likforman-Sulem L, Maldonato MN, Vinciarelli A et al. On the Significance of Speech Pauses in Depressive Disorders: Results on Read and Spontaneous Narratives. In: Esposito A, Faundez-Zanuy M, Esposito AM, Cordasco G, Drugman T, Solé-Casals J, editors. Recent Advances in Nonlinear Speech Processing. Cham: Springer International Publishing; 2016
- [cited 2024 May 29];73–82. https://doi.org/10.1007/978-3-319-28109-4\_8
  69. Liu Z, Kang H, Feng L, Zhang L. Speech pause time: A potential biomarker for depression detection. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2017 [cited 2024 May 29];2020–5. https://ieeexplore.ieee.org/abstract/document/8217971
- Bennabi D, Vandel P, Papaxanthis C, Pozzo T, Haffen E. Psychomotor retardation in Depression: a systematic review of Diagnostic, Pathophysiologic, and therapeutic implications. BioMed Res Int. 2013;2013:158746.
- Mundt JC, Snyder PJ, Cannizzaro MS, Chappie K, Geralts DS. Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology. J Neurolinguistics. 2007;20(1):50–64.
- Wolters MK, Ferrini L, Farrow E, Tatar AS, Burton CD. Tracking depressed mood using speech pause patterns. In internationalphoneticassociation.org; 2015. h ttps://www.internationalphoneticassociation.org/icphs-proceedings/ICPhS2 015/Papers/ICPHS0811.pdf
- Tølbøll KB. Linguistic features in depression: a meta-analysis. J Lang Works -Sprogvidenskabeligt Stud. 2019;4(2):39–59.
- Bauer JF, Gerczuk M, Schindler-Gmelch L, Amiriparian S, Ebert DD, Krajewski J, et al. Validation of machine learning-based Assessment of Major Depressive Disorder from Paralinguistic Speech characteristics in Routine Care. Depress Anxiety. 2024;2024(1):9667377.
- Hansen L, Zhang YP, Wolf D, Sechidis K, Ladegaard N, Fusaroli R. A generalizable speech emotion recognition model reveals depression and remission. Acta Psychiatr Scand. 2022;145(2):186–99.
- Di Y, Wang J, Li W, Zhu T. Using i-vectors from voice features to identify major depressive disorder. J Affect Disord. 2021;288:161–6.
- Shin D, Cho WI, Park CHK, Rhee SJ, Kim MJ, Lee H, et al. Detection of minor and major depression through Voice as a Biomarker using machine learning. J Clin Med. 2021;10(14):3046.
- Hashim NW, Wilkes M, Salomon R, Meggs J, France DJ. Evaluation of Voice Acoustics as predictors of Clinical Depression scores. J Voice off J Voice Found. 2017;31(2):e2561–6.
- Fagherazzi G, Fischer A, Ismael M, Despotovic V. Voice for health: the use of vocal biomarkers from research to clinical practice. Digit Biomark. 2021;5(1):78–88.
- ePRO Consortium, Bodart S, Byrom B, Crescioni M, Eremenco S, Flood E. Perceived Burden of Completion of patient-reported outcome measures in clinical trials: results of a preliminary study. Ther Innov Regul Sci. 2019;53(3):318–23.
- Ciampelli S, Voppel AE, de Boer JN, Koops S, Sommer IEC. Combining automatic speech recognition with semantic natural language processing in schizophrenia. Psychiatry Res. 2023;325:115252.
- 82. Ramanarayanan V. Multimodal Technologies for Remote Assessment of Neurological and Mental Health. J Speech Lang Hear Res JSLHR. 2024;1–13.

#### Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.