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Abstract

A database that links patents to NIH awards enables evaluation of key milestones along the
research translation pathway.

The 1980 Bayh—Dole Act provides a framework for licensing US federally funded
intellectual property to private companies and thereby enables the public and the economy
to benefit from discoveries made at research institutions and universities. However, success
rates in bridging the gap between the bench and broad implementation varies substantially
across institutions, despite the production rates of scientific publications at research
institutions being relatively steady and predictable-3,

Although publication rates are generally stable, relatively few institutions produce entities
such as startups that successfully deploy and commercialize their intellectual property as
reliably as they generate publications. The variability in success in research translation
contributes to a large and growing gap between the bench and broad implementation —

a gap whose magnitude has grown so wide as to now be called the “valley of death”3-5.
Despite it having important implications for institutions, research policy and the greater
economy, explanations for this ‘valley’ remain understudied from a mechanism-based
perspective35.7.

Leaders at research institutions are generally keen to encourage commercialization and
the licensing of institutional inventions*#, because such licenses may enhance institutional
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prestige, generate royalties and demonstrate return on investment to stakeholders (including
taxpayers, in the case of public institutions)®. Peer-reviewed publications continue to serve
as a time-honored benchmark within academia, and patenting is a reasonable — although
imperfect — approximation of economically and socially valuable output from research-
derived knowledge#10:11 Accordingly, most universities have implemented incentives as
called for in Bayh-Dole (for example, large percentages of licensing incomes) to encourage
individual researchers to produce patents12.

Both federal and university policies increasingly seek to encourage patent production, but
there is a paucity of data that quantify factors that explain variation in the patenting
outcomes of individual researchers and institutions*7:13-15_ Objective metrics of the
efficiency of patent generation would enable comparisons between institutions and the
identification of best practices. To enable this, we have generated a database that offers

a basis for the accurate determination of the relationship between funding inputs and the
production of issued biomedical patents.

Overview of methods

Our database is formed by linking issued US utility patents to US National Institutes of
Health (NIH) funding awards at every NIH-recipient institution by using publicly available
data from the NIH and US Patent and Trademark Office (USPTO). Combining these datasets
requires programmatically transforming each to meet a common standard and is necessary
because neither contains a complete association between patents and any supporting NIH
funding”-16.

The inadequate reporting of federally funded patenting activity has repeatedly been noted
in the literature”16:17 and creates a barrier to the substantive assessment of institutional
performance in translating research’. Notably, although Bayh-Dole requires completeness
of both of the USPTO and NIH datasets, the incompleteness of each’-16:17 js detailed later
in this study. Despite their shortcomings, these two datasets are the most complete that are
available: combining them into a single database forms the most complete dataset that is
possible under the present circumstances.

After assembling the database, we created a metric to measure the relative cost efficiency of
patent creation at each institution (for 7= 201 institutions that met our inclusion criteria).
The ‘translational ratio’ (TR) is equal to the total amount of NIH funding, inclusive of
facilities and administrative costs, that was received by an institution divided by the number
of NIH-associated patents that were issued during the 10-year study period. Only issued
utility patents were included; pending patent applications were not included.

Put differently, the TR is the average amount of NIH funding used to generate one issued
patent at a particular institution. Lower TR values indicate greater translational efficiency
(that is, a lower TR value indicates that less funding was required to generate each patent).

A comparison of TR values between institutions enables evaluation of characteristics that
predict higher or lower translational efficiency. Results of this analysis may prove useful for
evaluating and calibrating innovation policy”.
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Many hypotheses can be tested using this database and TR methodology: several sample
experiments are reported here. We investigate the extent to which differences in translational
efficiency can be explained by total NIH funding level, the presence of a well-funded
engineering unit, and the facilities and administrative cost rate (also known as the indirect
cost rate). Finally, we derive statistics regarding patenting and publishing activity among
NIH-funded principal investigators (PIs).

Based on the database, the TR was paradoxically lower (that is, more efficient research
translation) at institutions that receive lower levels of NIH funding as compared to those

that receive moderate or high funding. Similarly, no difference in the TR was found at
institutions that assigned higher facilities and administrative rates as compared to institutions
with lower rates. The funding level for engineering units predicted reductions in the TR as
funding was increased. Finally, 18% of all NIH Pls were listed as Pls on a grant that was
associated with a patent, and 2% of these Pls were associated with half of the issued patents.

For the study period 2009-2019, 201 institutions met the study inclusion criteria of more
than US $40 million in cumulative NIH awards and at least 15 issued utility patents.

Relationships between institutional NIH funding and the generation of scientific papers.

As total NIH funding increases, the number of publications produced also increases at

a linear rate (Fig. 1a). The data yields an A2 value of 0.901, which indicates a strong
linear relationship, and a median cost per publication of $302,804. Institutions converted
grant awards to published papers at similar costs regardless of overall funding level. All
institutions depicted in Fig. 1 meet the inclusion criteria (7= 201).

Institutions with larger amounts of NIH funding tend to be less efficient in patent

generation.

Institutions were divided into three equal groups on the basis of their NIH funding level:
high, moderate and low funding groups (n7= 67 institutions per group) (Table 1 and Fig.
2). No significant difference in median TR exists between the high and moderate funding
tiers (P = 0.40), but a significantly lower TR value was found in the low funding group
(low versus moderate A< 0.01, and low versus high £< 0.01). The data show that the TR
increases with total NIH funding, and that the TR is lowest in the group that receives the
lowest overall funding from the NIH. These data are further reflected in Fig. 1d, which
shows a modest decline in efficiency of patent production as total NIH funding increases.

Indirect cost rates tend to have no effect on patent-production efficiency.

Facilities and administrative cost rates were obtained for 134 institutions that met inclusion
criteria based on a US Freedom of Information Act request. These institutions were divided
into two equal groups of 67 on the basis of their indirect cost percentage in descending
order. Table 2 provides a sample of the institutions in the high- and low-rate groups. Rates
ranged from 42.6% to 89.5%, with a mean of 61.38% in the high-cost group and 51.21%

in the low-cost group. No significant difference in median TR was found between the high-
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and low-cost groups, which suggests that translational efficiency is not accounted for by
facilities and administrative cost rates (Fig. 3).

Institutions with engineering units and higher levels of NIH funding tend to show more
efficient generation of issued patents.

Among the 201 institutions that met the inclusion criteria, 114 have engineering units (for
example, colleges or schools of engineering or applied science) that report funding data

to the National Science Foundation (NSF) Higher Education Research and Development
(HERD) survey. The median TR in the high engineering-unit funding group was
significantly lower than in the lower funding group (P = 0.022); that is, institutions with high
engineering-unit expenditures (including both intramural and extramural funding) tended to
produce issued patents with higher levels of translational efficiency (Table 3 and Fig. 4).

Pls versus institutions in predictions of patenting efficiency.

During the study period, 98,063 PlIs received funding from any type of NIH award. However,
only 17,387 PIs were listed on an NIH award that was cited by an issued patent, representing
17.7% of the total PI population (Fig. 5).

We additionally found that the 1,952 Pls with the most patents (2.0% of the total Pl
population) were associated with 50% of the issued patents during the study period. These
‘super-producers’ were each awarded 10 patents or more (Fig. 6). The data also show that
83% of Pls have not been issued any patents related to their NIH awards.

Discussion

NIH funding creates knowledge and not patents.

The purpose of NIH funding is the advancement of science and medicine, and not
necessarily the production of patents or the support of imminently translatable research. NIH
support is largely designed to fund basic science research, which may have no immediate
applications but may serve as a foundation to advance science and medicine decades later

in ways that are not presently obvious. This strategic support of research is rare, fragile and
deserving of protection.

Much evidence exists that the NIH succeeds in its mission to “seek fundamental knowledge
about the nature and behavior of living systems and the application of that knowledge to
enhance health, lengthen life and reduce illness and disability”16. For example, total NIH
funding is directly correlated with the production of scientific publications. If publications
are a proxy for the creation and dissemination of new knowledge, then NIH support creates
new knowledge at a linear and constant rate. Additionally, many Pls who achieve substantial
impact and win major awards (such as Nobel Prizes) may never generate patents.

It would be a mischaracterization of this study to criticize the NIH or its funding practices,
as we seek to measure a side effect of NIH support: the efficiency of institutions and Pls in
translating federally funded research into forms that improve and advance human health on a
broad scale.
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Patenting as a marker of translational activity.

Patenting has long been used to measure the economically and socially valuable products
of research-derived knowledge and has extensively been used in the literature to assess
the productive output of research institutions*710.11 Patenting is also an important and
expected step along the translational pathway, because the licensing of patents usually
occurs at the demarcation between the research and the production environments.

Although measurements of downstream steps in the translational pathway are of interest
(such as the percentage of patents licensed to companies or the number of derivative
products that reach the market), data on these milestones are sporadically and incompletely
available owing to their proprietary nature. By contrast, the NIH and USPTO datasets are
publicly available, complete and largely well-validated.

Patents are issued only after completing a rigorous quality control process at the USPTO,
usually in a protracted multiyear legal process that involves a back-and-forth with the
inventor and their agents. For claims to be allowed and a patent issued, a professional patent
examiner must agree that the claimed invention is useful, nonobvious and demonstrates

an inventive step. NIH awards are also highly competitive and applications are thoroughly
examined using a peer-review process on the basis of scientific merit and programmatic
alignment with the various institutions of the NIH. Awardees tend to be high-performing and
accomplished researchers.

Taken together, these two markers can provide a basis for robust quantitative analysis,
particularly when considered at scale across all NIH-funded institutions. Our primary
metric (the TR) is derived from all sources of NIH funding during the 10-year study
period, including grant and non-grant (that is, contract and cooperative agreement) funding
mechanisms. Therefore, our calculations of total funding may differ from other reports that
include only grant awards.

By capturing the total magnitude of NIH support and associated patent production, we
expect the TR to enable comparisons between institutions. Additionally, by restricting this
analysis to institutions that hold 15 or more issued patents, nearly all included institutions
were large research universities that meet the ‘Carnegie R1’ research university designation.

Patenting and the number of publications.

The remarkable linearity of publication production per unit of NIH funding (Fig. 1a)
indicates that publications are reliably and predictably produced with NIH awards. By
contrast, Fig. 1c shows that patent production is considerably more variable. We therefore
suggest that patent production rates are independent of publication rates. Further, it appears
that a focus on patenting does not necessarily detract from publishing. Huang* and Rai’ both
found that patenting more frequently was associated with publishing more frequently.

Peer-reviewed publications are the academic norm, but new knowledge derived from
research can be disseminated within both papers and patents!15. PIs who produce both
are likely to benefit from increased industry collaboration and the associated exposure to
new research ideas and funding sources1°18.19,
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Economies of scale for big institutions and big engineering units

Institutions were combined into three groups on the basis of total NIH funding to evaluate
the effects of institutional size on patent production efficiency. A total of 201 institutions
met the study inclusion criteria.

Institutions in the lowest tier of NIH funding produced patents at a lower ‘cost’ per unit NIH
funding (that is, a lower TR) than institutions at moderate or high funding levels. Overall,
our data show that patents are produced more efficiently by institutions that receive lower
overall NIH funding, and that the TR showed a modest increase as total NIH funding is
increased (that is, the cost per patent was higher at the highest-funded institutions).

Many factors probably contribute to this result. One may be the relatively high institutional
emphasis placed on pure basic science research at the largest and wealthiest research
institutions. Previous studies have identified several contributing factors that include royalty
policies, patenting incentives and characteristics of technology transfer offices such as
professionalism and profit drive®. Although large institutions may have better-funded
technology transfer offices, the data do not demonstrate that larger institutions produce
patents more cost efficiently than smaller ones. Our results are consistent with other studies
that have that found PI factors, such as attitudes toward patenting and the associated risks
and benefits, were more predictive of patent production than institutional factors#29,

We also expect that universities with large, well-funded engineering units would have lower
TRs because of an enhanced focus on reducing scientific ideas to practice. Interdisciplinary
collaboration between engineering faculty members and NIH basic science researchers
may also have a role. Our analysis found that institutions in the high engineering-unit
funding group had lower TRs than those in the lower funding group. Incidentally, higher
engineering-unit funding was not correlated with higher total NIH award funding.

Relationship of facilities and administrative costs to efficient patent production.

Facilities and administrative costs are included in NIH awards to support the host institutions
at which NIH research takes place. The rates of included institutions ranged from 42.6%

to 89.5% (a list of institutions and their corresponding rates are available in Supplementary
Table 1). No statistically significant difference in TRs was found between the high and

low facilities and administrative cost percentage groups. We conclude that, in aggregate,
higher institutional facilities and administrative rates are not correlated with a greater cost
efficiency in patent generation, despite presumably offering higher funding for technology
transfer offices and related services. Consistent with previous reports, we also found that
smaller institutions are also more likely to have lower cost rates?L.

Role of the Pl and institution in translational efficiency.

Our finding that 2.0% of PlIs are associated with over 50% of NIH-supported patents
suggests that a small group of super-producer Pls are responsible for the majority of
NIH-associated patent generation. Although this finding is reasonable considering that
the mission of the NIH is to advance science, it demonstrates that relatively few Pls
actively engage in patent production. We suggest that individual PI attitudes and intrinsic
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motivation to apply their research beyond the institution, rather than institutional size or
other properties, are primary drivers of patent creation and translational activity.

Super-producer Pls (defined as having 10 or more issued patents) present an interesting case.
Clusters of super-producers at a single institution are associated with greater cost efficiency
in patent generation at that institution. Owing to the large effect that super-producers have
on the TR of their institution, we suggest that these individuals are responsible for a
considerable portion of the biomedical translational output of their institutions.

However, it is also important to note that Pls are unlikely to produce patents until their
research has advanced to a point at which reduction to practice is useful and feasible.

This generally requires years to accomplish, which means that successful and meaningful
translation is more likely to come from more-senior Pls who probably received substantial
early-stage support from the NIH and other research sponsors’+22. This view is held by
others in the literature, who reason that senior scientists have additional time and resources
available for patenting and related entrepreneurial endeavors’23:24, Tenured faculty, who
are less exposed to the uncertainty associated with promotion and tenure, may also be
better positioned to accept the risks that are associated with an entrepreneurial venture®1°,
Junior researchers lack these advantages and may be less likely to produce patents because
academic promotion systems continue to value publications above patents?, especially in
their promotion and tenure processes.

Cross-checking the NIH and USPTO datasets.

The database that underlies this analysis is formed by precisely linking issued patents to the
specific NIH awards that supported their creation. After patents have been linked to specific
awards, the properties of both can be evaluated at scale.

The NIH publishes a dataset that links patents and NIH awards on its website. However, this
dataset is incomplete and poor reporting of federally funded patenting activity has repeatedly
been noted in the literature’16:17.25 This incomplete reporting has been implicated as a
barrier to substantive assessment of institutional performance in translating research?+25.

As per the NIH website “The patents in RePORTER come from the iEdison database.

Not all recipients of NIH funding are compliant with the iEdison reporting requirements,
particularly after their NIH support has ended”16. We found this to be true, despite the
contractual and legal obligation of NIH recipients to perform patent reporting. A recent US
General Accountability Office study carefully analyzes this issue and demonstrates results
that are consistent with our findings?>.

To mitigate the effects of this underreporting, we merged the NIH RePORTER (exported

in bulk using EXPORTER) and the USPTO Office of the Chief Economist (OCE) datasets
into a single database. The NIH dataset lists only 16,640 issued patents associated with NIH
awards, but the USPTO OCE dataset reported more than 21,000 during the study period.

Acknowledging a government interest in the USPTO patent application is legally required
when the patent’s claims have been developed using federal funding: this notation appears
in the ‘Government Interest’ section of issued patents. The USPTO OCE dataset captures
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awards reported in this section. However, considerable underreporting of federal grant
support also exists in this USPTO dataset’+25. Given these challenges, undertaking the
considerable — but achievable — task of merging and cross-referencing these two datasets
provided us a path to the most complete picture of NIH award-to-patent links under the
present circumstances, as these relationships are not recorded at scale in any other dataset.

In addition to underreporting of awards in both datasets, errors were found in the data
that were reported. For example, over 1,100 issued patents in the USPTO dataset listed
the NIH as a funding source but did not include a specific award number (as required by
USPTO guidelines). Additionally, award numbers are not recorded using a standardized
format within a patent’s Government Interest section and therefore award identifiers were
extracted and standardized using a series of parsing algorithms. Although great care was
taken to complete this process thoroughly and fastidiously, we expect that approximately
10% of issued patents that cite NIH support cannot be accurately resolved to a particular
NIH award owing to missing information or unresolvable typographical errors. Of all the
NIH grants awarded during the study period (225,289), only 5.0% were cited by an issued
patent.

Potential confounders and limitations.

This analysis encounters multiple complexities. Underreporting obscures some patents from
analysis and approximately 10% of reported patents contain errors that prevent linking them
to a specific NIH award.

The study leans heavily on the TR metric, which assumes a correlation between patent
production and translational activity. Although numerous factors could measure translational
activity, NIH awards and issued patents provide reliable, well-validated and objective
metrics. The relationship between these two variables can now be derived with improved
precision. However, the TR only gauges patent quantity and not the inherent value or utility
of the patents, which are challenging attributes to measure*7:28,

Additionally, there is a substantial delay between NIH award and patent issuance, with
late-period awards often recorded without their corresponding patents (causing an overall
increase in the TR). By examining recipient institutions at scale, we minimize this bias
toward specific groups.

Finally, these data should not be used to compare specific quantitative outcomes between
individual institutions or researchers. Several potential issues such as multi-P1 or multi-
institution NIH awards complicate the assignment of credit for patents. Additionally, several
methodologies can be used to aggregate and total institutional NIH funding. The NIH

also periodically revises funding data from prior fiscal years. Despite these challenges,
repeating the analysis using a variety of methodologies to address the issues noted above
yielded consistent aggregate results. Large cohort grouping reduced institution-specific and
grant-level biases.
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Materials and methods

Our database was formed by methodically linking USPTO and NIH databases using the
NIH award numbers cited in the Government Interest section of awarded patents. NIH and
USPTO data were first loaded into a MariaDB SQL database. A master link table was
created, which links each patent that cites NIH support to a specific NIH award or awards.
This linking forms the foundation of our subsequent analysis.

Study period

We define the study period as the years 2009-2019 (inclusive), unless otherwise specified.

Master link table.

The master link table (Fig. 7) was assembled through the following process:

First, all available NIH award data during the study period were acquired using

the NIH ExPORTER website (the NIH EXPORTER facilitates bulk access to the

dataset on which the NIH RePORTER website is based). Next, bulk data were

acquired from the USPTQ’s PatentsView website. PatentsView is a service provided

by the USPTO OCE that provides specialized datasets for economic research. The
‘government_organization’ and ‘patent_contractawardnumber’ datasets were used in this
analysis. The government_organization data contain organization names and related agency
hierarchy parsed from the government interest statements within issued patents. The
patent_contractawardnumber dataset lists contract or award numbers parsed from the same
government interest statements. The government_organization data were used to identify
NIH-associated patent numbers, and then specific award numbers were found by joining
this patent number list with the award numbers for each respective patent found in the
patent_contractawardnumber table.

The patent_contractawardnumber data contain the award numbers as they are listed in the
patent, which are recorded in a non-standardized fashion. For example, the NIH Core Project
Number (NIH-CPN) R01CA012345 may be recorded as R-01 CA 012345, CA2345 or,
ambiguously, as 012345. Additionally, one patent may be associated with more than one
NIH award. A parsing operation was performed to extract the NIH activity codes, institute
and center abbreviations, and award numbers, then the parsed values were recorded using
the standardized NIH-CPN scheme used in the NIH award dataset. A patent was considered
to be ‘linked” when the patent number was unambiguously associated with at least one NIH
award record in our NIH award dataset using a common NIH-CPN.

Validly formatted or recoverable award numbers from the patent_contractawardnumber
dataset were resolved to a single NIH-CPN; the remainder did not contain sufficient
information to uniquely identify a NIH-CPN. Contributing factors varied but commonly
a notation that NIH funding was received was included without specifying an award
number. Less commonly, the award number was inaccurately or incompletely transcribed.
For example, several patents listed only a number in the Government Interest section
without any activity type or awarding institute or center (for example, ‘012345’ instead
of ‘R01CA012345’).
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After the linking process was completed, it was then possible to study patent production

based on any field that is present in the NIH award table (such as university or institution
name, Pl name or region). For example, the master link table can be queried to return all

the patent numbers linked to NIH awards associated with the ‘“Massachusetts Institute of
Technology’.

Inclusion criteria.

Each institution included in subsequent analysis must meet both of the following criteria:
(1) at least 15 issued patents that cite NIH support; and (2) received at least $40 million

in total NIH funding throughout the study period. Institutions that met these criteria
tended to be large research universities that meet the Carnegie ‘R1: very high research
activity’ designation. The remaining institutions tended to be large corporations and quasi-
commercial research institutions (for example, the Broad Institute or Salk Institute).

Preliminary calculations of total institutional funding.

NIH RePORTER project data were used to aggregate and sum all funding that was received
by each institution. The sum of the “Total_Cost’ column for each institution was computed
for the study period. This methodology included all funding that was received by an entity
regardless of funding mechanism (that is, including grants, cooperative agreements and
contracts) and therefore may differ from other published sources.

Patent count calculation.

To compute this value, the master link table was used to find the total number of unique
patents that were associated with each institution. Only utility patents issued during the
study period were included.

TR calculation.

For each institution, total institutional funding was divided by the patent count to compute
the TR.

Economy of scale summary analysis.

Included institutions were then ranked by total institutional funding and divided into three
groups that contained an equal number of members (high funding, moderate funding and
low funding), based on their position in the ranked list. The mean and median of the TRs for
each group was then calculated and subsequently evaluated for statistical differences. Mean
and median values were also computed for other available fields, such as total patents and
total indirect funding, within each group.

Statistical analysis.

Comparisons between groups were evaluated using the nonparametric Kruskal-Wallis test
unless otherwise specified. The analysis was performed using R software version 3.6.3.
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Indirect cost analysis.

For each institution that met inclusion criteria, the ‘On Campus—Organized Research’
facilities and administrative rate was obtained by either: (1) examining the ‘Colleges and
Universities Rate Agreement Form’ in effect for each institution during the study period;

or (2) using the response from a Freedom of Information Act request submitted to the US
Department of Health and Human Services. This request disclosed annualized rate data for
134 entities for the study period. A time-weighted average was calculated using the available
data from these two sources, which in some cases accounted only for a portion of the study
period. A listing of all values can be found in Supplementary Table 1. These rates are used
by the NIH to calculate the facilities and administrative component of each award, and the
rates are negotiated between the institution and either the Department of Health and Human
Services or the Office of Naval Research.

Indirect cost rate calculations.

Included institutions were ranked by indirect cost rates in descending order. This list was
then divided in half to form two groups that each contain an equal number of members: high
indirect-cost rate institutions, and low indirect-cost rate institutions. The mean and median
of the TRs for each group was then calculated and evaluated for statistical differences using
the nonparametric Kruskal-Wallis test.

Engineering-unit funding analysis.

The NSF HERD dataset was used to compute the sum total of each institution’s engineering
department budget during the years 2016-2019. Specifically, the following table was loaded
into a SQL database and used to compute total engineering department budgets: ‘Table 55.
Higher education R&D expenditures in engineering subfields, ranked by all FY [fiscal year]
2018 engineering R&D: FYs 2016-2018 and by subfield for FY 2018’. Institutions included
in this analysis met both the previously defined inclusion criteria and also responded to the
HERD survey.

Included institutions were ranked by total engineering-unit budget in descending order. This
list was divided into two groups, each with an equal number of members: high funding

and low funding. Similar to previous analyses, the mean and median of the TRs for each
group was then calculated and evaluated for statistical differences using the non-parametric
Kruskal-Wallis test.

NIH Pl analysis.

The master link table was used to generate a new table (‘patent_to_pi_id’) that contains

all NIH awards linked to patents. This table contains three fields: the NIH award number
(NIH-CPN), patent number and the P1 ID. The PI ID is an identification number assigned
by the NIH to each PI who receives an NIH funding award. We assumed that each PI in the
NIH dataset is represented by a single and unique PI ID. In cases in which more than one Pl
ID was listed for a single NIH award cited by a patent, all Pl IDs were awarded “credit’ for
that patent.
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Using the new table (patent_to_pi_id), the total number of patents associated with each Pl
ID was found and a list was created that ranked PI IDs in descending order on the basis

of the number of associated patents. The number of Pls with 0, 1, 2-10, 11-20, 21-30,
31-40, 41-50, 51-60, 61-70, 71-80, 81-90, 91-100, and greater than 100 associated patents
was then computed. Finally, by moving from highest to lowest along the list, the number of
the ‘highest-performing’ Pls that were required to account for 50% of the total number of
NIH-associated patents was computed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 I. Total NIH funding comparisons.

Total institutional NIH funding, 2009-2019

Each point on the chart represents an institution that met the inclusion criteria (7= 201).
The xaxis in each panel represents the total NIH funding that was received during the
10-year study period. a, Number of scientific publications produced versus total institutional
funding. b, Mean cost per scientific publication at each institution versus total funding. c,
Number of issued patents versus total funding. d, Mean cost per issued patent (the TR)

versus total funding.
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Total NIH funding vs. TR
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Fig. 2 I. Total NIH funding versus TR.
TRs that are suggestive of greater translational efficiency were found in the lower-funding

group as compared to both the high- and moderate-funding groups (P < 0.01). No significant
differences were found between the moderate- and high-funding groups.
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Fig. 3 I. TR versus facilities and administrative cost rates.
TRs were not significantly different between the high and low indirect-cost percentage

groups.
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TR vs. engineering unit funding
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High engineering department funding ($187M-$4.3B)

Engineering budget 2016-2019 TR
Mean $574,646,667 $11,894,699
Median  $346,711,000 $11176,179

Fig. 4 |. Engineering unit budget versus TR.
Significantly lower mean and median TRs were found in the high engineering-unit-funding

group versus the low funding group (P = 0.022).
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Pls & patent production

100,000

Number of Pls (log scale)

(o] 1 2-10 n-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 >100
Number of patents

Fig. 5 I. Pl-patent histogram.
Number of patents awarded to Pls during the study period. The xaxis contains groups that

represent the number of awarded patents, and the y axis represents how many Pls comprise
each group (the yaxis is shown using a logarithmic scale).
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TR vs. super-producer density
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Fig. 6 I. Density of super-producers at each institution versus TR.
Each blue circle represents one institution. Dense clusters of super-producers at a single

institution are associated with greater cost efficiency in patent generation at that institution.
Super-producer density (x axis) is defined as the number of Pls who are associated with

at least 10 patents divided by the total number of NIH Pls at each institution. The y axis
represents the TR for each institution.
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Simplified view:
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Fig. 7 I. Simplified view of the summary diagram of the master link table.
Patents that cite NIH support are linked to specific NIH awards.
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