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Abstract

The soil microbiome determines the fate of plant-fixed carbon. The shifts in soil properties caused by land use change leads to
modifications in microbiome function, resulting in either loss or gain of soil organic carbon (SOC). Soil pH is the primary factor
regulating microbiome characteristics leading to distinct pathways of microbial carbon cycling, but the underlying mechanisms
remain understudied. Here, the taxa-trait relationships behind the variable fate of SOC were investigated using metaproteomics,
metabarcoding, and a 13C-labeled litter decomposition experiment across two temperate sites with differing soil pH each with a
paired land use intensity contrast. 13C incorporation into microbial biomass increased with land use intensification in low-pH soil but
decreased in high-pH soil, with potential impact on carbon use efficiency in opposing directions. Reduction in biosynthesis traits was
due to increased abundance of proteins linked to resource acquisition and stress tolerance. These trait trade-offs were underpinned
by land use intensification-induced changes in dominant taxa with distinct traits. We observed divergent pH-controlled pathways
of SOC cycling. In low-pH soil, land use intensification alleviates microbial abiotic stress resulting in increased biomass production
but promotes decomposition and SOC loss. In contrast, in high-pH soil, land use intensification increases microbial physiological
constraints and decreases biomass production, leading to reduced necromass build-up and SOC stabilization. We demonstrate how
microbial biomass production and respiration dynamics and therefore carbon use efficiency can be decoupled from SOC highlighting
the need for its careful consideration in managing SOC storage for soil health and climate change mitigation.
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Introduction
Soils are under pressure to deliver multiple ecosystem services,
especially food production. This has led to the expansion of
agriculture into pristine environments and increased land use
intensification. There is a growing recognition that the intensive
use of soils is detrimental to soil health, changing soils’ inherent
biodiversity and risking the services that they provide [1, 2]. The
world’s soils have historically lost 133 Pg of carbon due to land use
intensification [3]. However, degraded soils low in organic matter
also represent an opportunity to adopt regenerative management
promoting soil carbon storage that may help mitigate this issue
[1, 4, 5]. To better achieve this aim, it is vital to understand
the role of soil microbes in carbon cycling, as the microbiome
plays an important role in soil-atmosphere carbon exchange by
determining the fate of carbon in soils [6].

A new paradigm recognizes the direct, significant contribution
of microbes in transforming photosynthetically-derived carbon

into soil organic carbon (SOC) [7], by stabilizing dead microbial
biomass (necromass) onto mineral surfaces to enable persistent,
long-term carbon storage [8]. Microbial CUE is a vital ecosystem
trait that determines soils’ ability to accumulate carbon [9] and
is measured as the incorporation of organic carbon from the
environment into microbial biomass through growth [10, 11]. A
higher microbial CUE implies more efficient biomass production
and a lower respiratory loss [12]. Increased growth and turnover
of microbes results in a bigger necromass pool. Biomass turnover
can be caused by a variety of process such as microbivory, pre-
dation, natural cell death and viral lysis. Necromass that is sta-
bilized on association with mineral surfaces can form persistent
SOC thereby promoting soil carbon storage [13]. As microbes
become more efficient in using carbon, higher carbon storage is
observed in soils, a pattern that has been demonstrated at the
global scale using meta-analysis and modeling approaches [14].
Increased microbial CUE therefore offers the potential to increase
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the necromass pool for stabilization in the mineral-associated
organic matter (MAOM) resulting in potential long term SOC
storage.

Microbiome diversity and function are responsive to environ-
mental gradients [15–17], and microbial biomass is generally
greatest under lower intensity land use [18, 19]. Given the
degraded state of many of the world’s agricultural soils that have
lost SOC, croplands represent a habitat where carbon storage
could be promoted through microbiome-mediated processes [20].
Therefore, it is crucial to understand how land use intensification
impacts key microbial traits such as CUE [21–23]. This knowledge
would enable us to better manage degraded grassland soils to
enhance microbial CUE and promote SOC stabilization, providing
many benefits for soil health, soil biodiversity, and climate change
mitigation [4, 24, 25].

A positive relationship between microbial biomass and SOC
concentration has been observed across 21 paired land use con-
trasts in the UK [26]. However, land use intensification effects on
community-level CUE were complex and were better explained
through interactions of multiple soil properties. Of these, soil pH
was identified as the dominant factor, as converting grasslands
to cropland tends to increase soil pH and microbes are sensitive
to pH [26]. Soil pH has been previously found to be the main
factor influencing soil microbial diversity [27, 28]. The UK-wide
study suggested two distinct, pH-dependent mechanisms of soil
carbon accumulation [26]. Acid, wet, and anoxic conditions limit
microbial growth and decomposition [26], accumulating part-
decomposed plant material at the soil surface resulting in high
SOC in upper soil horizons [29]. In contrast, well-drained neutral
to alkaline pH soils provide conditions more conducive to micro-
bial growth, promoting necromass generation for stabilization
as SOC [26]. Thus, soil pH can be used as a proxy to study the
divergent effect of land use intensification on soil microbiomes
and carbon cycling.

The trait-based life history strategies of the resident micro-
biome can explain the divergent mechanisms of microbial SOC
accumulation. A life history framework has been proposed for
microbes classifying them into three main strategies: high yield
(Y), resource acquisition (A) and stress tolerance (S) with multiple
underlying traits [30]. These traits correlate due to physiolog-
ical or evolutionary trade-offs, influenced by the environmen-
tal conditions such as resource availability and abiotic stress
[26, 30]. In low resource environments, typical of high land use
intensity soils (e.g. arable systems where plant biomass inputs
to soil tend to be low), traits that enable microbial survival and
activity include investment into the production of extracellular
enzymes for resource acquisition pathways [30, 31]. In temperate
soils under conversion from grassland to cropland, microbes are
exposed to increased frequency of drought stress as tillage leads
to soil aggregate disruption and lower water holding capacity [32].
Investment in stress tolerance in high land use intensity soils
can often be observed with chaperone proteins such as Chaper-
onin GroEl, which prevent stress-induced misfolding of proteins
[26]. These increased cellular investments into stress alleviation
and resource acquisition trade off with microbial growth yield
due to the diversion of resources from growth and biosynthesis.
The reduced biomass (and subsequent necromass pool) and the
increased respiratory loss reflect lower potential SOC accumu-
lation rates [26, 30]. Furthermore, under intense abiotic stress,
such as drought, microbes might also shift to a dormancy state,
reducing microbial CUE [33, 34].

While microbial community-level traits, such as CUE, have
been linked to ecosystem measures, such as changes in SOC,

identifying taxonomic groups contributing to higher CUE is chal-
lenging. Previous studies have aimed to do this, by assigning
microbial taxa to trophic groups or life history strategies, such
as the copiotroph–oligotroph dichotomy [35, 36]. It was observed
that copiotrophs invest in a competitive strategy and have a
high maintenance respiration, which reduces their CUE. In con-
trast, oligotrophs maintain growth over respiration in low quality
resource environments, thereby increasing their CUE [36, 37].
However, the copiotroph–oligotroph dichotomy does not exist at
broader levels of taxonomic linages [38]. Therefore, linking a
comprehensive set of traits (such as those for Y-A-S life history
strategies) to taxonomic identity is essential to better understand
how organismal physiology influences ecosystem-level processes.

This study investigated the microbial community response to
land use intensification by comparing local over-the-fence land
use contrasts in two temperate sites of low- and high-soil pH.
Comparing adjacent land use intensity treatments allowed us
to study the effect of land use intensification while the climate
and parent material remained constant. The aim was to under-
stand how taxonomic and trait shifts with land use intensifica-
tion impact soil carbon cycling. Our current understanding of
the microbial traits underpinning SOC stabilization processes is
mainly obtained through analyzing a community response, often
using an emergent trait such as CUE. In addition to this approach,
we aimed to identify how changes in the abundance of dominant
microbial taxa caused by land use intensification led to shifts
in key microbial traits, emergent ecosystem CUE [9], and SOC
decomposition and stabilization rates [26]. We hypothesize that
increased land use intensification impacts soil properties, with a
shift in the microbial community from high growth yield taxa to
resource acquiring and stress tolerant taxa, resulting in lower CUE
and SOC stabilization. Using metaproteomics and metabarcoding,
we identified the dominant taxonomic groups with different Y-A-
S traits and related them to ecosystem CUE estimates. Therefore,
this study demonstrates how land use intensification selects
microbial communities with variable organismal traits impacting
soil carbon cycling.

Materials and methods
Site description
To understand how microbial taxonomy and traits influence soil
carbon dynamics in soils of differing land use intensity, we chose
two sites with contrasting pH that were previously studied as
part of a landscape scale survey [26]. Each site had two locally
adjacent over-the-fence land use contrasts of low and high land
use intensity. Low-pH site in Kirkton, Perthshire, UK: at this site,
the low land use intensity treatment consisted of historically
undisturbed soils (pH 5.2) representative of wet acid upland pod-
zols with high SOC in the upper horizons. It was a poor semi-
improved grassland with no history of cultivation and was grazed.
The contrasting high land use intensity treatment consisted of
soils improved to support agricultural activities by drainage and
liming, this raised soil pH to 6.4. It was fertilized and supported
a re-seeded grassland and winter wheat rotation. High-pH site
in Parsonage Down, Wiltshire, UK: at this site, the low land use
intensity treatment consisted of undisturbed soils that have not
been plowed in the last 100 years (pH 7.7) and supported an herb-
rich plant community that was grazed. The contrasting high land
use intensity treatment was cultivated as an arable cropland for
cereal production, with a soil pH of 8 (Table 1). Pairwise t-tests
were performed to ascertain the effect on land use intensity on
soil properties.
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Table 1. Site characteristics given as mean values (± standard error) with statistical comparison of land use intensity contrasts within
sites given by P values of t-test.

Low-pH site: Kirkton, Perthshire, UK High-pH site: Parsonage Down, Wiltshire, UK

Land use intensity Low High Pairwise t-test
P value

Low High Pairwise t-test
P valueLand management Unimproved

grassland
Intensive
grassland

Unimproved
grassland

Intensive arable

Soil pH 5.2 (±0.2) 6.4 (± 0.1) .011 7.7 (± 0.03) 8.0 (± 0.04) .001
Soil C (%) 23.8 (± 8.5) 4.3 (± 0.6) .145 10.4 (± 0.5) 3.8 (± 0.1) .004
Soil moisture (%) 72.1 (± 13.6) 41.7 (± 2.5) .153 43.1 (± 4.9) 30.4 (± 4.9) <.001

Experimental design
Each site consisted of two land use intensity treatments resulting
in four site-land use combinations. For each of these, three spa-
tially dispersed soil cores (5 cm diameter, 15 cm deep) were sam-
pled along a transect with 25 m between each core. Sampling was
performed in February–March 2016. Soil samples were preserved
at 4◦C following removal of vegetation and homogenization by
sieving (<4 mm). Mesocosms were established in Petri dish plates
containing 10 g (dry weight equivalent) soil, maintained at field
moisture gravimetrically and incubated at 21◦C for 7 days. After
this time, 3 mg 13C-labeled Chenopodium sp. leaf litter was mixed
thoroughly with the soil in each mesocosm (n = 3). As the amount
of carbon in the added litter was very low (<1%) relative to the
existing soil carbon, the influence of litter addition on microbial
community taxonomy and function is considered negligible. The
13C-labeled leaf litter was produced by growing Chenopodium sp. in
a closed chamber containing ∼1 atom% 13C-CO2 at a concentra-
tion of 400 ppm, followed by drying of leaves and homogenization
by grinding. Mesocosms were destructively harvested on day 0
(just before litter addition) and days 2, 8, and 36 following litter
addition. 13C-labeling of the litter enabled 13C to be traced into
separate pools as microbial biomass and respired CO2. The labeled
substrate was added at a single time, allowing the monitoring
of the microbial channeling of C into biomass production and
respiration over the incubation period, and inferring of ecosystem
CUE estimates.

Biomass production and respiration
An aliquot (1 g) of the soil collected at each sampling point was
placed in a sealed 10-ml glass vial with rubber septa and incu-
bated overnight (for ∼16 h) at 21◦C in the dark to collect respired
CO2 in the headspace. Concentrations of CO2 and its 13C con-
tent was analyzed by gas chromatography isotope ratio mass
spectrometer (GC-IRMS, Delta + XL, Thermo Fisher Scientific, Ger-
many) coupled to a PAL autosampler (CTC Analytics) with general
purpose interface (Thermo Fisher Scientific, Germany). Deoxyri-
bonucleic acid (DNA) was extracted from 0.25 g soil at each
sampling point using the PowerSoil-htp 96-well soil DNA isolation
kit per manufacturer’s instructions (MO BIO Laboratories, UK)
and its quality was checked by Nanodrop. Total extractable DNA
concentration was also measured using a Qubit fluorometer,
providing a proxy for microbial biomass [26]. 13C content of DNA
extracts was analyzed by liquid chromatography isotope ratio
mass spectrometer LC-IRMS (HPLC system coupled to a Delta + XP
IRMS through an LC IsoLink interface; Thermo Fisher Scientific,
Germany). This approach enabled quantification of the proportion
of 13C-labeled plant litter in total microbial DNA and respired
CO2 during the incubation. While 13C incorporation into DNA
was a cumulative measure over the duration of experimental

incubation, our respiration measurements were only performed
for a duration of 16 h at each sampling point. This meant that we
could not calculate ecosystem CUE, therefore we used the ratio of
13C incorporation into biomass and respiration to infer microbial
ecosystem-level CUE. The distribution of residuals was checked
for normality before performing statistical tests. Statistical anal-
yses and visualizations in ggplot2 [39] were performed using R
software 2023.3.0 [40]. Multi-factorial ANOVA was performed to
ascertain the effect of site, land use intensity and sampling time
on 13C in DNA, respired CO2, and its ratio.

Metabarcoding
DNA was extracted as described above. Amplicon libraries were
constructed according to a dual indexing strategy [41] with
each primer consisting of the appropriate Illumina adapter, 8-
nt index sequence, a 10-nt pad sequence, a 2-nt linker, and
the amplicon specific primer. For prokaryotes, the V3-V4 16S
ribosomal ribonucleic acid (rRNA) gene amplicon primers from
Kozich et al. [41] were used (5′-CCTACGGGAGGCAGCAG-3′ and
5′-GCTATTGGAGCTGGAATTAC-3′); for eukaryotes the 18S rRNA
gene amplicon primers from Baldwin et al. [42] were used (5′-
AACCTGGTTGATCCTGCCAGT-3′ and 5′-GCTATTGGAGCTGGAA
TTAC-3′). Amplicons were generated using a high-fidelity DNA
polymerase (Q5 Taq, New England Biolabs). After an initial denat-
uration at 95◦C for 2 min polymerase chain reaction conditions
were: denaturation at 95◦C for 15 s; annealing at temperatures
55◦C or 57◦C (for 16S and 18S reactions, respectively); annealing
times were 30 s with extension at 72◦C for 30 s; cycle numbers
were 25 for 16S and 30 for 18S; final extensions of 10 min at
72◦C were included. Amplicon sizes were determined using an
Agilent 2200 TapeStation system and libraries normalized using
SequalPrep Normalization Plate Kit (Thermo Fisher Scientific) and
quantified using Qubit dsDNA HS kit (Thermo Fisher Scientific).
Each amplicon library was sequenced separately on Illumina
MiSeq using V3 600 cycle reagents at concentrations of 8 pM with
a 5% PhiX Illumina control library.

Sequenced paired-end reads were joined using PEAR [43] as
per PIPITS [44], quality filtered using FASTX tools (hannonlab.cshl.
edu), length filtered with the minimum length of 300 bp, presence
of PhiX and adaptors were checked and removed with BBTools (jgi.
doe.gov/data-and- tools/bbtools/), and chimeras were identified
and removed with VSEARCH [45] using Greengenes 13 5 [46] and
SILVA 132 [47] databases for 16S and 18S, respectively (at 97%). Sin-
gletons were removed and the resulting sequences were clustered
into operational taxonomic units (OTUs) with VSEARCH at 97%
sequence identity. Representative sequences for each OTU were
taxonomically assigned by RDP Classifier [48] with the bootstrap
threshold of 0.8 or greater using the Greengenes 13 5 and SILVA
132 databases (16S and 18S, respectively) as the reference (OTU
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tables in Supplementary data). Unless stated otherwise, default
parameters were used for the steps listed. Taxonomic groupings
of prokaryotes were presented using the older taxonomic clas-
sification to compare with proteomics-derived taxonomy. Only
three major groups of eukaryotes: fungi, Ciliophora and Cercozoa
were analyzed. α- diversity (Shannon Weiner diversity index) and
β-diversity indices were calculated on rarefied data (to 14 746
reads for 16S, and 12 049 reads for 18 S) using the vegan package
in R [49] and visualizations were performed using ggplot2 [39].
β-diversity was assessed by in non-metric multidimensional scal-
ing ordinations and running permutational multivariate analysis
of variance (PERMANOVA) using vegan’s adonis2 function. Multi-
factorial ANOVA was performed to ascertain the effect of site
and land use intensity on diversity indices and the abundance of
taxonomic groups of interest.

Metaproteomics
Metaproteomic analysis was performed on soil microbial commu-
nities for day 0 and day 8 samples. Proteins were extracted from
5 g of soil taken from each mesocosm (with two technical repli-
cates) using the SDS buffer–phenol extraction method, followed
by purification with 1D sodium dodecyl-sulfate polyacrylamide
gel electrophoresis. The resultant product was subjected to tryptic
digestion. Proteolytically cleaved peptides were separated prior to
mass spectrometric analyses by reverse-phase nano-HPLC on a
nano-HPLC system (Ultimate 3000 RSLC nano system, Thermo
Fisher Scientific, San Jose, CA, USA) coupled online for analysis
with a Q Exactive HF mass spectrometer (Thermo Fisher Scientific,
San Jose, CA, USA) equipped with a nano electrospray ion source
(Advion Triversa Nanomate, Ithaca, NY, USA). Raw data were
searched using Proteome Discoverer v1.4.1.14 (Thermo Fisher
Scientific) against a FASTA-formatted database (Uniprot 05/2016)
using the SEQUEST HT algorithm. Additional details on quality
control, database searches, and filtering are described elsewhere
[26]. Functional annotation was performed using KEGG classifier
and GhostKoala. Taxonomic origin was assigned to proteins using
Unipept v3.2, enabling us to make function-taxonomy linkages.
Data was normalized relative to total protein abundance and
checked for normalized distribution. Two-factorial ANOVA was
performed to ascertain the effect of site and land use intensity on
proteomics-derived functional diversity index. Pairwise indicator
species analysis was performed to identify the protein functions
that were significantly enriched in low- and high-intensity land
use treatments at each location [26]. The abundance of different
protein functions that were identified was then investigated in
each taxonomic group of interest and this was plotted using
ggplot2 by combining the geom tile and geom point functions.
Pairwise t-test was performed to ascertain the influence of dis-
tinct soil types and land use intensity on the abundance of protein
functions associated with each taxonomic group.

Results and discussion
Land use intensification alters soil
physicochemical properties
We compared local over-the-fence land use contrasts in two tem-
perate sites of low- and high-soil pH to isolate the effect of land
use intensification on soil properties while the climate and soil
parent material remained constant. Land use intensification had
profound effects on soil properties, significantly increasing soil pH
at both sites (Table 1). At the low-pH Kirkton site, pH increased
from 5.2 to 6.4 through liming that is performed to achieve the
optimum soil pH range for crop plant nutrient availability [50].

Improved drainage and crop cultivation reduced the soil mois-
ture that could reduce anoxia, further alleviating physiological
constraints on the soil microbiome. Thus, the wider assumption
that land use intensification causes aridity and drought stress [51]
in soil microbiomes does not apply to poorly-drained acidic soils
[26]. Land use intensification at the tested low-pH site resulted
in >80% of the SOC being lost relative to the unimproved soil
(Table 1). Increased decomposition in organic soils under land use
intensification is a key mechanism for SOC loss, as the carbon
at these sites is particularly vulnerable to loss due to a lower
proportion of MAOM [4, 34, 52].

Land use intensification only marginally increased soil pH at
the high-pH Parsonage Down site—a shift of 0.3 units. These soils
are inherently alkaline, and do not require pH adjustment through
liming to support agriculture. Increased land use intensification
at this site reduced soil moisture, possibly increasing the risk of
drought stress in these well-drained sites [53]. The effect of a
single plowing event and conversion to cropland on previously
uncultivated remnant prairie soil [54], comparable to the calcare-
ous soil in our study, revealed little change in soil pH, but soil
moisture was negatively impacted due to reduced water infil-
tration and sorptivity rates. Therefore, land use intensification
likely creates drought like conditions at our high-pH site. Land use
intensification at our high-pH site led to a marked SOC decline
from 10.4% to 3.8% (Table 1), confirming that cultivated soils are
prone to SOC loss [55]. This suggests that the observed increased
soil pH under land use intensification led to reduced soil moisture
availability and SOC loss at both sites but being most pronounced
in low-pH soils.

Land use intensification influences microbial
growth but not respiration
Microbial growth measured as 13C substrate incorporation into
DNA (Fig. 1A), increased with land use intensification at the low-
pH site (54% more in the high than in the low land use intensity
soil) and decreased at the high-pH site (35% less in the high than
in the low land use intensity soil). This contrasting effect of land
use intensity at the two sites is corroborated by the significant
interactive effect of site and land use intensity (ANOVA, P < 0.001).
This result supports our hypothesis that land use intensification
reduces carbon incorporation into microbial biomass, but only
at the high-pH site where land use intensification reduced soil
resource availability and moisture. In contrast, land use intensi-
fication at low-pH alleviated physiological constraints of acidity,
wetness, and anoxia, enabling increased growth. We hypothe-
sized that land use intensification results in an increase in the
decomposition rate of an added complex resource, measured by
an increased 13CO2 production. However, there was no difference
in respiratory rate of the 13C-labeled substrates in soils across the
land use intensity treatments at both sites (Fig. 1B).

The ratio of 13C in microbial DNA and respired CO2 as an
estimate of microbial ecosystem-level CUE was not statistically
significant across land use intensity treatments, but the inter-
action of site and land use intensity treatment was significant
(ANOVA, P < .001). This pattern suggests that there was a reduc-
tion in the inferred CUE with land use intensification at the high-
pH site and the opposite at the low-pH site (Fig. 1C). The increased
biomass production values over time following labeled litter addi-
tion highlights the long-term persistence of carbon in the micro-
bial biomass due to substrate recycling in the microbial food web.
Such measurements are key to studying the longer-term effects
of microbial processes on soil carbon cycling; measurements
over a longer incubation period (several weeks) enables inferring
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Figure 1. Microbial process rates across the paired land use intensity contrasts: isotopic incorporation from labeled litter into DNA as a measure of
microbial biomass production (A) and into respired CO2 (B). Ratio of biomass production and respiration (C) provides an indication of ecosystem CUE.
Points indicate individual samples, and the lines connect the mean values at each sampling time. ANOVA P values for (A) 13C in DNA – site: 0.37,
treatment: 0.92, site × treatment: 0.006; (B) 13C in respired CO2 – site: <0.001, treatment: 0.95, site × treatment: 0.64; (C) ratio of biomass production
and respiration – site: <0.001, treatment: 0.6, site × treatment: <0.001.

the complex interactions within the microbial community and
between the microbial community and its abiotic environment [9].
The reduction in biomass production with land use intensification
at the high-pH site translates into lower biomass and necro-
mass production with a lower SOC stabilization potential [13,
56]. Conversely, land use intensification alleviated environmental
stressors on the soil microbiome in low-pH soil, promoting micro-
bial growth. Here SOC change is decoupled from microbial pro-
duction, and other biogeochemical mechanisms might be more
important in controlling the rate of SOC loss or accumulation.
It also highlights that current microbial CUE measurements do
not always link to historical soil carbon changes. Therefore, future
research must consider the balance between the biogeochemical
processes of decomposition and stabilization, including abiotic
factors such as organic matter access, chemistry, and mineral
stabilization, when studying the impact of long-term land use
change on changes in soil carbon storage.

Land use intensification changes microbial
diversity
The functional (inferred from metaproteomics) and taxonomic
(inferred from metabarcoding) composition of microbial commu-
nities appeared distinct for land use intensity treatments in the
two sites based on the separation of samples in an ordination
(Fig. 2A–C) but was only significant for bacterial taxonomic diver-
sity (PERMANOVA P = .04). Functional and eukaryotic taxonomic
alpha diversity was not different across the land use intensity
treatments at both sites (Fig. 2D, ANOVA P > .05), but bacterial
taxonomic alpha diversity was higher at higher land use intensity
treatment (ANOVA P < .001). The community shifts over time were
insignificant, suggesting that the small amount of plant litter that
was added caused only minor changes in microbial taxonomy and
function; all sampling points were therefore considered replicates
to study the effect of land use intensification.

Higher bacterial alpha diversity with land use intensification
(Fig. 2E) corroborates previously observed high bacterial diver-
sity in agricultural soils [29, 56], contradicting the notion that
disturbance decreases biodiversity [57]. Several explanations for
this apparent paradox have been proposed, such as agricultural
rotations increasing resource heterogeneity [58] and tillage redis-
tributing plant litter to depth facilitating access to resources and
growth of a diverse range of bacteria [59]. The high diversity of
microbial taxa in agricultural soils could also represent relic DNA
from dead microbes that sticks to soil minerals [60]. In contrast,
eukaryotic alpha diversity (Fig. 2F) and the abundance of OTUs

representing fungal taxa (Fig. 3J) were unaffected by land use
intensification.

The relative abundance of the 12 most abundant taxa (bac-
teria, fungi, and microeukaryotes) were differentially affected
by the sites and land use intensity. At the high-pH site, low
land use intensity soil bacteria were dominated by Actinobacte-
ria, Alphaproteobacteria, and Verrucomicrobia (Fig. 3A, B, and G).
Land use intensification in high-pH soil reduced the relative abun-
dance of Actinobacteria, but increased that of Gammaproteobac-
teria, Deltaproteobacteria, and Ciliophora (Fig. 3H, I, and L). The
decline of Actinobacteria under high land use intensity accords
with Griffiths et al. [27] who noted that Actinobacteria are com-
mon in higher pH soils, but being filamentous, are sensitive to dis-
turbances from agricultural management [61, 62]. Acidobacteria
was one of the most dominant bacterial groups in low intensity
soils at the low-pH site (Fig. 3E). Land use intensification at this
site increased the relative abundance of Betaproteobacteria (from
9% to 26%, Fig. 3D), which has been observed in previous studies
[63]. Land use intensification at the low-pH site also significantly
increased the relative abundance of predatory Cercozoa (from
15% to 23%, Fig. 3K). While directly comparing relative abun-
dances of different taxa across treatments can sometimes be
misleading, here we compared metabarcoding-derived relative
abundance with abundance of protein functions across taxo-
nomic groups. We believe that such cross comparison validates
our results obtained from the two complementary tools.

Taxa-trait changes due to land use
intensification in the low-pH site
“RNA degradation” proteins were the most abundant protein indi-
cators at the low-pH site in both low and high land use inten-
sity treatments but with higher relative abundances in the low
intensity land use treatment (Fig. 4). RNA degradation proteins
such as Chaperonin GroEL and molecular chaperone DnaK pre-
vent protein aggregation by either re-folding or degrading stress-
induced misfolded proteins [30]. Chaperone production in high
land use intensity soils indicates microbial investment into stress
tolerance. This is likely a physiological response to the acidic
and wet conditions in the low land use intensity soils [26]. They
were differentially abundant in the phylum Acidobacteria in the
low land use intensity relative to high land use intensity soils
(Acidobacteria was one of the most dominant taxonomic groups
in low land use intensity soils at the low-pH site). There were other
taxa that also had higher expression of this trait in the low land
use intensity soils.
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Figure 2. Microbial functional and taxonomic diversity across the paired land use intensity contrasts: ordination using nonmetric multidimensional
scaling based on Bray–Curtis dissimilarity of (A) metaproteomics-derived functions, stress = 0.06, PERMANOVA results – site: P = .12, land use intensity:
P = .64; (B) 16S rRNA gene-derived bacterial taxonomy, stress = 0.30, PERMANOVA results – site: P = .20; land use intensity: P = .04, and (C) 18S rRNA
gene-derived eukaryotic taxonomy, stress = 0.03, PERMANOVA results – site F = 1.35, P = .17; land use intensity: P = .07. Similarly, Shannon’s diversity
index was used to visualize functional alpha diversity (D), bacterial alpha diversity (E), and eukaryotic alpha diversity (F) under high and low land use
intensity at the two sites under study. In D–F, the presence of an asterisk between low and high land use intensity violins suggests statistically
significant pairwise differences from Tukey’s HSD test. Also displayed within D–F are statistically significant ANOVA results of the influencing factors
of site (S), land use intensity (L) and their interaction (S × L); ∗∗∗P < .001, ∗∗P < .01, ∗P < .05 (non-significant results are not displayed). Note that
metaproteomics was performed only at day 0 and day 8 after litter addition.

Land use intensification at the low-pH site increased the
abundance of Betaproteobacteria which showed differentially
abundant stress proteins (“RNA degradation”) in high land use
intensity soils. However, they also showed increased abundance of
“ABC transporters” (Fig. 4) associated with a transporter-mediated
resource acquisition strategy that is likely more efficient in
resource use [26]. These communities with an uptake-optimized
resource acquisition strategy reflect the increased abundance
of resources under high land use intensity treatment. This is a
result of alleviation of constraints on microbial organic matter
decomposition due to increase in pH and decrease in wetness
and anoxia. Betaproteobacteria also had increased expression
of proteins linked to “carbon metabolism”, “ribosome”, and
“oxidative phosphorylation” pathways; a land use intensification
response very similar to that of Gammaproteobacteria in high-
pH soils. “Oxidative phosphorylation” proteins represent energy
generating pathways using ATPase to fuel growth or non-
growth maintenance activities, and “carbon metabolism” proteins
represent central carbon metabolism pathways such glycolysis
and TCA cycle [26]. This response by Betaproteobacteria likely
represents a shift toward increased growth and turnover in a
stressed and disturbed environment. Land use intensification
also significantly increased the relative abundance of predatory
Cercozoa (from 15% to 23%, Fig. 3K) at low-pH, which may be
responding to increased prey availability under high intensity

land use, such as the increase in fast-growing Betaproteobacteria.
The increase of Cercozoa under high land use intensity at the
low-pH site mirrors the increase of Ciliophora under high land use
intensity at the high-pH site, which suggests that the dominance
of distinct bacterial groups might be associated with distinct
predatory protozoan groups driving turnover of carbon to a
variable degree.

Taxa-trait changes due to land use
intensification in the high-pH site
“ABC transporters” were the most abundant protein indicators of
low intensity land use at the high-pH site reflecting abundant
high-quality resource availability most likely as root exudates
and microbial-derived metabolites. The taxonomic assignment of
these transporters suggested that they were mostly associated
with Alphaproteobacteria (Fig. 4). Although Alphaproteobacteria
were not differentially abundant in low land use intensity soils
compared to the high land use contrast at this site, in terms of
the taxonomic distribution of this trait, Alphaproteobacteria were
the dominant class differentially expressing this function in low
land use soils. This implies that members of this class have a
resource-uptake optimized strategy in low land use intensity soils
that could contribute to increased community-level CUE, which
could therefore promote SOC stabilization [30].
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Figure 3. Microbial compositional differences in low and high land use intensity treatments: relative abundance of dominant bacterial and eukaryotic
phyla/class: Actinobacteria (A), Alphaproteobacteria (B), Firmicutes (C), Betaproteobacteria (D), Acidobacteria (E), Bacteroidetes (F), Verrucomicrobia
(G), Gammaproteobacteria (H), Deltaproteobacteria (I), Fungi (J), Cercozoa (K), and Ciliophora (L). Abundances are displayed across land use intensity
treatments and the presence of an asterisk between the violins suggests statistically significant pairwise differences at the site from Tukey’s HSD test.
Also displayed within each plot are statistically significant ANOVA results of the influencing factors of site (S), land use intensity (L) and their
interaction (S × L); ∗∗∗P < .001, ∗∗P < .01, ∗P < .05.

We observed that land use intensification in high-pH soils
increased the expression of proteins linked to “RNA degradation”,
indicating stress tolerance. This trait was differentially expressed
in the taxa Alphaproteobacteria and Gammaproteobacteria
(Fig. 4). Members of these taxa in high land use intensity soils
likely excel in a stress tolerance strategy to tide over the dry and
disturbed soil conditions.

In addition to the increased expression of stress tolerance
traits in Gammaproteobacteria in high land use intensity,
proteins linked to “oxidative phosphorylation” and “carbon
metabolism” were abundant in high land use intensity soils
but were not detected in low land use intensity (Fig. 4). This
most likely represents increased energy needs for fast growing
taxa with a wasteful metabolism; a life history strategy often
associated with copiotrophs such as Gammaproteobacteria that
are differentially abundant in high land use intensity soils at this
site [26]. We also observed concomitant increased abundance
of predatory Ciliophora in high land use intensity soils, these
likely increase in response to the increased abundance of their
bacterial prey—a hypothesis that needs testing [64]. These
microbivorous protists could contribute to SOC stabilization
directly through increased necromass contributions, but also
through their influence on the assemblage and function of the
microbiome [64].

Taxa-trait changes related to mechanisms of soil
carbon cycling
The observed shifts in trait-taxa linkages are in line with
our hypothesis that land use intensification leads to shifts
in microbiome composition and its associated traits that has
consequences for soil carbon cycling. In our high-pH site, low
intensity land use with no resource limitation and minimum
stress resulted in a microbial community that is dominated by
taxonomic sub-groups within Alphaproteobacteria that have
an efficient transporter-mediated resource-uptake optimized
life history strategy with limited investment in stress tolerance
traits. This likely increased the microbial biomass (and therefore
necromass production) promoting SOC stabilization pathways.
However, increased land use intensification in high-pH soils
caused resource limitation and stress in microbes which lead to
proliferation of microbial sub-groups within Alphaproteobacteria
and Gammaproteobacteria that likely excel in an inefficient
stress-tolerance life history strategy diverting resources away
from biosynthesis and necromass formation and resulted in
increased carbon loss and reduced SOC stabilization. The taxa-
trait linkages were vastly different in low-pH soils. Here, soils
under low intensity land use were dominated by Acidobacteria
excelling in stress tolerance traits highlighting a life history
strategy that is adapted to the acidic, wet, and anoxic soil
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Figure 4. Trade-offs in traits across taxonomic groups in land use intensity treatments: Metaproteomics-derived abundances of functions and their
taxonomic lineages were used to link physiological traits to microbial taxa at high and low land use intensity at the two sites (low- and high-pH). Pairs
of circles representing peptide abundances linked by a vertical line within each site are significantly different (P < .05).

conditions. The low growth rates observed in these soils suggest
lower rates of decomposition and accumulation of undecomposed
plant organic matter. Increased land use intensification in these

low-pH soils reduced soil acidity, wetness and anoxia which
led to increased microbial growth likely due to alleviation of
microbial physiological constraints. This results in a shift toward



Land use and soil microbial carbon cycling | 9

Betaproteobacteria excelling in stress tolerance and resource
acquisition strategies that fuel their higher growth rates which
could be linked to increased decomposition and loss of the
historically accumulated SOC.

Our research reveals that land use intensification induced
shifts in the microbial taxa and their life history strategies
were pH-dependent, and changes in soil characteristics selects
for a new community with different traits (environmental
filtering) rather than the community shifting its physiology
(phenotypic modification) [4, 33]. Our study accords with previous
trait-based approaches that have demonstrated that microbial
efficiency declines along gradients of environmental stress, as
increased stress through altitude [35] and salinity [37] results in
increased stress tolerance and resource acquisition life history
strategies that reduce microbial CUE and negatively influence
the microbially-derived SOC formation. Further, our findings
of increased abundance of predatory protozoa in response
to increased land use intensification, could be crucial for
carbon turnover and food web connectivity. This is especially
pertinent, as protists are known to be key for promoting the
formation of necromass and consequently more persistent
MAOM [62].

Here, we successfully used a trait-based framework to link
taxonomic information to traits and rates of carbon cycling in
soils. In this sense, this approach encompasses many of the
concepts required to envisage soil health [65] by focusing on the
function of the active microbiome and its emergent traits but also
on other biogeochemical factors that are key to determining the
balance of SOC decomposition and stabilization pathways. We
also demonstrate how CUE–SOC relationship can be decoupled
and how variable pathways of decomposition and stabilization of
POM and MAOM can influence SOC loss or gain in response to
land use change. This holistic understanding will be fundamental
to predict soil’s ability to recover from the combined stressors of
intensification along with environmental change, to ensure that
our soils and their resident microbiomes remain resilient and
productive under global change [66].
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