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Abstract

Purpose of Review—Toxic metal exposures have been associated with cardiovascular disease
in adults and growing evidence suggests metal exposures also adversely affect cardiovascular
phenotypes in childhood and adolescence. However, to our knowledge, the influence of perinatal
metals exposure, particularly metal mixtures, in relation to cardiovascular-related outcomes have
not been comprehensively reviewed.

Recent findings—We summarized 17 contemporary studies (2017-2021) that investigated

the impact of perinatal metal exposures on measures of cardiovascular health in children.
Accumulating evidence supports a potential adverse impact of perinatal Pb exposure on BP in
children. Fewer recent studies have focused on perinatal As, Hg, and Cd; thus, the cardiovascular
impacts of these metals are less clear. Studies of metal mixtures demonstrate that interactions
between metals may be complex and have identified numerous understudied elements and
essential metals, including Mo, Co, Ni, Se, Zn, and Mn, which may influence cardiovascular
risk.

Summary—A key question that remains is whether perinatal metals exposure influences
cardiovascular health into adulthood. Comparisons across studies remain challenging due to
several factors, including differences in the timing of exposure/outcome assessments and exposure
biomarkers, as well as variability in exposure levels and mixture compositions across populations.
Future studies longitudinally investigating trajectories of cardiovascular outcomes could help
determine the influence of perinatal metals exposure on long-term effects of clinical relevance in
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later life and whether interventions, which reduce metals exposures during this key developmental
window, could alter disease development.
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Introduction

Cardiovascular diseases (CVD) contribute to a third of all deaths and are the leading

cause of premature death worldwide [1]. The importance of environmental agents in the
development of CVD has become increasingly clear [2, 3]. Toxic metals and metalloids
(referred to as metals hereafter) are of particular concern, as exposures are widespread, and
a growing body of evidence has linked metal exposures to CVD and related outcomes [4].
Lead (Pb) and cadmium (Cd) have been particularly well-studied; there is now sufficient
evidence that exposure to these metals reflect important risk factors for CVD [5]. Two
systematic reviews recently concluded that arsenic (As), copper (Cu), and mercury (Hg)
may also contribute to the development of CVD [3, 4]. Given the high prevalence of metal
exposures, even small effects on cardiovascular health may translate to a substantial increase
in the number of CVD cases.

Although CVD typically manifests in adulthood, atherosclerosis begins early in life [6].
Potentially relevant mechanisms for CVD [7-9] including increased oxidative stress,
inflammation, and endothelial dysfunction contribute to pathogenesis and may initiate and
accelerate atherosclerosis in early childhood and across the life course [10-12]. Identifying
modifiable environmental factors in childhood that influence subsequent cardiovascular risk
is therefore key for designing public health interventions that reduce the lifelong burden of
CVD.

The perinatal period can be especially influential for CVD development later in life, as it
reflects an important developmental window during which environmental stressors may
interfere with fetal and early postnatal programming [13]. Fundamental developmental
events impacted during this period include nephrogenesis, cardiomyocyte proliferation

and maturation, coronary vascularization, the development and maturation of the immune
system, and the development of the hypothalamic—pituitary—adrenal axis [13]. Disruption of
these processes can have long-lasting and potentially irreversible impacts on cardiovascular
health [13]. A growing number of studies have reported that toxic metal exposures during
the prenatal and early postnatal periods adversely affect cardiovascular phenotypes in
childhood and adolescence. To our knowledge, perinatal metals exposure in relation to
cardiovascular health related outcomes in children have not been comprehensively reviewed,;
therefore, we sought to compile the recent literature and update information previously
included as part of reviews of developmental toxicity of metals [2, 4, 14-18]. Our

objective was to synthesize the primary epidemiologic literature describing the influence

of contemporary exposures to metals during the perinatal period on early-life cardiovascular
risk factors in order to identify critical knowledge gaps and to inform prevention efforts and
health policy.
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Our scoping review focused on peer-reviewed, original articles published between January
1, 2017, and December 1, 2021, encompassing approximately the past 5 years. We searched
the PubMed (MEDLINE) and Web of Science databases to identify studies that explored
the relationship between perinatal metals exposure and offspring cardiovascular health risk.
Only publications written in English were reviewed.

Avrticles were eligible if they had examined perinatal metals exposure, defined as occurring
and/or measured during the period of a normal pregnancy. We included studies with
exposure measurements taken during pregnancy, as well as studies that collected samples at
birth or in the postpartum period that reflect pre-/perinatal exposures (e.g. metals measured
in maternal toenail samples collected within ~ six months postpartum) [19, 20]. Our search
terms allowed for the inclusion of studies that performed metals exposure assessment
specifically in the pre-conception period, but none was identified. We excluded studies

that only examined metals exposure beyond the perinatal period, such as during childhood,
adolescence, or adulthood.

We focused our review on epidemiological studies, excluding case reports, ecologic studies,
reviews and meta-analyses, or animal and/or experimental studies, but citing these studies
where applicable, e.g., to provide additional background, fill in gaps in our knowledge, i.e.,
mechanistic understanding, or supporting evidence for potential future research directions.
We did not limit our search by age or timing of outcome assessment, as we were interested
to learn whether any recent studies had been conducted to explore perinatal metals exposure
in relation to later life outcomes related to cardiovascular health. We anticipated that
children and adolescents would be the primary focus of this review on perinatal exposures
and that we might not identify longer-term studies of clinical CVD endpoints that typically
manifest later in adulthood. Therefore, we focused our search broadly on cardiovascular
risk factors that would be measurable in younger populations, including blood pressure
(BP), blood lipids, measures of cardiovascular function such as echocardiogram, heart rate
variability, endothelial function, cardiovascular-related ultrasound measures (e.g. carotid
intima media thickness), and biomarkers previously associated with cardiovascular health,
including biospecimen measures of endothelial function, inflammation, and oxidative stress.
A list of our search terms and numbers of articles retrieved with each search are included as
supplemental material (Table S1).

Three reviewers simultaneously identified articles from our search (172 from PubMed and
845 from Web of Science from the time period of January 1, 2017 to December 1, 2021).
The abstract and title of each article were reviewed and where there was doubt about

their inclusion, the full text was reviewed. Initial review of each article for fit within

the inclusion criteria was based primarily on whether (1) it was a human study, (2) the
exposure was to a metal or metal mixture during the perinatal period, (3) the outcome was
assessed in perinatally exposed offspring (with outcomes measured anytime from infancy
through late adolescence), and (4) the outcome was of a cardiometabolic nature. Papers
investigating metals exposures in relation to medical treatments (e.g. chemotherapy) were
not included in those reviewed. Any disagreement among the reviewers was resolved by
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discussion with a senior investigator. The following information was recorded in tables
from each selected study, including author, publication year, title, name and location of the
study, sample size, study population, year at study baseline, exposure assessment method,
metal concentration(s), outcomes, covariates, and key findings. As a scoping review, quality
assessment of the retrieved articles was not conducted. The details of reviewed articles
were provided in two tables, with Table 1 providing details of studies of individual or
co-exposures to metals and Table 2 detailing the metal mixtures studies, solely due to the
need to provide additional details related to differences in statistical methodology used to
analyze mixtures.

Between 2017 and 2021, seventeen unique studies were published from nine cohorts on
single, dual or multiple metal exposures in the perinatal period and their relationship to
cardiovascular risk factors in children (Tables 1 and 2). Over half of the published studies
(n=19) were conducted in North America from three US cohorts (7= 5) and two cohorts in
Mexico (n= 4). The remaining eight studies were conducted in various cohorts located in
Europe (7= 4) and Asia (7= 4). Study sample size ranged from 176 to 1277 mother—child
pairs.

Nine studies reported findings on a single metal exposure: As (7= 2), Cd (n=1), Pb (n

= 3), or Hg (n= 3) (Table 1). Of the remaining seven studies, two reported findings on
co-exposures and five reported on mixtures. In the mixture studies, the most frequently
measured metals included Pb (assessed in all 5 studies), followed by As and Cd (4 studies)
and cobalt (Co), Cu, manganese (Mn), and selenium (Se) (3 studies) (Table 2). The most
commonly used mixture analysis method was Bayesian kernel machine regression (BKMR;
n=3). One study used Least Absolute Shrinkage and Selection Operator (LASSO) in
addition to BKMR [21+¢] and another used deletion-substitution-addition (DSA) [22¢¢].

Metal concentrations were determined most frequently in biomarkers, including blood (7=
8), urine (n=6), and toenail samples (7= 2) (Tables 1, 2, S2). Two European consortium
studies used either maternal blood samples obtained in pregnancy or infant cord blood
samples as an indicator of prenatal metals exposures [22e¢, 23¢]. A third study investigated
cord blood Pb levels at birth, in addition to prenatal maternal blood samples [24¢], while
another used both cord blood total Hg levels in addition to current child blood samples
[25¢] We did not identify any studies that measured placental metals in relation to our
outcomes of interest. One study utilized filter-based samples of particulate matter (PM2.5)
components, which were linked to individuals using maternal residential address (Table 2)
[21e¢]. The most investigated outcomes of interest included BP (7= 13), lipid levels (n=6),
and inflammatory markers (n=4) (Tables 1 & 2).

In recent years, mounting evidence has supported a role for As exposure in CVD mortality
and morbidity, but the majority of studies have focused on highly exposed adult populations
[26, 27] While relatively few studies have been prospectively designed to examine the
effects of perinatal As exposure on cardiovascular health, those that have suggest that
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As may influence early cardiovascular risk factors, such as BP and vascular changes, as
described below. Some of the earliest evidence of a possible link between in utero As
exposure and CVVD came out of a set of autopsy case reports from young children who lived
in Antofogasta, Chile, a region that experienced a period of high-level As contamination of
the public water supply from 1958 to 1970 [28, 29]. These As-exposed children all exhibited
vascular lesions, and death from acute myocardial infarction was recorded in two cases.
Further ecological work from this region found that young adult men who were born during
the period of highest As contamination had nearly three times the rate of acute mortality
from myocardial infarction compared to the general population of Chile [30]. Prior studies
of children exposed to relatively high levels of As in utero and early in life from Mexico and
Bangladesh have provided additional evidence linking As exposure to elevated BP, cardiac
hypertrophy, carotid intima media thickness and plasma asymmetric dimethylarginine, a
marker of oxidative stress [31-33].

In the past 5 years, we identified three studies that have explored the association specifically
between perinatal As exposure and measures and/or biomarkers related to cardiovascular
health [34, 35]. One study of 500 mother—child pairs in the US-based New Hampshire
Birth Cohort Study (NHBCS) observed positive associations between maternal prenatal
urinary As and infant plasma markers, intercellular adhesion molecule (ICAML1) and
vascular adhesion molecule (VCAM1), which have been associated with inflammation

and endothelial dysfunction in adult populations (Table 1) [34, 36]. Furthermore, maternal
levels of VCAML1 appeared to mediate the association between prenatal As and infant

cord ICAML1 levels, suggesting that As may, at least in part, alter these infant markers via
maternally regulated mechanisms [34]. A study of pregnant women in the US-based Navajo
Birth Cohort also support a potential role for As in maternal inflammatory regulation,

as authors observed an association between maternal As exposure and elevated maternal
levels of oxidative stress marker urinary 8-isoprostaglandin F2a during pregnancy [37].
Since biomarkers were not assessed in offspring, the potential influence of As on children’s
oxidative stress could not be determined. A second study, also conducted in the NHBCS,
explored co-exposure to Pb and As at two perinatal timepoints, periconceptional/early
prenatal and mid-pregnancy, in relation to child BP around age 5 years (Table 1). While
associations were null for As and BP, early prenatal Pb levels were related to child BP and
these results are further described below [35].

More recently, Chen et al. investigated three exposure windows (in utero/early childhood,
mid-childhood, current/adolescence) in relation to BP among Bangladeshi adolescents [38e].
Investigators reported that a doubling of in utero/early childhood As exposure, defined as
maternal urinary As measured from one year prior to birth until age 5, was associated with a
0.7 mmHg (95% CI: 0.5, 1.4) greater SBP at ages 14-17 years [38¢]. Current As exposure,
measured in urine at the time of assessment, was also associated with greater SBP. While
one limitation of this study is that in utero As exposure cannot be differentiated from early
childhood exposure, interestingly, childhood exposure from ages 5-12 was not associated
with changes in BP in adolescence, highlighting the potential importance in utero/early life,
as well as current, exposures. Another study, also conducted in Bangladeshi adolescents but
did not meet our inclusion criteria, observed that compared to those who drank from wells
with lower As levels (< 50 pg/L), individuals who reported drinking exclusively from water
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sources with high levels of As (> 50 ug/L) had poorer endothelial function, an important
cardiovascular risk factor [39¢]. Overall, while some evidence among children exposed to
high levels of As points to possible early life impacts on cardiovascular risk factors, much
less is understood about the influence of lower levels of perinatal As exposure on child
cardiovascular risk and potential consequences for later life health.

Epidemiological studies have consistently supported a role for Pb in CVD among adults over
the past several decades. Summary evidence presented in a recent systematic review and
meta-analysis of 37 studies reported that Pb exposure was associated with increased risks of
CVD, coronary heart disease, and stroke [4, 5]. Despite the accumulating evidence among
adults, exploration of the influence of early life Pb on cardiovascular health has remained
somewhat limited. Two studies conducted prior to our search criteria time period, one

from Mexico City, MX and another from rural New York, US, both reported associations
between prenatal Pb exposure and elevated BP in later childhood [40, 41]. However, a third
study that also preceded our inclusion period from Bangladesh did not find an association
between prenatal Pb exposure and child BP, although an association with kidney volume was
identified, which could potentially impact later life renal and cardiovascular health [42].

We identified five contemporary studies in children that examined associations between Pb
exposure and cardiovascular health measures, such as BP and lipid profiles. Three of these
studies, based in Mexico City within the Early Life Exposure in Mexico to Environmental
Toxicants (ELEMENT) and Programming Research in Obesity, Growth, Environment and
Social Stressors (PROGRESS) cohorts, measured prenatal Pb levels in maternal blood
samples [24e, 43¢, 44]. Within PROGRESS, Sanders et al. examined the joint effect of
gestational age at birth and prenatal Pb exposure on BP at 4 to 6 years of age in 565 children
(Table 1) [43¢]. Compared to children born to women with blood Pb levels < 2.5 ug/dL,
children born to women with blood Pb> 2.5 pg/dL had 1.6 mmHg higher systolic BP (SBP)
per each week reduction in gestational age [43¢]. A positive association also was observed
for Pb and SBP among children born > 37 weeks, but the magnitude of the association

was smaller, suggesting that while Pb exposure may adversely influence BP in children, this
association may be more pronounced in those born prematurely.

In a study of 323 5-6-year-old children enrolled in the NHBCS, Farzan et al. examined
child BP in relation to perinatal co-exposure to Pb and As at two timepoints, during the
periconceptional/early prenatal period and in mid-pregnancy, based on maternal toenail
samples collected at ~ 24—28 weeks gestation and ~ 6 weeks postpartum (Table 1) [35]. In
co-exposure models where toenail Pb and As were modeled jointly, maternal early prenatal
toenail Pb was associated with increases in child SBP (8. 0.58 mmHg, 95% CI: 0.05,
1.11), whereas prenatal As was not [35]. No apparent associations were observed for Pb

or As measured in toenails collected at 6 weeks postpartum. Stronger associations between
prenatal Pb and SBP were observed among boys, compared to girls. These results suggest
the potential sensitivity of the early prenatal window for Pb exposure, particularly for boys,
compared to girls and to exposures later in pregnancy.

Curr Environ Health Rep. Author manuscript; available in PMC 2024 November 13.
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Recent literature suggests that the association of Pb and some cardiovascular risk predictors
may also differ in children compared to adults. In a study by Liu et al. of 369 children
enrolled in the ELEMENT cohort, researchers observed significantly lower total cholesterol
and low-density lipoprotein cholesterol (LDL-c) levels at ages 10-18 years old for offspring
of mothers with prenatal blood Pb levels greater or equal to 5 ;g/dL, compared to offspring
of mothers with blood Pb < 5 ;g/dL (Table 1) [44]. These associations were limited only

to boys, with no associations observed among girls. These findings were inconsistent with
prior studies of adults and adolescents that reported positive associations between Pb and
lipid levels [45-48]. The authors hypothesized that such early prenatal Pb exposure could
lead to reductions in total cholesterol and LDL-c via impaired cholesterol regulation and
oxidative stress. In a later study, PROGRESS investigators explored associations of perinatal
and childhood Pb exposure with multiple markers of metabolic syndrome, including lipid
levels and BP, in 601 mother-child dyads (Table 1) [24+]. Similar to the findings of Liu

et al., higher prenatal blood Pb was associated with significantly lower levels of child
triglycerides (TG), and lower diastolic BP (DBP) [24¢]. While these findings are inconsistent
with prior findings among adults, they are consistent with findings from the ELEMENT
cohort study and suggest that Pb exposure may have differential effects on cardiovascular
and metabolic health measures in children compared to adults. However, it is worth noting
that similar associations between Pb and lipids were not reported in another PROGRESS
cohort study by Kupsco et al. which examined prenatal metal mixtures in relation to a panel
of cardiometabolic outcomes (Table 2) [49e°].

Overall, these recent studies indicate that perinatal Pb exposure may differentially influence
CVD-related risk factors in children. Perinatal Pb exposure was associated with elevated
child BP in two of the four studies that examined it, consistent with what has been

observed in adult populations, but lower DBP in the most recent PROGRESS study. Pb also
was unexpectedly associated with lower blood lipid levels in children, warranting further
investigation of these associations in other study populations, as well as changes in BP over
time to investigate whether such effects may persist into adulthood.

Cadmium has been strongly associated with cardiovascular health effects in adults, but

few studies have investigated whether perinatal exposure to this toxic metal influences
cardiovascular risk factors in children [5, 50, 51]. To our knowledge, only two studies, one
from Greece and another of As-Cd co-exposures in Bangladesh, investigated perinatal Cd
exposure in relation to cardiovascular-related biomarkers or health outcomes in recent years
[52]. In the Rhea cohort, Chatzi and colleagues examined the association of maternal urinary
Cd, measured ~ 13 weeks of gestation and a panel of cardiometabolic measures in 515
children at age 4, including BP, lipids, and biomarkers leptin and C-reactive protein (Table
1). Prenatal Cd exposure was not associated with any of the cardiometabolic measures in
this analysis [52]. These results are consistent with two earlier cross-sectional studies in
Bangladesh and Thailand of similarly aged children, which found no association of Cd
exposure with BP, but potential adverse impacts on kidney function [53, 54]. Conversely,

in a contemporary study of children from the MiniMAT trial in Bangladesh, Ahktar et

al. found that both prenatal and childhood Cd exposure were positively associated with

Curr Environ Health Rep. Author manuscript; available in PMC 2024 November 13.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Yim et al.

Mercury

Page 8

greater SBP and DBP, and prenatal Cd exposure was also related to reduced high-density
lipoprotein (HDL) (Table 1). Interestingly, this study accounted for As co-exposure, which
was not associated with any changes in BP. As described below, mixtures analyses found
some evidence that Cd alone may be related to altered BP [55¢¢], while others found that
Cd may interact with other metals to influence children’s cardiovascular health outcomes
[56¢], indicating that co-exposures and context may play an important role, particularly
when examining Cd (Table 2).

Given the strong epidemiological evidence supporting a role for Cd in cardiovascular
morbidity and mortality in adults [5, 50, 51], it is somewhat surprising that few studies
have investigated this relationship in children. However, it is possible Cd exposures in
early life may set the stage for later life health. This hypothesis is supported by two
recent experimental studies in mice, which both reported similar findings indicating that
maternal in utero Cd exposure induces cardiovascular changes and metabolic syndrome
limited to adult female offspring and corresponding changes in the transcription of genes
related to CVD, oxidative stress and cellular energy balance [57, 58]. While there is little
epidemiological evidence of whether these relationships exist in humans, together these
experimental studies provide compelling evidence to support a potential role for prenatal Cd
exposure in programming of delayed cardiometabolic health effects in adulthood [57, 58].

Hg is a widespread contaminant of concern and some limited evidence has suggested
potential cardiovascular effects in adults, including cardiovascular mortality, acute
myocardial infarction, coronary heart disease, carotid atherosclerosis and elevated BP
[59-64]. A recent meta-analysis reported associations between chronic Hg exposure and
multiple fatal and non-fatal cardiovascular outcomes in adults; they found that heterogeneity
was largely due to differences in exposure levels [3]. Similarly, a handful of studies

over the past two decades published prior to our review period examined early life Hg
exposure to measures of cardiovascular health in childhood, but findings have been largely
inconsistent. Two studies in fish-consuming populations, one conducted in the Seychelles
which used maternal hair samples as a biomarker of methyl-Hg exposure and another in

the Faroe Islands that measured methyl-Hg in cord blood, observed positive associations
between prenatal methyl-Hg levels and higher BP in childhood [65, 66]. However, two
large prospective studies, one from the Avon Longitudinal Study of Parents and Children
(ALSPAC) and another from the US-based Project Viva study, examined maternal blood Hg
levels during pregnancy with childhood BP and found inconsistent or no associations [67,
68]. Others have observed positive associations between Hg and other cardiovascular risk
factors, including children’s heart rate variability, but no associations with BP [69-71].

Within the last 5 years, three studies have further investigated the influence of perinatal Hg
exposure on offspring cardiovascular health [23e, 72¢]. In a study of 395 children enrolled
in the NHBCS, researchers explored Hg exposure during the prenatal period and at multiple
time points in childhood in relation to BP at 5-6 years of age (Table 1) [72¢]. Neither

early prenatal nor mid-gestation Hg exposure, as measured by maternal toenail levels, were
associated with child BP. However, both child toenail Hg at age 3 and urine Hg at age 5-6
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were each associated with higher DBP and mean arterial pressure in children, suggesting
that while perinatal Hg exposure may not influence child BP, early to mid-childhood may
be a sensitive window [72¢]. A second study from the European HELIX Project investigated
the influence of maternal fish consumption and perinatal Hg levels in maternal blood and
infant cord blood samples on a suite of cardiometabolic measures in 805 children ages

6-12 years (Table 1) [23<]. Maternal fish consumption during pregnancy was positively
correlated with Hg blood levels. Children born to mothers with medium to high fish
consumption had significantly higher HDL cholesterol levels compared to those born to
mothers with lower fish intakes. However, neither fish consumption nor Hg biomarker levels
were associated with child BP or triglycerides. In a third study of 604 children originally
enrolled in a birth cohort study in Hong Kong Hg was linked to heart rate variability (Table
1). Prenatal methyl-Hg, measures in cord blood samples was associated with decreased
heart rate variability, as indicated by several parameters, but current blood Hg in children
was not associated with any of these measurements, suggesting that prenatal exposure is of
importance for cardiac autonomic function.

Given inconsistencies across studies, it is difficult to draw conclusions about the potential
role of perinatal Hg in child cardiovascular health. Further exploration of dose-related
effects and potential windows of vulnerability over pregnancy and early childhood may
shed light on some of the differences in the current literature. Additional investigation into
exposure biomarker differences across studies may also be helpful, however, the majority of
studies utilized blood or hair/toenail samples, which primarily reflect methyl-Hg levels [73].
The potential nutritional benefits of fish consumption, as well as correlated intake of other
seafood, also must be considered against the increased risk of Hg exposure with increased
fish intake when investigating adverse cardiovascular health effects. It is also possible that
unmeasured/residual confounding from fish consumption could in part explain some of the
discrepancies observed between studies.

Metal Mixtures

Humans are exposed to numerous environmental chemicals simultaneously, but previous
studies investigating metal impacts on cardiovascular risk have mainly applied single-
chemical approaches [74, 75]. Recognizing this research gap, the number of studies
evaluating the cardiovascular impact of metal mixtures exposure has increased in recent
years. We identified five studies that focused on perinatal metal mixtures exposure and their
association with cardiovascular risk factors in childhood (Table 2) [21ee, 22¢¢, 4Qee, 550e,
56¢]. Zanobetti et al. evaluated the association of maternal exposure to airborne pollutants
(including particle mass with diameter < 2.5 ;m [PM2.5], black carbon [BC], aluminum
[Al], silicon [Si], potassium [K], calcium [Ca], titanium [Ti], iron [Fe], magnesium [Mg],
sulfur [S], As, Cu, zinc [Zn], bromine [Br], Pb, vanadium [V], nickel [Ni], sodium [Na], and
chlorine [CI]) with BP at a mean age of 30 h among 1,311 mother-infant pairs in a Boston-
area pregnancy cohort [21e¢]. The adaptive LASSO selected S, Ni, Zn, and Cl as important
elements for SBP, and Ni, Zn, S, Si, As, Cu, and Pb for DBP. Findings from BKMR

were similar to the LASSO results, identifying Ni and Zn as the most influential mixture
components for BP. The other US-based study by Zhang et al. examined how in utero
exposure to multiple metals (Pb, Hg, Cd, Se, and Mn), measured in maternal blood samples
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between 24 and 72 h after delivery as a proxy for third trimester exposure, was associated
with SBP and DBP between 3 and 15 years of age among 1,194 mother—child dyads in

an urban, low-income, minority birth cohort [56¢]. Using BKMR, no joint association was
observed. However, both hierarchical variable selection procedure in BKMR and single
metal analysis found that two essential elements (Se and Mn) to be inversely associated with
SBP than heavy metals [56¢]. Potential interactions were also reported between Mn and Cd
in relation to childhood BP; a stronger inverse association was identified between Mn and
child SBP at higher levels of Cd.

Two studies have evaluated the impact of in utero exposure to metal mixtures on BP at 4
years of age or above. Howe et al. analyzed data from 176 mother—child pairs from the
Rhea study in Greece [55¢+¢] and employed Bayesian Varying Coefficient Kernel Machine
Regression and BKMR to determine the relationship between maternal exposure to 8 metals
(Mg, Co, Se, molybdenum [Mo], As, Cd, antimony [Sb], and Pb), measured in urine, and
BP trajectories and elevated BP at age 11, respectively. At age 4, maternal exposure to

Mo and Co during pregnancy were associated with a J-shaped increase in SBP and DBP,
and Cd associated with lower DBP. An interaction between Mo and Pb was also detected
for BP. Furthermore, prenatal exposure to Co and Mo were found to be associated with
lower per-year increases in BP from ages 4 to 11, while Mg was associated with higher
per-year increases in BP. At age 11, prenatal Mo and Pb were associated with J-shaped
elevated BP, suggesting that maternal exposure to Mo or Pb within the mixture was most
consistently associated with childhood BP. The study by Kupsco et al. in PROGRESS cohort
study participants (/= 609) in Mexico reported inverse joint association between maternal
exposure to a mixture of 11 metals (As, Cd, Co, chromium [Cr], cesium [Cs], Cu, Mn, Pb,
Sh, Se, and Zn) during pregnancy and SBP at 4 to 6 years of age in the BKMR analysis
[49ee].

Warembourg et al. utilized an exposome approach, which considers all the exposures to
which an individual is subjected in a given time period. This analysis included a mixture

of prenatal and postnatal exposures, including a panel of metals, in addition to outdoor

and indoor exposures, chemical contaminants and water disinfection by-products [22e¢]
Pooling data from 1,277 children from 6 longitudinal European birth cohorts, the authors
investigated associations between multiple prenatal (7= 89) and postnatal (n= 128)
environmental exposures (including As, Cd, Co, Cs, Cu, Hg, Mn, Mo, Pb, and thallium
[T1]) and BP among children aged 6 to 11 years [22¢¢]. To examine the joint impact of these
exposures on childhood BP, they conducted exposome-wide association study (EXWAS)
analyses and using a DSA algorithm, which were performed separately for prenatal and
postnatal exposures. While Co measured during childhood was associated with higher DBP,
none of the metals measured prenatally was identified as influential factors for child BP.

Of these, only 1 study by Kupsco et al. assessed how prenatal exposure to a metal mixture
(As, Cd, Co, Cr, Cs, Cu, Mn, Pb, Sh, Se, and Zn) was associated with CVD risk factors
other than BP, such as TG, non-HDL cholesterol, leptin, and adiponectin using BKMR in a
subset of the PROGRESS birth cohort (V= 411) [49+¢]. While in utero exposure to the metal
mixture was jointly associated with higher non-HDL cholesterol and adiponectin levels in
children, an inverse joint relationship was shown for the leptin concentration. In single metal

Curr Environ Health Rep. Author manuscript; available in PMC 2024 November 13.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Yim et al.

Page 11

analyses, higher Se was associated with lower TG, and higher Sb and As were associated
with lower leptin. No interactions were found among the metals. Overall, these studies
suggest that prenatal exposure to metal mixtures influence on CVD risk factors, mainly BP,
among the offspring. However, results for specific metals were inconsistent possibly due to
differing metal concentrations (see metal concentrations, Supplemental Table S2), diverse
metal combinations within each mixture, and differences in when the outcome was assessed.

Discussion

It is becoming clear that perinatal exposure to metals is associated with adverse effects

on child cardiovascular health and development, yet the implications for long term health
remain to be fully examined. Growing evidence, including the highlighted studies from

the last 5 years, suggests that both individually and as mixtures, toxic metals may have
adverse impacts on BP, lipids, and other cardiovascular risk factors beginning in childhood.
Given these associations of metals with early-life cardiovascular risk factors, longer term
effects are anticipated, though not yet well delineated in the literature. In this review,

we summarized 16 contemporary studies which investigated the impact of perinatal metal
exposures on measures of cardiovascular health in children. Accumulating evidence supports
a potential adverse impact of perinatal Pb exposure on BP in children, consistent with

prior findings in adults [5], while Pb’s role in lipid homeostasis among children requires
further investigation. For As, numerous previous studies suggest possible early life impacts
on cardiovascular risk factors among children exposed to high As concentrations, but less
is known for populations exposed to lower concentrations. As fewer studies have focused
on Hg and Cd, the potential cardiovascular impacts of these metals are currently less clear.
Recent studies have also failed to clarify whether the perinatal period is a particularly
sensitive window for Hg exposure, although many of the existing studies observed a
relationship between perinatal and/or childhood Hg exposures and children’s BP, as well
as heart rate variability. While only one study has reported associations between Cd and
cardiovascular measures in childhood, emerging data indicate that perinatal Cd may also
have delayed cardiometabolic effects, emphasizing the importance of long-term follow up
studies to capture outcomes with longer latency periods. Lastly, studies of perinatal metal
mixtures have revealed previously overlooked elements, such as Mo, Co, and Ni, which may
impact child BP and essential metals, like Se, Zn, and Mn, which may also play a role in
later cardiovascular risk. While few elements were commonly identified in relation to BP
across these mixture analyses, together these studies clearly demonstrate that interactions
between metals may be complex and dose-dependent.

While all the recent studies we reviewed were prospective, due to the nature of our question,
few studies longitudinally investigated cardiovascular trajectories in childhood or the longer-
term impacts of perinatal metals exposures across the lifecourse. A key question that
remains is whether the observed associations of perinatal metals exposure with measures of
cardiovascular health in childhood will persist into adulthood and have long-term effects of
clinical relevance in later life. Indeed, there is evidence to indicate that subclinical measures
of children’s cardiovascular health, including BP, lipids, and carotid intima media thickness,
may inform later cardiovascular risk [7-9, 76-85]. However, more information is needed to
better predict who may be at greater risk over time and understand whether interventions
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to reduce exposures in childhood could slow or reverse disease development. Translational
work in this area will be critical to guiding epidemiological studies by providing mechanistic
insights, identifying metals-disrupted pathways and thus improving our ability to identify
susceptible populations and potentially intervene prior to adverse health consequences.

It is also important to consider the timing of exposure assessment in pregnhancy, as
particular periods of development may be more sensitive to lower levels of metals. Future
studies should consider collecting biospecimens across gestation to explore whether there
may be periods of heightened susceptibility, given that cardiovascular health could be
impacted at various points in pregnancy, from early prenatal epigenetic programming and
organogenesis to the later gestational period during which establishment of fetal hormonal
signaling pathways occurs [86, 87]. It is possible that differences in timing of assessment
and biomarker of exposure could explain in part some differences across studies and
susceptibility among children versus adults should be further explored. Future studies which
incorporate placental metal concentrations will also be important for determining if the
placenta’s ability to act as a partial barrier to certain metals (e.g., Cd) may protect the
developing fetus from downstream effects on cardiometabolic health [88].

A limitation of the current review is that somewhat few studies have been published

with relatively current levels of exposure and, while the trends observed are suggestive,
direct comparison across studies is difficult, given the different biomarkers and exposure
levels for each of the metals that were explored. A further complication is that among
mixtures studies, mixture compositions are highly variable across populations, as levels

of metals will vary by study environment, context, exposure biomarker, and timing of
exposure assessment, making comparability across studies a challenge. Various substrates
may reflect short- or long-term exposures, distinct metal species, and overall exposures to
metals more or less accurately. Furthermore, individual species of a metal may represent
disparate sources of exposure. Primary routes of exposure can differ between metals and
for a given metal, among populations. Additionally, some relationships between metals are
likely non-linear and interactions between metals can become complex, particularly as one
begins to investigate the combined effects of essential nutrients and toxic elements on a
particular health effect. Furthermore, while the majority of the reviewed studies accounted
for other established sources of metal exposures, such as maternal smoking or secondhand
smoke exposure fish/seafood consumption, it is possible that differences in how these
variables were measured or included in the analysis may account for some variability across
studies. Inclusion of additional sources of exposure (e.g. water intake, additional dietary, or
environmental sources) should be considered in future studies when possible. Lastly, renal
function was not measured in most studies, which could influence excretion of metals and
may be related to some cardiovascular outcomes, such as blood pressure.

Conclusions

CVD remains a critical public health issue, as its prevalence has doubled over the last

three decades [89]. Potential interventions to protect public health are more crucial than

ever and insights into modifiable environmental factors, like metals exposures, could have
positive effects on this troubling trend. Pregnancy, in particular, may be a critical opportunity
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for intervention, as women may be more receptive to lifestyle and/or dietary changes that
could help protect the long-term health of their child [90, 91]. Although awareness of the
dangers of metals exposures has grown, exposures to toxic elements remain widespread via
food, water, and air [92, 93]. As growing evidence of the health effects of metals exposures
continues to emerge in both adults and children, a deeper understanding of the potential
long-term health effects from perinatal exposures is essential to establishing regulatory
guidelines and improving cardiovascular health outcomes for decades to come.
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