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Abstract

The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. 

Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory 

pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. 

In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral 

part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our 

insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from 

infection and other diseases. This Review summarizes the state of olfactory immunology by 

highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing 

what is known of olfactory immune cells, and considering the impact of common infectious 

diseases and inflammatory disorders at this site. We will offer our perspective on the future of the 

field and the many unresolved questions pertaining to olfactory immunity.

Introduction

The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the 

importance of vaccines that prevent severe illness, hospitalization and death1,2. At the same 

time, the widespread prevalence of breakthrough infections and reinfections3–5, even in 

previously vaccinated individuals, illustrates the shortcomings of vaccines. Breakthrough 

infections typically present with milder symptoms that are contained to the upper respiratory 

tract, but these still come with serious consequences. Upper respiratory severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to smell loss6–8, long 

COVID8,9 and potential systemic viral dissemination. Perhaps most critically, upper airway 

infection allows for continued pathogen transmission10,11. This not only presents a danger to 

immunocompromised individuals and the unvaccinated but also provides an opportunity 

for viral evolution leading to immune evasion. Data from a plethora of SARS-CoV-2 

animal studies consistently indicate that nasal tissue is less well protected than the lung 

from reinfection following prior immunization or infection11–23. Indeed, across airborne 
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infection models, the nasal mucosa is generally unprotected even in the presence of systemic 

immunity24–28.

Moving forward, the most pressing challenge for vaccinology is to design vaccines that 

generate sterilizing immunity at all portals of infection. Defending the entire upper airway 

from infection should be a key correlate for vaccine-induced protective responses, both 

against SARS-CoV-2 and future respiratory pandemics. The nasal airway is the entry 

point for many pathogens, and establishing protective immunity in this tissue is essential 

to break the chain of transmission. Many approaches have been suggested to orchestrate 

locally protective immunity at the nasal surface, including mucosal immunization routes, 

specific antigen formulations and distinct adjuvant signalling29–35. The efficacy of these 

mucosal vaccination strategies is currently limited by two considerations: what immune 

parameters are required to protect the nasal passages? And how can this tissue-specific 

immunity be generated? Common wisdom has held that a tissue-tailored mucosal immune 

response is required for upper airway protection more so than in the lower respiratory 

tract36–38. Numerous hypotheses have been offered insofar as to what constitutes this 

mucosal response: secretory IgA antibodies, tissue-resident T cells and mucosal cytokines 

are frequently mentioned22,23,38–41. Moreover, how to best elicit these protective responses 

is unclear14,18,32–35,42 (Box 1). On top of that, how do we determine efficacy? Although 

peripheral blood is easily sampled, studies of mucosal tissue, particularly the nasal mucosa, 

are impeded by difficulty in tissue acquisition. Most prior work relies on nasal washes39,43–

47 that disproportionately sample the lower nasal turbinates and cannot capture the 

complete mucosal antibody response, particularly in the superior nasal turbinates. Therefore, 

determining how vaccination or infection impacts local nasal mucosal immunity and viral 

control is a technical challenge we have yet to overcome. But one consideration looms over 

the above questions: the nasal mucosa contains at least two distinct tissue types that require 

protection, namely the olfactory mucosa and the respiratory mucosa, and each possesses 

unique immune considerations (Fig. 1a).

Our recent work has provided an essential new insight into these conundrums48. By focusing 

on infection in the olfactory mucosa, we identified a novel endothelial barrier, termed 

the blood–olfactory barrier (BOB), that prevents circulating serum antibodies from 

accessing the olfactory mucosa. Therefore, even in situations in which highly neutralizing 

blood-borne antibody is present, the olfactory mucosa is still vulnerable to infection. 

Interestingly, circulating antibody accesses and protects the respiratory mucosal surface 

in the nasal passages, and only the olfactory mucosa is strictly segregated from serum 

antibodies. This gap in immunity at the olfactory barrier can be overcome by a population 

of extravascular plasma cells that are driven to reside in the olfactory mucosa following 

infection, secreting antibodies that directly reach the mucosal surface. Although many of 

these plasma cells were IgA+, protection did not depend on IgA, consistent with other 

studies of nasal IgG49. Plasma cell-mediated olfactory protection is dependent on signals 

given to B cells in the lymph node, but intriguingly, these mucosal plasma cells are not 

always generated following immunization. Using multiple mouse models of viral infection, 

we demonstrated that these olfactory plasma cells are absolutely required to protect the 

olfactory mucosa, and furthermore, to protect the CNS from neuroinvasive viruses. These 
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results answer several outstanding questions about upper airway protection from infection. 

Blood-derived antibodies provide a critical layer of protection for the respiratory epithelium, 

but the BOB prevents circulating antibody from accessing and protecting the olfactory 

mucosa48. This difference in antibody transudation may resolve conflicting studies on upper 

airway antibodies and infection11–23,39,43–47, in which conclusions were confounded by 

nasal washes failing to distinguish olfactory and respiratory antibody and by pathogens 

infecting olfactory mucosa and respiratory mucosa to differing levels (Fig. 1b). Olfactory 

protection can, however, be achieved by locally protective mucosal plasma cells, and the 

generation of these plasma cells is dependent on the signals engendered by infection or 

immunization. Differences in vaccine formulation and delivery may at least partially explain 

why different vaccination strategies could protect the upper airway from infection to variable 

degrees (Box 1). These findings have illuminated the significance of a previously neglected 

field: olfactory immunology.

Perhaps most importantly for immunologists and vaccinologists, these discoveries 

emphasize the heterogeneity of the upper respiratory tract; with distinct respiratory and 

olfactory mucosae that exhibit different correlates for immune protection, the nasal tissue 

cannot be treated as a monolithic tissue (Fig. 1). Although protecting the olfactory mucosa 

is critical to breaking the transmission chain for respiratory pathogens, it is perhaps even 

more essential in the context of neuroinvasive pathogens. The olfactory nerve acts as a direct 

portal to the brain, forming a single-cell connection from the airway to the CNS that is 

essential for the sense of smell but can be subverted by pathogens. The olfactory mucosa is, 

therefore, a CNS mucosal barrier, the sole line of defence between the external environment 

and catastrophic neurological disease50,51. Neuroimmunologists have subjected CNS barrier 

tissues such as the blood–brain barrier (BBB) and meninges to detailed examinations across 

neuroimmune diseases. These studies have yielded rich and comprehensive characterizations 

of their anatomical minutiae52, and yet, the olfactory barrier has been largely overlooked. 

This can be likened to a castle guard preparing for siege defence: the walls have been 

fortified, cracks in the battlements repaired, secret entrances have been sealed — but the 

front gate has been left open! Breaching other CNS barrier tissues, such as the tissues of 

the eye or meninges, requires penetrating several cell layers and structures to reach the 

CNS;52,53 only the olfactory mucosa contains neurons that directly interface with the outside 

world and the CNS. Fortunately, despite our relative neglect, the olfactory mucosa has 

evolved several structural and immune barriers that safeguard this entryway (Fig. 2).

And yet, to this point, little work has been done to characterize the olfactory mucosa as an 

immune tissue (Box 2), and several outstanding questions remain. Which haematopoietic 

populations reside within this tissue? How does infectious disease uniquely impact the 

olfactory mucosa compared with the rest of the upper respiratory tract (URT)? What 

mechanisms does the olfactory mucosa use to protect the brain from invasive threats? How 

can we augment olfactory mucosal tissue defence to lessen disease burden imposed by 

airborne pathogens? In this Review, we highlight the existing literature on immunology of 

the olfactory mucosa. This is an emerging field, and we will offer our perspective on the 

many unexplored questions in olfactory mucosal, URT and CNS immunity.
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Immune barriers in the olfactory mucosa

Immunologic analyses of the URT have primarily addressed the respiratory regions of 

the nasal mucosa54, especially in humans, neglecting olfactory regions almost entirely. 

The reasons for this are probably twofold. The first reason is a technical hurdle: inferior 

nasal turbinates or nasal polyps can be sampled with relative ease compared with more 

superior olfactory regions. The second reason is that there persists a false assumption that 

URT mucosae are homogeneous — that any sample is representative — ignoring that 

olfaction exists and requires special equipment. Thus, the human respiratory mucosa has 

been extensively characterized in contexts including rhinosinusitis, allergy and viral diseases 

such as COVID-19. Far less work has been done on immune cell populations and functions 

within the olfactory mucosa. In animal models, analysing the tissue-resident cells of the 

olfactory mucosa is further complicated by cell isolation from the nasal turbinates. When 

generating single-cell suspensions, tissue mincing causes turbinate bone marrow to intermix 

with mucosal cells. We have overcome this complication by developing an intranasal 

antibody labelling technique that distinguishes true olfactory mucosa CD45+ cells48. In the 

following sections, we will review the constituent olfactory mucosal cells and structures and 

discuss how they contribute to immunity.

Anatomical barriers

Situated within the upper turbinates of the superior nasal cavity, the anatomical structure of 

the olfactory mucosa provides intrinsic obstacles to an incoming pathogen. In some species, 

the olfactory mucosa dominates the nasal space, but in humans, olfactory tissue is present 

only on the upper of three nasal turbinate pairs and is proportionally limited in size, covering 

approximately 5 cm2. Air is needed to sample environmental odourants, but only 15% of 

air passing across the lower respiratory turbinates reaches the upper ‘olfactory recess’ in 

which air slows to increase odourant detection55. Limiting air volume exposure may restrict 

pathogen exposure, but the olfactory system has several physiological barriers that support 

olfaction and counteract environmental threats.

Olfactory mucus.—The first structural barrier encountered by an olfactory pathogen is 

the surface mucus layer loaded with antimicrobial peptides56–58. Although the entire nasal 

mucosa is lined by mucus, olfactory mucus is characterized by a tissue-specific combination 

of mucin 1, mucin 5AC and mucin 5B proteins that distinguish it from the neighbouring 

respiratory mucosa59. Mucin specialization suggests that antimicrobial molecule production 

within the URT may also have spatially regulated expression patterns between respiratory 

mucosa and olfactory mucosa. Indeed, other proteins secreted into the olfactory mucus have 

unique immunomodulatory properties, such as olfactory binding proteins, which 

are essential for receptor-mediated olfactory chemosensation but also possess antimicrobial 

functions60,61. Moreover, mucus collected from the human olfactory cleft has increased 

enzymatic activity compared with respiratory mucus, which may contribute to interactions 

with olfactory microfauna and their metabolites62. Future studies on olfactory mucus may 

yield further insight into tissue-specific properties that facilitate both odourant detection and 

immune defence.
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Tissue structure.—Beneath the mucus layer lies the olfactory neuroepithelium63,64, 

which has been extensively characterized by neurobiologists63. This avascular 

pseudostratified columnar epithelium is packed full of olfactory sensory neuron (OSN) cell 

bodies that project dendrites into the mucus layer, wherein their specialized cilia access 

airway odourants. The neuroepithelium itself (Fig. 2) contains large numbers of structurally 

supportive sustentacular cells, as well as at least two distinct microvillar cell types65 and 

Bowman’s gland ducts. Beneath these cells lie basal stem cell populations, globose basal 

cells and horizontal basal cells, that repopulate the neuroepithelial layer66. To speedily 

convey sensory information, OSN axons extend basally from the cell body, pass through the 

basal lamina67, converge in fascicular bundles and tunnel through olfactory lamina propria 

en route to the olfactory bulb of the brain. These fascicular bundles contain immune cells 

and olfactory ensheathing cells (OECs, refer to the following sections)68. Between axon 

tracts, secretory Bowman’s glands and endothelial vessels, the olfactory lamina propria 

(which is proportionally larger in humans than in mice) contains numerous immune cell 

types and fibroblasts (Fig. 2a).

Endothelial barriers.—Endothelial cells within the nasal mucosa have distinct and 

unusual phenotypes, as demonstrated by a recent study that has identified atypical venous 

sinusoids and lymphatic vessels in respiratory and olfactory nasal tissue69. Olfactory antigen 

delivery to draining lymph nodes has not been studied directly; however, unconventional 

LYVE1−VEGFR3+ collecting vessels in the olfactory regions probably have significant roles 

in tissue surveillance70 (Fig. 2a). Several animal studies have demonstrated cerebrospinal 

fluid drainage through cribriform plate lymphatics before connecting to nasal lymphatics71–

77. Although the CNS is primarily drained by a cranial lymphatic network52,78–80, the 

olfactory route may sometimes have an important physiological role as well. Supporting this 

hypothesis, a recent study has demonstrated that lymphangiogenesis induced by vascular 

endothelial growth factor C during autoimmune disease promotes CNS drainage through 

the olfactory lymphatics, emphasizing that olfactory lymphatics can also contribute to 

battling neuroinflammation in certain contexts73. In humans, it is unclear how the olfactory 

lymphatic route may complement the CNS drainage known to occur through meningeal 

lymphatics70, but post-mortem tissues81,82 and in vivo nasal cerebrospinal fluid studies82–

84 suggest that material from the CNS may egress through the cribriform plate into the 

olfactory mucosa under certain conditions.

Blood–olfactory barrier.—Our group recently reported a novel endothelial barrier, the 

BOB, that has important implications for olfactory mucosa and CNS protection from 

airborne infections48. This barrier restricts the movement of large circulating molecules, 

including antibodies, into the olfactory mucosa. Prior studies have sought to detect a blood–

nerve barrier within the olfactory mucosa85,86, and although these studies have concluded 

that some lower molecular weight compounds can access the olfactory mucosa from the 

bloodstream, these studies lacked the granularity and ability to distinguish between the 

endothelial and nerve fascia barriers. What might be the teleological purpose of the BOB? 

We propose that the BOB is a functional BBB extension, preventing circulating factors 

and pathogens from entering the olfactory tissues and travelling along the ‘nose-to-brain’ 

axis. Indeed, exploiting the olfactory nerve tracts to circumvent canonical CNS barriers 
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has been used to intranasally deliver therapeutics into the brain87,88, but also suggests a 

CNS vulnerability that the BOB may protect. The BOB probably also protects olfactory 

neurogenic potential and function from harmful circulating substances, much like the blood–

retina barrier in the eye.

Like the BBB, the BOB dramatically restricts local tissue availability of larger serum 

proteins, requiring a fundamental reconsideration of what can and cannot support URT 

(olfactory) immune protection. We propose that upper airway breakthrough SARS-CoV-2 

infections in vaccinated individuals could in large part be owing to the inability of 

circulating antibodies to protect olfactory tissues. Large molecular weight serum proteins 

such as antibodies and complement are probably excluded from the olfactory mucosa, but 

what are the exact molecular size restrictions imposed by the BOB? Can some molecules — 

especially drugs targeting the olfactory mucosa — be actively transported across? Do BOB 

formation and persistence depend upon the presence of neurons, and would it be retained in 

cases of tissue metaplasia in which neuroepithelium is replaced with respiratory cells? Are 

multiple cell types involved in BOB integrity, as with the neurovascular unit in the brain? 

These and other fundamental questions remain to be answered.

Adaptive immunity

B cells.—MHC class I expression within the olfactory mucosa is variable across cell 

types89, yet OSNs are effectively devoid of MHC class I, making them especially reliant on 

humoral immunity. As previously noted, the BOB prevents serum antibody from accessing 

the olfactory mucosa, but local antibody secretion in the olfactory mucosa is highly 

protective. Without this pre-existing antibody protection directly at the mucosal surface, 

intracellular pathogens can infect OSN dendrites and translocate through axons into the 

brain without ever encountering other immune cells48. Humoral immunity is, therefore, 

vital for protection against neuroinvasive microbes, but because the BOB prevents serum 

antibody from protecting all the cells of the olfactory mucosa, local antibodies would 

be essential to defending against even non-neurotropic airborne pathogens with olfactory 

tropism, such as SARS-CoV-2 (refs. 48,90–92). Local antibody production may also prevent 

early replication and continued pathogen transmission, while also preventing the olfactory 

mucosa from serving as a foothold for further pathogen selection. Influenza infection 

studies in ferrets indicate that nasal passage viral replication, but not lung replication, 

leads to transmission between individuals93. Although this work has detected virus in 

both respiratory and olfactory mucosa, no study has yet to directly test whether olfactory 

infection alone permits transmission. Nevertheless, passive antibody transfer experiments 

suggest that olfactory viral replication may be sufficient for transmission. The BOB means 

that antibody transfer should protect the respiratory mucosa, but not the olfactory mucosa, 

and studies of murine influenza infection indicate that passive antibody transfer does not 

block viral transmission94,95. Formally testing this possibility will require researchers to 

carefully design experiments to analyse transmission using viruses with known respiratory 

and olfactory tropism (Fig. 1b). But these studies are critical because selective replication 

in olfactory and not respiratory tissues could drive evolution of variants with enhanced 

olfactotropic and neuroinvasive qualities.
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Olfactory B cells are detected in the lamina propria of human biopsies, often localized near 

secretory Bowman’s glands that stain positive for Ig molecules, perhaps indicating that these 

glands may assist in luminal antibody secretion96 (Fig. 2c). However, intranasal antibody 

administration in mice demonstrates that IgG antibodies can freely diffuse throughout the 

tissue without being impeded by structural barriers such as the basal lamina48. These B 

lineage cells appeared to produce all antibody isotypes, consistent with concurrent studies in 

salamanders and rats that demonstrated multiple antibody isotypes differentially distributed 

across the tissue97. In response to olfactory infection, B cells from fish respond to challenge 

by producing IgT, a mucosal antibody that protects the olfactory surface98,99. In addition to 

recruitment following infection, local live attenuated immunization increases the frequency 

of IgA+ plasma cells in the olfactory mucosa48,100. Single-cell RNA sequencing studies have 

found B lineage populations, particularly class-switched plasma cells, in samples from mice 

and humans89,101,102.

Our recent work suggests critical non-redundant roles for these olfactory plasma cells in 

olfactory mucosal defence against viral infection48. These protective plasma cells appear 

to secrete several antibody isotypes, provide long-term protection, and intriguingly, can 

be driven to olfactory mucosa residence following non-local priming in distal lymph 

nodes, suggesting that parenteral immunization can imprint an olfactory mucosa-homing 

phenotype48 (Fig. 2c). In addition to further elucidating the signals that dictate olfactory 

mucosa migration, numerous outstanding questions about olfactory plasma cells remain. 

Which local cells provide tissue retention signals and what is their relationship to long-lived 

plasma cells in the bone marrow or other mucosal sites? Our efforts have focused on 

neutralizing antibodies, but studies of olfactory mucosa murid herpesvirus infection indicate 

that antibodies can limit local viral replication in an Fc-dependent manner26,103. Plasma 

cell-derived pre-existing antibody is critical for preventing olfactory mucosa infection, but 

memory B cell populations may also help maintain the plasma cell pool or respond to 

re-infection, as has been found in the lower respiratory tract104. Fully understanding these 

local B lineage populations is paramount for vaccination against respiratory and neurotropic 

pathogens.

T cells.—Adaptive immunity in the olfactory mucosa also includes contributions from 

T cells. T cell populations (CD4+, CD8+ and γδ T cells) have been described in mouse 

nasal passages, but whether these were truly olfactory or contained respiratory or bone 

marrow contaminant is unclear105,106. However, following influenza virus infection, nasal 

CD8+ resident memory T (TRM) cells accumulated within the olfactory mucosa41. These 

antigen-specific T cells were extravascular long-term resident cells that, upon rechallenge, 

provided superior and more durable viral control than lung TRM cells. Furthermore, the nasal 

passage TRM cells alone were able to reduce viral dissemination to the lung, emphasizing 

the role olfactory CD8+ T cells can perform in respiratory virus defence41 (Fig. 2c). 

CD8+ olfactory T cells have also been observed during an olfactotropic viral infection in 

fish107. Post-COVID-19, patients with smell loss were found to have olfactory infiltration 

of interferon-γ (IFNγ)-producing T cells, indicating that T cell-mediated inflammation 

can persist long after olfactory viral clearance108. Similarly, another study has found that 

patients with long COVID had elevated olfactory mucosal interferon signatures and T 
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cell-associated genes109. Similar long-term changes in the olfactory chemokine expression, 

interferon-stimulated genes and T cell markers were observed in SARS-CoV-2-infected 

hamsters109 (Fig. 2c). These studies and similar transcriptional analyses from humans 

suggest that T cell pathogenesis may have a role in dysosmia (altered sense of smell)110. 

In agreement with this, CD8+ T cell and natural killer T cell signatures are associated with 

human age-related olfactory loss and have been proposed to directly signal to the olfactory 

stem cell niche to disrupt neurogenesis110, and T cell cytokine production is observed 

in mouse models of chronic nasal inflammation111,112. Together, these data suggest that 

olfactory T cells can control infections but may also instigate chronic olfactory changes. 

More work to characterize olfactory T cell subsets, including CD4+ T cells and γδ T cells, is 

needed.

Innate immunity

Macrophages.—Macrophages represent the most abundant immune cell type in mouse 

and human olfactory mucosa89,101,102 (Fig. 2b). Tissue-resident macrophages are known to 

mediate various functions — including neuronal maintenance, wound repair and infection 

responses — and macrophages have been shown to perform each of these roles in the 

olfactory mucosa. Macrophages can be found in close association with OSNs, both within 

the neuroepithelium and within olfactory nerve fascicles113. Olfactory macrophages express 

Cx3cr1, and deficiency in this receptor leads to a reduction in dendritic morphology for 

intraepithelial macrophages114, a phenotype that mirrors morphological changes seen in 

CX3CR1-deficient microglia115. Following OSN death, clodronate-mediated macrophage 

depletion reduced neurogenesis116 and expression of immune response genes such as 

Cxcr4 (ref. 117). Similar analyses implicate macrophage Lif and Msr1 expression in tissue 

regeneration118, perhaps directed by IL-1β signalling from dying OSNs and subsequent 

expression of Ccl2 and Ccl3 (refs. 119–121). Macrophages have also been shown 

to be important for defence against olfactotropic pathogens. Macrophage numbers are 

increased in mice following porcine hemagglutinating encephalomyelitis virus (PHEV) 

infection, correlating with upregulation of inflammatory mediators such as IFNs, IL-6 

and tumour necrosis factor (TNF)122. Influenza A virus-infected OSNs became apoptotic 

and were engulfed by macrophages, preventing viral spread to the brain123. Similarly, 

when Staphylococcus aureus was delivered intranasally after OSN damage, macrophages 

within the nerve fascicle were able to phagocytose the bacteria124. Macrophages are 

further implicated in chronic olfactory mucosal inflammation, as patients with chronic 

rhinosinusitis (CRS) who present with smell loss have elevated macrophage numbers 

compared with controls125,126. Mouse inflammation models recapitulate the elevated 

macrophage numbers127,128 and macrophage skewing to an immune defence (IL-6 

expressing) phenotype111. How macrophages balance these conflicting roles in neuronal 

support and immune defence remains to be thoroughly examined, but these data suggest that 

there are functionally or ontologically distinct olfactory mucosal macrophage subsets.

Other innate immune cells.—Although less well studied than macrophages, other innate 

leukocytes can be detected within the olfactory mucosa, including dendritic cells89,101,102 

(Fig. 2b). Circulating myeloid cells, although probably not residing in the olfactory 

mucosa long-term, can impact the olfactory mucosa during inflammation. Monocytes 
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may differentiate into macrophages in the olfactory mucosa following recruitment from 

blood, and monocytic inflammation has been observed in an olfactory listeriosis model129. 

Neutrophilic olfactory mucosal inflammation occurs in numerous contexts and is often 

severe. Mice given intranasal poly(I:C) treatments see a rapid neutrophil influx112 that 

subsequently launch themselves into the nasal airway127, a phenotype also witnessed in 

amoeba infection130. Intranasal lipopolysaccharide administration similarly led to neutrophil 

influx131, but the role of neutrophils in human CRS is less clear. Although elevated 

neutrophil levels have been observed125, neutrophilia is not associated with smell loss in 

CRS132. Neutrophils may also have either beneficial or pathogenic roles in acute infection. 

Olfactory neutrophils are elevated in mouse and hamster SARS-CoV-2 infections90,133. 

Upon neutrophil depletion or blockade, SARS-CoV-2 titres were actually decreased and 

olfactory mucosal damage was mitigated, suggesting that neutrophils contribute to olfactory 

mucosa destruction and permit increased viral replication133. Among the other granulocytes 

(mast cells, basophils and eosinophils), only eosinophils have been definitively reported 

within the olfactory mucosa, typically in the context of CRS or amoebic infection134 (Fig. 

2b). Although eosinophil numbers in the olfactory mucosa seem to be elevated in human 

rhinosinusitis126,135, they are not associated with impaired olfaction. Natural killer cells 

have been observed in human olfactory biopsies and may express inflammatory genes that 

signal to basal progenitors and OSNs, inhibiting their ability to properly regenerate110. To 

our knowledge, no studies have directly searched for other innate-like lymphocytes in the 

olfactory mucosa.

Stromal immune barriers

In addition to haematopoietic immune cells, parenchymal cells in the olfactory mucosa 

may contribute to immunity through cell-autonomous pathogen clearance, the production of 

antimicrobial and inflammatory compounds, and communication with the haematopoietic 

compartment (Fig. 2a).

Olfactory sensory neurons

OSNs represent a curious case in intrinsic immunity. Compared with CNS neurons, OSNs 

are accustomed to much higher rates of death and regeneration, suggesting that they may 

respond differently to inflammation. As OSNs are a single-cell gateway to the CNS, 

evidence suggests that they use unique antiviral signalling pathways to stifle intracellular 

infections that attempt to invade the brain parenchyma (Fig. 2d). Type III IFNs are a 

critical component of early mucosal responses to infection, and indeed, IFNλ reduces 

murid herpesvirus infection at the olfactory mucosa136. Similarly, IFNλ signalling prevents 

influenza virus spreading from the olfactory mucosa to the lung137. Conversely, vesicular 

stomatitis virus, a virus highly sensitive to type I IFN signalling, replicates aggressively in 

OSNs138, suggesting inherent vulnerabilities in OSN type I IFN responses. Yet, other studies 

indicate that type I IFN has a critical role in combating URT viral infection prophylactically 

and after disease onset139–142, although differences in olfactory and respiratory infection 

have not been quantified in these studies. Our work has demonstrated that OSNs can 

non-lytically clear influenza B virus infection more quickly than neighbouring respiratory 

epithelial cells by using a rapidly induced antiviral response143. OSNs can also prevent virus 

from reaching the brain by quickly inducing apoptosis107,123. In summary, OSNs certainly 
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exhibit vulnerabilities to infection but can respond swiftly to some pathogens, and their 

antimicrobial capabilities remain to be carefully characterized.

Other epithelial cells.—Sustentacular cells provide structural support within the 

olfactory neuroepithelium and make up the largest portion of non-OSN cells. These 

cells are the target of SARS-CoV-2 infection in humans owing to their ACE2 
expression90–92,144. Following sustentacular cell infection, chemosensory function is 

impaired and the entire neuroepithelial layer appears to slough off, as the olfactory 

mucosa structure is compromised. Also within the neuroepithelium, olfactory microvillar 

tuft-like cells express Il25 and genes for cysteinyl leukotriene production, which they 

produce upon airway allergen exposure resulting in eosinophilia145. An ensuing study 

demonstrated that microvillar Ltc4 expression induced by allergens stimulated olfactory 

stem cell proliferation65, suggesting these cells may coordinate the immune response and 

neurogenesis (Fig. 2a).

Olfactory ensheathing cells.—OECs surround OSN axon bundles as they pass through 

the olfactory lamina propria into the CNS. OECs are related to astrocytes and Schwann 

cells, acting as an important glial component of the olfactory nerve68,86,146. OECs are 

promising cellular therapies for treating brain and spinal cord injuries, probably owing 

to their neuroprotective and neurogenic functions, but studies also suggest that they have 

potent immune-modifying abilities147. OEC phenotypes within the olfactory bulb are geared 

towards axon regeneration, whereas olfactory mucosa OECs express genes associated with 

the defence response, inflammation and immunomodulation148. Advantageously poised 

to patrol olfactory nerve tracts (Fig. 2a), olfactory mucosa OECs can produce inducible 

nitric oxide synthase in response to bacterial invasion of the damaged olfactory nerve149 

and phagocytose infected or dying olfactory axons150,151. In the context of OSN death, 

OECs recognize phosphatidylserine produced by dying axons, phagocytosing a greater OSN 

number than olfactory mucosa macrophages150 in a process that may be enhanced by MIF 

and HTRA1151.

Together, these adaptive, innate and stromal cells coordinate to maintain olfactory function 

and combat disease. But what are the specific threats, infectious or otherwise, that impact 

the olfactory system? Next, we will review disease pathogenesis within the olfactory 

mucosa, with an emphasis on how the local immune response ameliorates or exacerbates 

disease.

Disease in the olfactory mucosa

Olfactotropic pathogens

Airborne pathogens initiate infection in the upper airway, in which they first encounter 

host defences. However, the specific impact pathogens have on the olfactory mucosa is 

poorly described, in large part owing to the technical difficulty in measuring microbial 

replication and corresponding inflammation of the human superior nasal turbinates (nasal 

swabs sample the lower respiratory turbinates of the nose). Consequently, the olfactory 

tropism of many common airborne pathogens is unknown, and we probably drastically 

underestimate the number of airway infections that impact the olfactory mucosa. Pathogens 
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currently known to infect the olfactory mucosa, which we refer to as olfactotropic infections, 

are reviewed in Table 1. Here, we will highlight infections that have special implications 

for olfactory immunity. We can think of olfactotropic pathogens in two broad categories: 

neuroinvasive and non-neuroinvasive (Fig. 2d). The olfactory mucosa is heavily innervated 

by OSNs and pathogens can hijack OSNs for direct CNS invasion, resulting in potentially 

lethal meningitis or encephalitis. Many pathogens are known to exploit this entryway to 

the CNS50,152, but ascertaining the proportion of meningitis and encephalitis cases that 

originate from olfactory infection is difficult. At the same time, many non-neuroinvasive 

respiratory pathogens infect both the olfactory mucosa and the respiratory mucosa, and 

olfactory immune defence must limit viral dissemination, break the chain of community 

transmission, and prevent olfactory mucosal damage and smell loss.

SARS-CoV-2.—The COVID-19 pandemic brought the impact of olfactory mucosal 

viral infection to the forefront of much scientific and public discourse. SARS-CoV-2 

directly infects both the olfactory and respiratory epithelia in humans91,92,144 (Fig. 2d). 

Fortunately, evidence suggests that OSN infection and subsequent CNS neuroinvasion 

do not occur91,92,144. Instead, SARS-CoV-2 mediates olfactory pathology by infecting 

sustentacular cells leading to transient damage, inflammation and subsequent tissue 

structure loss90,91,108,144. Without the structural support provided by sustentacular cells, 

olfactory neurons die or become dysfunctional, and smell is compromised to varying 

degrees8,153. This partial or complete smell loss (clinically, hyposmia or anosmia) is 

typically short-term, as the olfactory epithelium is regenerated by the underlying stem 

cell populations66, although persistent inflammation can lead to long-term hyposmia or 

anosmia108. Interestingly, chemosensory deficits also strongly predict the humoral response 

in SARS-CoV-2 infection154, suggesting a functional link between olfactory infection and 

immunity induction. The olfactory pathogenesis of SARS-CoV-2 is mirrored in rhesus 

macaques, as the typical URT viral replication is observed in the absence of frank CNS 

neuroinvasion15,23. Replicating virus has not been detected in long-term hyposmic or 

anosmic olfactory biopsies, indicating that innate and adaptive immune responses can 

clear virus from the olfactory system108. However, prolonged viral shedding has been 

observed from nasal swabs155,156, suggesting that the olfactory mucosa could harbour 

virus in some individuals157. Patients with long COVID often present with neurological 

symptoms, including olfactory deficits8, but whether this occurs because of viral persistence, 

cell-intrinsic OSN alterations or continued olfactory mucosal inflammation is unknown.

In contrast to human infections, animal models of SARS-CoV-2 and other coronavirus 

infections are characterized by olfactory neuroinvasion, raising concerns that future variants 

could gain neurovirulent capabilities as they repeatedly passage through olfactory tissues. 

In the commonly used K18-hACE2 mouse SARS-CoV-2 model, nearly ubiquitous epithelial 

hACE2 expression directs OSN infection and consequent CNS pathology is observed158–160, 

resulting in lethal neuroinvasion across multiple SARS-CoV-2 variants161. Much like in 

humans, SARS-CoV-2 was initially only believed to infect olfactory mucosal sustentacular 

cells in hamsters162, but more recent variants have been shown to infect OSNs and invade 

the CNS163,164. Hamsters also have lasting olfactory perturbations following SARS-CoV-2 

infection, indicating that they may be useful for post-COVID olfaction studies109. Given the 
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frequency of coronavirus epidemic outbreaks this century (Table 1), more research on their 

olfactotropism is needed.

Naegleria fowleri.—Naegleria fowleri, the ‘brain-eating amoeba’, is perhaps the most 

notorious pathogen capable of olfactory transmucosal infection. This free-living amoeba is 

ubiquitously present in warm bodies of freshwater but only drives disease when it contacts 

olfactory tissue in the nasal turbinates165. N. fowleri crosses the olfactory epithelium 

and quickly rampages through the olfactory nerve into the CNS (Fig. 2d) in which it 

causes an almost universally fatal inflammatory condition known as primary amoebic 

meningoencephalitis. Olfactory immunity against N. fowleri is complex: immunization 

against N. fowleri in animal models offers limited protection166, but neutrophils and other 

myeloid cells slow disease progression but also contribute to disease pathogenesis134,167. 

Because N. fowleri is only pathogenic across the olfactory mucosa, and olfactory 

neuroinvasion is conserved across mammals including mice, this infection serves as a 

powerful model system to highlight the unique immune properties and vulnerabilities of 

the olfactory mucosa168. Seropositivity studies suggest that many humans may have some 

protection owing to subclinical exposure169–171; but does the BOB prevent antibodies and/or 

complement from slowing pathogenesis? Are neutrophils or other cells able to respond to 

the amoeba more quickly in non-olfactory tissues?

Influenza virus.—Analysis of patients with influenza has shown that subjective olfactory 

dysfunction increases as vaccination rate decreases172, suggesting not only that frequent 

olfactory influenza virus infection occurs, but also a preventative immune capacity. 

Olfactotropism seems to depend on strain, but influenza virus infection is associated with 

neurologic symptoms and sequelae173,174, and in some cases, influenza infection coincides 

with meningitis or encephalitis175–177. Direct CNS neuroinvasion has been reported in 

several mammalian infection models. Influenza A/WSN/33 (H1N1) infects OSNs and 

translocates to the CNS in mice178, and highly pathogenic and pandemic strains are 

predisposed to olfactory neuroinvasion in ferrets179–182. In addition, influenza virus-derived 

antigen has been identified in human post-mortem olfactory nerves, lending credibility to 

an olfactory route of CNS infection183. The recent highly pathogenic avian H5N1 strain of 

influenza virus has been shown to infect the brains of some animals184, raising concerns 

that olfactory neuroinvasion may contribute to future emergent pandemics. Whereas such 

highly pathogenic cases are rare, the olfactotropism of more common, lowly pathogenic 

strains is understudied, and much remains to be learned about the viral and host factors 

that determine the neuroinvasive potential of various influenza virus strains. More common 

influenza virus strains may infect the olfactory mucosa, and potentially even reach the 

brain, but olfactory tropism is generally not explored unless a patient develops severe CNS 

disease. Supporting this, some influenza viruses infect the olfactory mucosa but innate 

mechanisms allow OSNs to quench viral replication to prevent neuroinvasion123,143. The 

olfactory mucosa can also have a role in limiting influenza virus dissemination to the lung, 

as type I IFNs and type III IFNs were shown to be crucial for containing two different strains 

of influenza virus to the nasal passages of mice137. Interestingly, comparing nasal and lung 

infection across multiple influenza virus strains in ferrets indicates that only nasal infection 

supports airborne transmission between organisms, whereas lung infections are not spread93. 
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These data reinforce the importance of preventing influenza virus infection in the upper 

airways to limit propagation.

Opportunistic infections.—Some pathogens may act opportunistically to infect the 

olfactory mucosa and reach the CNS. For example, cytomegalovirus (CMV) is a congenital 

disease in humans that frequently leads to neurological disorders such as hearing and smell 

loss, but whether CMV uses OSNs to infect the brain is unknown. Olfactory bulb lesions 

have been observed in infants with CMV185, and olfactory defects are reported throughout 

childhood186 in a manner that is decoupled from hearing loss187. Furthermore, a human 

olfactory receptor was identified as a CMV entry receptor188, opening the possibility that 

olfactory invasion may explain some CNS pathologies. Damage of the olfactory mucosa, 

whether acute or chronic, can expose it to opportunistic pathogens that may infect the 

tissue and penetrate the CNS. Olfactory mucosa damage in mice allows for bacteria such 

as Burkholderia pseudomallei124,189,190, Streptococcus agalactiae191 and S. aureus124 to 

subsequently colonize the olfactory mucosa and invade the brain, either intracellularly 

through OSNs or extracellularly along the axon tract50 (Fig. 2d). The olfactory mucosa 

is damaged throughout life, from pathogenic and other insults, and maintaining structural 

and cellular olfactory mucosal barriers is critical for preventing opportunistic infections.

Post-viral olfactory dysfunction.—Post-viral olfactory dysfunction is one of the 

most frequently reported acute and chronic side effects of upper respiratory illness153,192–

195, including well-documented short-term and long-term olfactory loss following 

COVID-19196–201. Potential mechanisms driving post-viral olfactory dysfunction include 

direct OSN infection and death, infection of other olfactory mucosal cells leading to 

inflammation and/or neuroepithelial damage, CNS consequences resulting in olfactory bulb 

dysfunction, or respiratory infection leading to nasal inflammation and airflow blockage. 

The immune response is heavily involved in all these pathologies, ranging from the 

rapid antiviral responses of epithelial cells to haematopoietic cell recruitment during 

sustained inflammation. Indeed, a recent study of olfactory biopsies following clearance 

of SARS-CoV-2 has identified that long-term smell loss was associated with immune 

cell infiltration and inflammatory gene expression108. Persistent T cell infiltration was 

accompanied by a shift in myeloid cell populations away from an anti-inflammatory, wound-

healing phenotype, reflecting a disruption in the balance between productive and deleterious 

immune responses to infection. This immune dysfunction extended to an inflammatory gene 

signature in sustentacular cells of the olfactory epithelium, as well as lower OSN numbers 

in dysosmic patients108. Exactly how other pathogens mediate the loss of chemosensation 

warrants further study.

Damage of the olfactory mucosa

Olfactory injury, inflammation and regeneration.—Respiration brings a constant 

stream of airborne environmental pollutants, microbial toxins or inorganic compounds 

that can damage the olfactory mucosa and drive inflammation202. CRS is a persistent 

inflammation of the upper airways that frequently coincides with dysosmia. Biopsies from 

patients with CRS indicate that inflammation in the olfactory mucosa is associated with 

hyposmia126, and comparison of healthy control and CRS samples indicates increased 
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olfactory metaplasia that can be characterized histologically by the type of epithelial 

deformation125,135. Interestingly, one study of olfactory function found that type II cytokines 

were associated with worse olfaction prior to corrective CRS surgery, but improved 

olfaction postoperatively203. By contrast, type III cytokines correlated with better olfactory 

scores preoperatively, but corresponded with worse scores after surgery, suggesting the 

immune response may shape olfactory potentiation. Indeed, immune and glial cell activation 

supports phagocytosis of apoptotic debris and tissue regeneration after OSN ablation204, 

and infiltrating immune cells facilitate OSN regeneration128. Furthermore, deficiencies in 

TNFR1 or basal progenitor cell NF-κB signalling led to defective olfactory regeneration, 

emphasizing the importance of immune crosstalk in neurogenesis128. Overall, resident 

stem cells in the olfactory mucosa display remarkable regenerative capacity and therapies 

targeting these cells are currently being explored to combat dysosmia205,206.

To understand the olfactory implications of chronic inflammatory conditions such as CRS 

and neurodegeneration, mouse lines that inducibly express inflammatory mediators such 

as TNF111 and IL-13 (ref. 207) in the olfactory mucosa have been developed131,208. 

The inducible olfactory inflammation mouse drives TNF expression from CYP2G1+ 

sustentacular cells209 to recapitulate CRS-induced olfactory loss and progressive olfactory 

neurodegeneration. Studies in inducible olfactory inflammation mice have indicated 

cognitive functional defects, epithelial reorganization, macrophage-mediated and T cell-

mediated cytokine production, and reprogramming of basal progenitor cells from a 

proliferative to an inflammatory phenotype111,209,210. Likewise, olfactory damage and 

inflammation can drive acute cytokine expression in the olfactory mucosa, neutrophil 

infiltration and tissue deformation112,125,211, but critically, this peripheral inflammation 

can be communicated into the CNS131. In zebrafish, olfactory epithelial damage leads to 

rapid neutrophil recruitment into the olfactory organ of the brain212. Similarly, in hamsters, 

SARS-CoV-2-mediated olfactory mucosa inflammation is sufficient to induce changes in the 

olfactory bulb90. The connection between mucosal and brain inflammation has important 

consequences, as frequent olfactory inflammation may contribute to neurodegenerative 

pressure213 over time. Further work is needed to understand how olfactory mucosa 

inflammation not only drives immune-mediated olfactory disorders but also supports 

inflammatory communication between the olfactory mucosa and the CNS.

Presbyosmia and neurodegeneration.—Age-associated olfactory loss, or 

presbyosmia, is extremely common in elderly patients (occurring in >50% of adults over 

65 years and in 60–80% of those aged over 80 years214–217). Presbyosmia is associated 

with olfactory metaplasia, the replacement of olfactory epithelium with respiratory 

epithelium218,219. This tissue conversion mirrors that observed in models of chronic 

olfactory mucosal inflammation209 and is probably owing to inflammation-related changes 

in olfactory stem cell progenitors110. Transcriptional evidence of strong cytokine stimuli 

and elevated immune cells in a presbyosmic cohort compared with controls suggest a 

direct role for sustained inflammation in age-associated olfactory loss110. Concordant with 

age-associated neuroinflammation, impaired olfaction is associated with (and is one of 

the strongest predictors of) cognitive decline220, Alzheimer disease221, dementia222 and 

Parkinson disease223. Myriad factors probably contribute to this association224, but prior 
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olfactory infections may accelerate cognitive decline through repeated inflammatory stimuli. 

To this end, individuals with familial Alzheimer disease were found to express signatures of 

antiviral inflammation in the olfactory bulb and olfactory tract225. Corroborating this, HSV1, 

which can infect sensory fibres within the olfactory neuroepithelium, has been implicated 

in Alzheimer disease226. More directly supporting the olfactory infection hypothesis, in 

a mouse model, Chlamydia was shown to invade the CNS through the olfactory nerve 

and upregulate Alzheimer disease-associated gene signatures227. Much remains to be 

investigated about the bidirectional link between olfaction and neurodegeneration and the 

role infection might have in both.

Conclusion

The olfactory mucosa must be considered as a critical component of pathogen defence, both 

as part of the respiratory tract and as a mucosal barrier for the brain. Immune protection 

of the olfactory mucosa is vital for protection against continued respiratory pathogen 

transmission and neurotropic microbial invasion. Previously, it was difficult to reconcile 

our assumptions about peripheral immunity with many studies revealing incomplete URT 

immunity. We believe that appreciating the unique immunological considerations of the 

olfactory mucosa is not only critical for vaccine-induced URT immunity but also provides 

clarity into prior data and informs better experimental design. For instance, nasal washes 

and swabs insufficiently capture the olfactory mucosal immune response, and increased 

upper nasal turbinate sampling may reveal that many URT pathogens have distinct 

olfactotropism. An improved understanding of pathogen-induced olfactory dysfunction and 

neurodegeneration could lead to better and more targeted therapeutics for diseases such as 

COVID-19. A key consideration in drugs that target the olfactory system will be the BOB. 

Additional characterization of the BOB, and the role it has in immune defence, is also 

of interest for intranasal drug delivery and CNS anatomy. The BOB confers a degree of 

immune isolation and privilege to the olfactory mucosa, but very little is known about the 

tissue-resident immune cells in this tissue. Analysing these cells, and how they interact with 

stromal cells in both health and disease, will shed new light on URT and CNS defence. The 

olfactory mucosa deserves more attention as a mucosal immune barrier, and we smell the 

dawning of a new age in its study (pun intended).
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Glossary

Anosmia
The complete loss of smell, typically defined clinically by the University of Pennsylvania 

Smell Identification Test scores <19

Blood–olfactory barrier
(BOB). A blood–endothelial barrier that prevents the movement of large molecules from 

circulation into the olfactory mucosa
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Dysosmia
A general term for an altered sense of smell

Hyposmia
A reduced sense of smell, typically defined clinically by the University of Pennsylvania 

Smell Identification Test scores in the 19–33 range, although scoring can be adjusted by age 

and sex

Olfactory binding proteins
Soluble proteins in the nasal mucus that bind to odourants to facilitate recognition by 

olfactory receptors. They have also been shown to have antimicrobial effects

Olfactotropic
A pathogen that is capable of infecting cells within the olfactory mucosa

Presbyosmia
An age-associated loss of smell
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Box 1

Vaccine approaches to protect the upper airway

What immunization approaches most effectively protect the olfactory mucosa? Vaccines 

variably protect the olfactory mucosa and respiratory mucosa, and the tropism of many 

infectious diseases also differs between these tissues, but recent data measuring general 

infection of the nasal passages may provide clues. Prior infection has been shown 

to generally providew more complete protection of the URT than immunizations, and 

accordingly, live attenuated vaccines show improved nasal passage protection in animal 

models compared with inactivated antigen100,310, although the olfactory mucosa (OM) 

can still be left exposed14. Mucosal immunization, particularly intranasal dosing, is one 

putative approach to induce local immunity. Intranasal vaccines often struggle to induce 

strong antibody titres311, probably owing to poor antigen and adjuvant retention, but 

can reduce nasal replication better than parenteral immunizations in some cases14,18,312. 

‘Prime and pull’ strategies try to synergize the efficacy of parenteral and mucosal 

immunization313 and can improve nasal protection314,315. Regardless of approach, 

immunization should engender lymphocytes that home to the olfactory mucosa to confer 

local protection. This homing is imprinted in the lymph node by the inflammatory 

signals induced either by infection or by a vaccine adjuvant. If adjuvants can successfully 

mimic the lymphocyte activation induced by infection, olfactory homing and protection 

would occur regardless of the route of immunization. Indeed, several studies show that 

parenteral immunization with non-conventional adjuvants can induce superior protection 

of the nasal passages17,48,316, consistent with data from other mucosal tissues317. More 

analysis of the adaptive response in the lymph node, and dissection of olfactory-specific 

protection, is needed to produce the best immunization formula.
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Box 2

Sniffing out the historical link between olfaction and immunity

Emerging data have stirred memories of a long-suspected link between olfaction and 

immunity. Fundamentally, these two systems attempt to perform similar functions, 

namely, to recognize a foreign substance and coordinate a rapid physiological response. 

Olfaction can lead to changes in behavioural immunity318, such as the ‘disgust’ 

response which is known to trigger a ‘prepared’ immune state in response to 

noxious and potentially threatening stimuli319,320. Pleasant odours can also impact 

the immune system: exposure to soothing fragrances following stress leads to a 

decrease in inflammation321. Removal of the olfactory bulbs leads to depression and 

a dysfunctional immune system in a manner not fully understood312,322, but the 

neuroimmune signalling pathways that coordinate olfactory–immune crosstalk have 

been profiled in drosophila323. An additional structural parallel between olfactory 

chemosensation and immune recognition has been hypothesized to explain the tendency 

for mammals to choose mates with dissimilar major histocompatibility complex (MHC) 

polymorphisms. Peptides that bind to particular MHC molecules have been shown 

to bind receptors in the olfactory and vomeronasal organs324–326, demonstrating a 

mechanistic link between olfactory and immune non-self-discrimination that could serve 

to increase MHC repertoire diversity and, thereby, disease resistance at the population 

level. Another structural analogue between olfactory and immune cells has recently 

been demonstrated, as olfactory receptors expressed by leukocytes have important roles 

in immunity327. Olfactory–immune communication is not unidirectional; infection and 

subsequent immune activation in drosophila led to altered olfaction328 and there is even 

growing evidence that mammals, such as dogs, can smell when a person is ill329–333. 

This olfactory discernment is responsive to common immune or inflammatory substrates, 

especially volatile organic compounds, but can identify molecules specific to particular 

diseases334. Although poorly understood, a diverse body of literature indicates that the 

immune and olfactory systems can dynamically interact.
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Fig. 1 |. Heterogeneity of the upper respiratory tract: the olfaction fraction.
a, The upper respiratory tract consists of two distinct tissues with important implications 

for immunity, namely the olfactory mucosa (blue) and the respiratory mucosa (beige). The 

olfactory mucosa must balance olfaction with immune defence and acts as a barrier to 

the CNS. The olfactory and respiratory mucosae have different requirements for immune 

protection, including local humoral protection from resident plasma cells in the olfactory 

mucosa. b, Prior studies of intranasal infection and immunity often indicate that upon 

rechallenge with a pathogen, pathogen replication is reduced. However, these studies treat 

the nasal passages as a homogeneous tissue. In actual fact, the overall reduced pathogen 

replication that is observed could represent many different scenarios depending on the 

tropism of the pathogens used and the quality of the immune response they induce. The 

lower panel indicates some hypothetical examples, considering whether a pathogen shows 

tropism for the olfactory mucosa (OM) alone, the respiratory mucosa (RM) alone or for both 

the olfactory mucosa and respiratory mucosa. Differences between the olfactory mucosa 

and respiratory mucosa, both in pathogen tropism and protective immune parameters, must 

be carefully considered and analysed to yield interpretable data regarding consequences of 

infection or immunization.
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Fig. 2 |. Cell types and effector mechanisms in the olfactory mucosa.
a, The figure indicates the parenchymal cell types that compose the olfactory mucosa. The 

luminal side is coated in mucus and directly exposed to the airway. The neuroepithelium 

contains olfactory sensory neurons (OSN), sustentacular cells, microvillar cells and the 

Bowman’s glands. Lining the basal lamina are horizontal basal stem cells (HBCs) and 

globose basal stem cells (GBCs). Within the lamina propria, OSN axon tracts run 

directly towards the olfactory bulb of the brain. Olfactory ensheathing cells (OECs) are 

interwoven within these axon bundles. Also, within the lamina propria are lymphatic and 

blood endothelial cells. The blood–olfactory barrier (BOB) prevents antibodies and other 

large circulating molecules from entering the olfactory mucosa. The exact composition 

of the BOB is unknown; beyond endothelial cells, pericytes, macrophages or olfactory 

ensheathing cells could contribute to barrier integrity. b, Innate immune cells of the 

olfactory mucosa are indicated in dark red. At homoeostasis, macrophages can be observed 

within the neuroepithelium and lamina propria with several distinct morphologies. During 

inflammation, dendritic cells (DCs), neutrophils, monocytes and eosinophils can infiltrate 

the tissue and contribute to the immune response. c, Following infection or immunization, 

T cells and B lineage cells migrate to the olfactory mucosa and take up long-term 

residence. These lymphocytes (shown in purple) can provide protective local immunity 

against future challenge. d, Intracellular olfactotropic pathogens can be neuroinvasive or 

non-neuroinvasive. Viruses and bacteria may infect non-neuronal epithelial cells or OSNs. 

Neurotropic pathogens that infect OSNs may either be cleared before reaching the CNS or 

migrate through OSN axons into the olfactory bulb. Extracellular pathogens, such as bacteria 

and eukaryotes, can migrate along axon bundles to reach the brain. These pathogens are 

better able to infect the olfactory mucosa when the tissue has been previously damaged, 
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compromising existing structural impediments. IFN, interferon; iNOS, inducible nitric oxide 

synthase; OM, olfactory mucosa; TNF, tumour necrosis factor.
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