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Abstract

The olfactory mucosa is a component of the nasal airway that mediates the sense of smell.
Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory
pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS.

In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral
part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our
insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from
infection and other diseases. This Review summarizes the state of olfactory immunology by
highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing
what is known of olfactory immune cells, and considering the impact of common infectious
diseases and inflammatory disorders at this site. We will offer our perspective on the future of the
field and the many unresolved questions pertaining to olfactory immunity.

Introduction

The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the
importance of vaccines that prevent severe illness, hospitalization and deathl:2. At the same
time, the widespread prevalence of breakthrough infections and reinfections3=>, even in
previously vaccinated individuals, illustrates the shortcomings of vaccines. Breakthrough
infections typically present with milder symptoms that are contained to the upper respiratory
tract, but these still come with serious consequences. Upper respiratory severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to smell loss6-8, long
COVID8? and potential systemic viral dissemination. Perhaps most critically, upper airway
infection allows for continued pathogen transmission%11. This not only presents a danger to
immunocompromised individuals and the unvaccinated but also provides an opportunity

for viral evolution leading to immune evasion. Data from a plethora of SARS-CoV-2

animal studies consistently indicate that nasal tissue is less well protected than the lung

from reinfection following prior immunization or infection11-23, Indeed, across airborne
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infection models, the nasal mucosa is generally unprotected even in the presence of systemic
immunity24-28,

Moving forward, the most pressing challenge for vaccinology is to design vaccines that
generate sterilizing immunity at all portals of infection. Defending the entire upper airway
from infection should be a key correlate for vaccine-induced protective responses, both
against SARS-CoV-2 and future respiratory pandemics. The nasal airway is the entry

point for many pathogens, and establishing protective immunity in this tissue is essential

to break the chain of transmission. Many approaches have been suggested to orchestrate
locally protective immunity at the nasal surface, including mucosal immunization routes,
specific antigen formulations and distinct adjuvant signalling?®-3, The efficacy of these
mucosal vaccination strategies is currently limited by two considerations: what immune
parameters are required to protect the nasal passages? And how can this tissue-specific
immunity be generated? Common wisdom has held that a tissue-tailored mucosal immune
response is required for upper airway protection more so than in the lower respiratory
tract36-38. Numerous hypotheses have been offered insofar as to what constitutes this
mucosal response: secretory IgA antibodies, tissue-resident T cells and mucosal cytokines
are frequently mentioned?223.38-41 Moreover, how to best elicit these protective responses
is unclearl418:32-35.42 (Box 1). On top of that, how do we determine efficacy? Although
peripheral blood is easily sampled, studies of mucosal tissue, particularly the nasal mucosa,
are impeded by difficulty in tissue acquisition. Most prior work relies on nasal washes39:43-
47 that disproportionately sample the lower nasal turbinates and cannot capture the
complete mucosal antibody response, particularly in the superior nasal turbinates. Therefore,
determining how vaccination or infection impacts local nasal mucosal immunity and viral
control is a technical challenge we have yet to overcome. But one consideration looms over
the above questions: the nasal mucosa contains at least two distinct tissue types that require
protection, namely the olfactory mucosa and the respiratory mucosa, and each possesses
unique immune considerations (Fig. 1a).

Our recent work has provided an essential new insight into these conundrums?8. By focusing
on infection in the olfactory mucosa, we identified a novel endothelial barrier, termed

the blood—olfactory barrier (BOB), that prevents circulating serum antibodies from
accessing the olfactory mucosa. Therefore, even in situations in which highly neutralizing
blood-borne antibody is present, the olfactory mucosa is still vulnerable to infection.
Interestingly, circulating antibody accesses and protects the respiratory mucosal surface

in the nasal passages, and only the olfactory mucosa is strictly segregated from serum
antibodies. This gap in immunity at the olfactory barrier can be overcome by a population
of extravascular plasma cells that are driven to reside in the olfactory mucosa following
infection, secreting antibodies that directly reach the mucosal surface. Although many of
these plasma cells were IgA*, protection did not depend on IgA, consistent with other
studies of nasal 1gG*°. Plasma cell-mediated olfactory protection is dependent on signals
given to B cells in the lymph node, but intriguingly, these mucosal plasma cells are not
always generated following immunization. Using multiple mouse models of viral infection,
we demonstrated that these olfactory plasma cells are absolutely required to protect the
olfactory mucosa, and furthermore, to protect the CNS from neuroinvasive viruses. These
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results answer several outstanding questions about upper airway protection from infection.
Blood-derived antibodies provide a critical layer of protection for the respiratory epithelium,
but the BOB prevents circulating antibody from accessing and protecting the olfactory
mucosa®®. This difference in antibody transudation may resolve conflicting studies on upper
airway antibodies and infection11-23:39:43-47 'in which conclusions were confounded by
nasal washes failing to distinguish olfactory and respiratory antibody and by pathogens
infecting olfactory mucosa and respiratory mucosa to differing levels (Fig. 1b). Olfactory
protection can, however, be achieved by locally protective mucosal plasma cells, and the
generation of these plasma cells is dependent on the signals engendered by infection or
immunization. Differences in vaccine formulation and delivery may at least partially explain
why different vaccination strategies could protect the upper airway from infection to variable
degrees (Box 1). These findings have illuminated the significance of a previously neglected
field: olfactory immunology.

Perhaps most importantly for immunologists and vaccinologists, these discoveries
emphasize the heterogeneity of the upper respiratory tract; with distinct respiratory and
olfactory mucosae that exhibit different correlates for immune protection, the nasal tissue
cannot be treated as a monolithic tissue (Fig. 1). Although protecting the olfactory mucosa
is critical to breaking the transmission chain for respiratory pathogens, it is perhaps even
more essential in the context of neuroinvasive pathogens. The olfactory nerve acts as a direct
portal to the brain, forming a single-cell connection from the airway to the CNS that is
essential for the sense of smell but can be subverted by pathogens. The olfactory mucosa is,
therefore, a CNS mucosal barrier, the sole line of defence between the external environment
and catastrophic neurological disease®%-51. Neuroimmunologists have subjected CNS barrier
tissues such as the blood-brain barrier (BBB) and meninges to detailed examinations across
neuroimmune diseases. These studies have yielded rich and comprehensive characterizations
of their anatomical minutiae®?, and yet, the olfactory barrier has been largely overlooked.
This can be likened to a castle guard preparing for siege defence: the walls have been
fortified, cracks in the battlements repaired, secret entrances have been sealed — but the
front gate has been left open! Breaching other CNS barrier tissues, such as the tissues of

the eye or meninges, requires penetrating several cell layers and structures to reach the
CNS;5253 gnly the olfactory mucosa contains neurons that directly interface with the outside
world and the CNS. Fortunately, despite our relative neglect, the olfactory mucosa has
evolved several structural and immune barriers that safeguard this entryway (Fig. 2).

And yet, to this point, little work has been done to characterize the olfactory mucosa as an
immune tissue (Box 2), and several outstanding questions remain. Which haematopoietic
populations reside within this tissue? How does infectious disease uniquely impact the
olfactory mucosa compared with the rest of the upper respiratory tract (URT)? What
mechanisms does the olfactory mucosa use to protect the brain from invasive threats? How
can we augment olfactory mucosal tissue defence to lessen disease burden imposed by
airborne pathogens? In this Review, we highlight the existing literature on immunology of
the olfactory mucosa. This is an emerging field, and we will offer our perspective on the
many unexplored questions in olfactory mucosal, URT and CNS immunity.
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Immune barriers in the olfactory mucosa

Immunologic analyses of the URT have primarily addressed the respiratory regions of

the nasal mucosa®#, especially in humans, neglecting olfactory regions almost entirely.

The reasons for this are probably twofold. The first reason is a technical hurdle: inferior
nasal turbinates or nasal polyps can be sampled with relative ease compared with more
superior olfactory regions. The second reason is that there persists a false assumption that
URT mucosae are homogeneous — that any sample is representative — ignoring that
olfaction exists and requires special equipment. Thus, the human respiratory mucosa has
been extensively characterized in contexts including rhinosinusitis, allergy and viral diseases
such as COVID-19. Far less work has been done on immune cell populations and functions
within the olfactory mucosa. In animal models, analysing the tissue-resident cells of the
olfactory mucosa is further complicated by cell isolation from the nasal turbinates. When
generating single-cell suspensions, tissue mincing causes turbinate bone marrow to intermix
with mucosal cells. We have overcome this complication by developing an intranasal
antibody labelling technique that distinguishes true olfactory mucosa CD45* cells*8. In the
following sections, we will review the constituent olfactory mucosal cells and structures and
discuss how they contribute to immunity.

Anatomical barriers

Situated within the upper turbinates of the superior nasal cavity, the anatomical structure of
the olfactory mucosa provides intrinsic obstacles to an incoming pathogen. In some species,
the olfactory mucosa dominates the nasal space, but in humans, olfactory tissue is present
only on the upper of three nasal turbinate pairs and is proportionally limited in size, covering
approximately 5 cm?. Air is needed to sample environmental odourants, but only 15% of

air passing across the lower respiratory turbinates reaches the upper ‘olfactory recess’ in
which air slows to increase odourant detection®®. Limiting air volume exposure may restrict
pathogen exposure, but the olfactory system has several physiological barriers that support
olfaction and counteract environmental threats.

Olfactory mucus.—The first structural barrier encountered by an olfactory pathogen is
the surface mucus layer loaded with antimicrobial peptides®6-58. Although the entire nasal
mucosa is lined by mucus, olfactory mucus is characterized by a tissue-specific combination
of mucin 1, mucin 5AC and mucin 5B proteins that distinguish it from the neighbouring
respiratory mucosa®. Mucin specialization suggests that antimicrobial molecule production
within the URT may also have spatially regulated expression patterns between respiratory
mucosa and olfactory mucosa. Indeed, other proteins secreted into the olfactory mucus have
unique immunomodulatory properties, such as ol factory binding proteins, which
are essential for receptor-mediated olfactory chemosensation but also possess antimicrobial
functions®:61, Moreover, mucus collected from the human olfactory cleft has increased
enzymatic activity compared with respiratory mucus, which may contribute to interactions
with olfactory microfauna and their metabolites®2. Future studies on olfactory mucus may
yield further insight into tissue-specific properties that facilitate both odourant detection and
immune defence.
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Tissue structure.—Beneath the mucus layer lies the olfactory neuroepithelium®3.64,
which has been extensively characterized by neurobiologists®3. This avascular
pseudostratified columnar epithelium is packed full of olfactory sensory neuron (OSN) cell
bodies that project dendrites into the mucus layer, wherein their specialized cilia access
airway odourants. The neuroepithelium itself (Fig. 2) contains large numbers of structurally
supportive sustentacular cells, as well as at least two distinct microvillar cell types® and
Bowman’s gland ducts. Beneath these cells lie basal stem cell populations, globose basal
cells and horizontal basal cells, that repopulate the neuroepithelial layer56. To speedily
convey sensory information, OSN axons extend basally from the cell body, pass through the
basal lamina®”, converge in fascicular bundles and tunnel through olfactory lamina propria
en route to the olfactory bulb of the brain. These fascicular bundles contain immune cells
and olfactory ensheathing cells (OECs, refer to the following sections)58. Between axon
tracts, secretory Bowman’s glands and endothelial vessels, the olfactory lamina propria
(which is proportionally larger in humans than in mice) contains numerous immune cell
types and fibroblasts (Fig. 2a).

Endothelial barriers.—Endothelial cells within the nasal mucosa have distinct and
unusual phenotypes, as demonstrated by a recent study that has identified atypical venous
sinusoids and lymphatic vessels in respiratory and olfactory nasal tissue5®. Olfactory antigen
delivery to draining lymph nodes has not been studied directly; however, unconventional
LYVE1"VEGFR3* collecting vessels in the olfactory regions probably have significant roles
in tissue surveillance’® (Fig. 2a). Several animal studies have demonstrated cerebrospinal
fluid drainage through cribriform plate lymphatics before connecting to nasal lymphatics’1~
1. Although the CNS is primarily drained by a cranial lymphatic network®2:78-80 the
olfactory route may sometimes have an important physiological role as well. Supporting this
hypothesis, a recent study has demonstrated that lymphangiogenesis induced by vascular
endothelial growth factor C during autoimmune disease promotes CNS drainage through

the olfactory lymphatics, emphasizing that olfactory lymphatics can also contribute to
battling neuroinflammation in certain contexts’3. In humans, it is unclear how the olfactory
lymphatic route may complement the CNS drainage known to occur through meningeal
lymphatics’, but post-mortem tissues81:82 and in vivo nasal cerebrospinal fluid studies82-
84 suggest that material from the CNS may egress through the cribriform plate into the
olfactory mucosa under certain conditions.

Blood-olfactory barrier.—Our group recently reported a novel endothelial barrier, the
BOB, that has important implications for olfactory mucosa and CNS protection from
airborne infections*®. This barrier restricts the movement of large circulating molecules,
including antibodies, into the olfactory mucosa. Prior studies have sought to detect a blood—
nerve barrier within the olfactory mucosa8®#6, and although these studies have concluded
that some lower molecular weight compounds can access the olfactory mucosa from the
bloodstream, these studies lacked the granularity and ability to distinguish between the
endothelial and nerve fascia barriers. What might be the teleological purpose of the BOB?
We propose that the BOB is a functional BBB extension, preventing circulating factors
and pathogens from entering the olfactory tissues and travelling along the ‘nose-to-brain’
axis. Indeed, exploiting the olfactory nerve tracts to circumvent canonical CNS barriers
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has been used to intranasally deliver therapeutics into the brain87-88, but also suggests a
CNS vulnerability that the BOB may protect. The BOB probably also protects olfactory
neurogenic potential and function from harmful circulating substances, much like the blood—
retina barrier in the eye.

Like the BBB, the BOB dramatically restricts local tissue availability of larger serum
proteins, requiring a fundamental reconsideration of what can and cannot support URT
(olfactory) immune protection. We propose that upper airway breakthrough SARS-CoV-2
infections in vaccinated individuals could in large part be owing to the inability of
circulating antibodies to protect olfactory tissues. Large molecular weight serum proteins
such as antibodies and complement are probably excluded from the olfactory mucosa, but
what are the exact molecular size restrictions imposed by the BOB? Can some molecules —
especially drugs targeting the olfactory mucosa — be actively transported across? Do BOB
formation and persistence depend upon the presence of neurons, and would it be retained in
cases of tissue metaplasia in which neuroepithelium is replaced with respiratory cells? Are
multiple cell types involved in BOB integrity, as with the neurovascular unit in the brain?
These and other fundamental questions remain to be answered.

Adaptive immunity

B cells.—MHC class | expression within the olfactory mucosa is variable across cell
types®?, yet OSNs are effectively devoid of MHC class 1, making them especially reliant on
humoral immunity. As previously noted, the BOB prevents serum antibody from accessing
the olfactory mucosa, but local antibody secretion in the olfactory mucosa is highly
protective. Without this pre-existing antibody protection directly at the mucosal surface,
intracellular pathogens can infect OSN dendrites and translocate through axons into the
brain without ever encountering other immune cells*8. Humoral immunity is, therefore,
vital for protection against neuroinvasive microbes, but because the BOB prevents serum
antibody from protecting all the cells of the olfactory mucosa, local antibodies would

be essential to defending against even non-neurotropic airborne pathogens with olfactory
tropism, such as SARS-CoV-2 (refs. 48,90-92). Local antibody production may also prevent
early replication and continued pathogen transmission, while also preventing the olfactory
mucosa from serving as a foothold for further pathogen selection. Influenza infection
studies in ferrets indicate that nasal passage viral replication, but not lung replication,
leads to transmission between individuals?3. Although this work has detected virus in

both respiratory and olfactory mucosa, no study has yet to directly test whether olfactory
infection alone permits transmission. Nevertheless, passive antibody transfer experiments
suggest that olfactory viral replication may be sufficient for transmission. The BOB means
that antibody transfer should protect the respiratory mucosa, but not the olfactory mucosa,
and studies of murine influenza infection indicate that passive antibody transfer does not
block viral transmission®4:9%, Formally testing this possibility will require researchers to
carefully design experiments to analyse transmission using viruses with known respiratory
and olfactory tropism (Fig. 1b). But these studies are critical because selective replication
in olfactory and not respiratory tissues could drive evolution of variants with enhanced
olfactotropic and neuroinvasive qualities.
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Olfactory B cells are detected in the lamina propria of human biopsies, often localized near
secretory Bowman’s glands that stain positive for Ig molecules, perhaps indicating that these
glands may assist in luminal antibody secretion®6 (Fig. 2c). However, intranasal antibody
administration in mice demonstrates that IgG antibodies can freely diffuse throughout the
tissue without being impeded by structural barriers such as the basal lamina®. These B
lineage cells appeared to produce all antibody isotypes, consistent with concurrent studies in
salamanders and rats that demonstrated multiple antibody isotypes differentially distributed
across the tissue®’. In response to olfactory infection, B cells from fish respond to challenge
by producing IgT, a mucosal antibody that protects the olfactory surface®899, In addition to
recruitment following infection, local live attenuated immunization increases the frequency
of IgA* plasma cells in the olfactory mucosa?8:190, Single-cell RNA sequencing studies have
found B lineage populations, particularly class-switched plasma cells, in samples from mice
and humans89:101.102,

Our recent work suggests critical non-redundant roles for these olfactory plasma cells in
olfactory mucosal defence against viral infection?8. These protective plasma cells appear

to secrete several antibody isotypes, provide long-term protection, and intriguingly, can

be driven to olfactory mucosa residence following non-local priming in distal lymph

nodes, suggesting that parenteral immunization can imprint an olfactory mucosa-homing
phenotype®8 (Fig. 2c). In addition to further elucidating the signals that dictate olfactory
mucosa migration, numerous outstanding questions about olfactory plasma cells remain.
Which local cells provide tissue retention signals and what is their relationship to long-lived
plasma cells in the bone marrow or other mucosal sites? Our efforts have focused on
neutralizing antibodies, but studies of olfactory mucosa murid herpesvirus infection indicate
that antibodies can limit local viral replication in an Fc-dependent manner26:103, Plasma
cell-derived pre-existing antibody is critical for preventing olfactory mucosa infection, but
memory B cell populations may also help maintain the plasma cell pool or respond to
re-infection, as has been found in the lower respiratory tract!94. Fully understanding these
local B lineage populations is paramount for vaccination against respiratory and neurotropic
pathogens.

T cells.—Adaptive immunity in the olfactory mucosa also includes contributions from

T cells. T cell populations (CD4*, CD8* and y& T cells) have been described in mouse
nasal passages, but whether these were truly olfactory or contained respiratory or bone
marrow contaminant is unclearl0>106, However, following influenza virus infection, nasal
CD8" resident memory T (Trm) cells accumulated within the olfactory mucosa®!. These
antigen-specific T cells were extravascular long-term resident cells that, upon rechallenge,
provided superior and more durable viral control than lung Try cells. Furthermore, the nasal
passage Trm cells alone were able to reduce viral dissemination to the lung, emphasizing
the role olfactory CD8" T cells can perform in respiratory virus defence*! (Fig. 2c).
CD8" olfactory T cells have also been observed during an olfactotropic viral infection in
fish107. Post-COVID-19, patients with smell loss were found to have olfactory infiltration
of interferon-y (IFNvy)-producing T cells, indicating that T cell-mediated inflammation
can persist long after olfactory viral clearancel®8, Similarly, another study has found that
patients with long COVID had elevated olfactory mucosal interferon signatures and T
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cell-associated genes!®. Similar long-term changes in the olfactory chemokine expression,
interferon-stimulated genes and T cell markers were observed in SARS-CoV-2-infected
hamsters109 (Fig. 2c). These studies and similar transcriptional analyses from humans
suggest that T cell pathogenesis may have a role in dysosmia (altered sense of smell)10,
In agreement with this, CD8" T cell and natural killer T cell signatures are associated with
human age-related olfactory loss and have been proposed to directly signal to the olfactory
stem cell niche to disrupt neurogenesis10, and T cell cytokine production is observed

in mouse models of chronic nasal inflammation111.112, Together, these data suggest that
olfactory T cells can control infections but may also instigate chronic olfactory changes.
More work to characterize olfactory T cell subsets, including CD4* T cells and y& T cells, is
needed.

Innate immunity

Macrophages.—Macrophages represent the most abundant immune cell type in mouse
and human olfactory mucosa89101.102 (Fig. 2b). Tissue-resident macrophages are known to
mediate various functions — including neuronal maintenance, wound repair and infection
responses — and macrophages have been shown to perform each of these roles in the
olfactory mucosa. Macrophages can be found in close association with OSNs, both within
the neuroepithelium and within olfactory nerve fascicles!13. Olfactory macrophages express
Cx3crl, and deficiency in this receptor leads to a reduction in dendritic morphology for
intraepithelial macrophages'1#, a phenotype that mirrors morphological changes seen in
CX3CR1-deficient microgliall®. Following OSN death, clodronate-mediated macrophage
depletion reduced neurogenesist16 and expression of immune response genes such as
Cxcr4 (ref. 117). Similar analyses implicate macrophage Lifand Msr1 expression in tissue
regeneration!18, perhaps directed by IL-1 signalling from dying OSNs and subsequent
expression of Cc/2and Cc/3 (refs. 119-121). Macrophages have also been shown

to be important for defence against olfactotropic pathogens. Macrophage numbers are
increased in mice following porcine hemagglutinating encephalomyelitis virus (PHEV)
infection, correlating with upregulation of inflammatory mediators such as IFNs, IL-6

and tumour necrosis factor (TNF)122, Influenza A virus-infected OSNs became apoptotic
and were engulfed by macrophages, preventing viral spread to the brain23, Similarly,
when Staphylococcus aureus was delivered intranasally after OSN damage, macrophages
within the nerve fascicle were able to phagocytose the bacterial?4. Macrophages are
further implicated in chronic olfactory mucosal inflammation, as patients with chronic
rhinosinusitis (CRS) who present with smell loss have elevated macrophage numbers
compared with controls!2126_ Mouse inflammation models recapitulate the elevated
macrophage numbers!27.128 and macrophage skewing to an immune defence (IL-6
expressing) phenotypelll, How macrophages balance these conflicting roles in neuronal
support and immune defence remains to be thoroughly examined, but these data suggest that
there are functionally or ontologically distinct olfactory mucosal macrophage subsets.

Other innate immune cells.—Although less well studied than macrophages, other innate
leukocytes can be detected within the olfactory mucosa, including dendritic cells89101.102
(Fig. 2b). Circulating myeloid cells, although probably not residing in the olfactory

mucosa long-term, can impact the olfactory mucosa during inflammation. Monocytes
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may differentiate into macrophages in the olfactory mucosa following recruitment from
blood, and monocytic inflammation has been observed in an olfactory listeriosis model2°.
Neutrophilic olfactory mucosal inflammation occurs in numerous contexts and is often
severe. Mice given intranasal poly(I:C) treatments see a rapid neutrophil influx!12 that
subsequently launch themselves into the nasal airway!27, a phenotype also witnessed in
amoeba infection!30, Intranasal lipopolysaccharide administration similarly led to neutrophil
influx131, but the role of neutrophils in human CRS is less clear. Although elevated
neutrophil levels have been observed2%, neutrophilia is not associated with smell loss in
CRS132, Neutrophils may also have either beneficial or pathogenic roles in acute infection.
Olfactory neutrophils are elevated in mouse and hamster SARS-CoV-2 infections®0:133,
Upon neutrophil depletion or blockade, SARS-CoV-2 titres were actually decreased and
olfactory mucosal damage was mitigated, suggesting that neutrophils contribute to olfactory
mucosa destruction and permit increased viral replication33. Among the other granulocytes
(mast cells, basophils and eosinophils), only eosinophils have been definitively reported
within the olfactory mucosa, typically in the context of CRS or amoebic infection34 (Fig.
2b). Although eosinophil numbers in the olfactory mucosa seem to be elevated in human
rhinosinusitis126:135, they are not associated with impaired olfaction. Natural killer cells
have been observed in human olfactory biopsies and may express inflammatory genes that
signal to basal progenitors and OSNS, inhibiting their ability to properly regenerate!19, To
our knowledge, no studies have directly searched for other innate-like lymphocytes in the
olfactory mucosa.

Stromal immune barriers

In addition to haematopoietic immune cells, parenchymal cells in the olfactory mucosa

may contribute to immunity through cell-autonomous pathogen clearance, the production of
antimicrobial and inflammatory compounds, and communication with the haematopoietic
compartment (Fig. 2a).

Olfactory sensory neurons

OSNs represent a curious case in intrinsic immunity. Compared with CNS neurons, OSNs
are accustomed to much higher rates of death and regeneration, suggesting that they may
respond differently to inflammation. As OSNs are a single-cell gateway to the CNS,
evidence suggests that they use unique antiviral signalling pathways to stifle intracellular
infections that attempt to invade the brain parenchyma (Fig. 2d). Type 11l IFNs are a

critical component of early mucosal responses to infection, and indeed, IFNA reduces

murid herpesvirus infection at the olfactory mucosal38. Similarly, IFNA signalling prevents
influenza virus spreading from the olfactory mucosa to the lung3”. Conversely, vesicular
stomatitis virus, a virus highly sensitive to type | IFN signalling, replicates aggressively in
OSNs138, suggesting inherent vulnerabilities in OSN type I IFN responses. Yet, other studies
indicate that type | IFN has a critical role in combating URT viral infection prophylactically
and after disease onset!3%-142 although differences in olfactory and respiratory infection
have not been quantified in these studies. Our work has demonstrated that OSNs can
non-lytically clear influenza B virus infection more quickly than neighbouring respiratory
epithelial cells by using a rapidly induced antiviral responsel43. OSNs can also prevent virus
from reaching the brain by quickly inducing apoptosis®7-123 In summary, OSNs certainly
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exhibit vulnerabilities to infection but can respond swiftly to some pathogens, and their
antimicrobial capabilities remain to be carefully characterized.

Other epithelial cells.—Sustentacular cells provide structural support within the
olfactory neuroepithelium and make up the largest portion of non-OSN cells. These

cells are the target of SARS-CoV-2 infection in humans owing to their ACEZ2
expression90-92.144 Following sustentacular cell infection, chemosensory function is
impaired and the entire neuroepithelial layer appears to slough off, as the olfactory
mucosa structure is compromised. Also within the neuroepithelium, olfactory microvillar
tuft-like cells express //25and genes for cysteinyl leukotriene production, which they
produce upon airway allergen exposure resulting in eosinophilial4>. An ensuing study
demonstrated that microvillar Lfc4 expression induced by allergens stimulated olfactory
stem cell proliferation8®, suggesting these cells may coordinate the immune response and
neurogenesis (Fig. 2a).

Olfactory ensheathing cells.—OECs surround OSN axon bundles as they pass through
the olfactory lamina propria into the CNS. OECs are related to astrocytes and Schwann
cells, acting as an important glial component of the olfactory nerve®8:86.146_ OECs are
promising cellular therapies for treating brain and spinal cord injuries, probably owing

to their neuroprotective and neurogenic functions, but studies also suggest that they have
potent immune-modifying abilities4’. OEC phenotypes within the olfactory bulb are geared
towards axon regeneration, whereas olfactory mucosa OECs express genes associated with
the defence response, inflammation and immunomodulation!48. Advantageously poised

to patrol olfactory nerve tracts (Fig. 2a), olfactory mucosa OECs can produce inducible
nitric oxide synthase in response to bacterial invasion of the damaged olfactory nervel49
and phagocytose infected or dying olfactory axons159.151 n the context of OSN death,
OEC:s recognize phosphatidylserine produced by dying axons, phagocytosing a greater OSN
number than olfactory mucosa macrophages!0 in a process that may be enhanced by MIF
and HTRA1151,

Together, these adaptive, innate and stromal cells coordinate to maintain olfactory function
and combat disease. But what are the specific threats, infectious or otherwise, that impact
the olfactory system? Next, we will review disease pathogenesis within the olfactory
mucosa, with an emphasis on how the local immune response ameliorates or exacerbates
disease.

Disease in the olfactory mucosa

Olfactotropic pathogens

Airborne pathogens initiate infection in the upper airway, in which they first encounter

host defences. However, the specific impact pathogens have on the olfactory mucosa is
poorly described, in large part owing to the technical difficulty in measuring microbial
replication and corresponding inflammation of the human superior nasal turbinates (nasal
swabs sample the lower respiratory turbinates of the nose). Consequently, the olfactory
tropism of many common airborne pathogens is unknown, and we probably drastically
underestimate the number of airway infections that impact the olfactory mucosa. Pathogens
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currently known to infect the olfactory mucosa, which we refer to as olfactotropic infections,
are reviewed in Table 1. Here, we will highlight infections that have special implications
for olfactory immunity. We can think of olfactotropic pathogens in two broad categories:
neuroinvasive and non-neuroinvasive (Fig. 2d). The olfactory mucosa is heavily innervated
by OSNs and pathogens can hijack OSNs for direct CNS invasion, resulting in potentially
lethal meningitis or encephalitis. Many pathogens are known to exploit this entryway to
the CNS®0.152 byt ascertaining the proportion of meningitis and encephalitis cases that
originate from olfactory infection is difficult. At the same time, many non-neuroinvasive
respiratory pathogens infect both the olfactory mucosa and the respiratory mucosa, and
olfactory immune defence must limit viral dissemination, break the chain of community
transmission, and prevent olfactory mucosal damage and smell loss.

SARS-CoV-2.—The COVID-19 pandemic brought the impact of olfactory mucosal

viral infection to the forefront of much scientific and public discourse. SARS-CoV-2
directly infects both the olfactory and respiratory epithelia in humans®1:92.144 (Fig. 2d).
Fortunately, evidence suggests that OSN infection and subsequent CNS neuroinvasion

do not occur®:92144 " |nstead, SARS-CoV-2 mediates olfactory pathology by infecting
sustentacular cells leading to transient damage, inflammation and subsequent tissue
structure loss?0:91.108.144 ‘Wwithout the structural support provided by sustentacular cells,
olfactory neurons die or become dysfunctional, and smell is compromised to varying
degrees8153, This partial or complete smell loss (clinically, hyposmia or anosmia) is
typically short-term, as the olfactory epithelium is regenerated by the underlying stem
cell populations®, although persistent inflammation can lead to long-term hyposmia or
anosmial®8. Interestingly, chemosensory deficits also strongly predict the humoral response
in SARS-CoV-2 infection!®4, suggesting a functional link between olfactory infection and
immunity induction. The olfactory pathogenesis of SARS-CoV-2 is mirrored in rhesus
macaques, as the typical URT viral replication is observed in the absence of frank CNS
neuroinvasion!®23, Replicating virus has not been detected in long-term hyposmic or
anosmic olfactory biopsies, indicating that innate and adaptive immune responses can
clear virus from the olfactory system98, However, prolonged viral shedding has been
observed from nasal swabs15°1%6, suggesting that the olfactory mucosa could harbour
virus in some individualsl®. Patients with long COVID often present with neurological
symptoms, including olfactory deficits®, but whether this occurs because of viral persistence,
cell-intrinsic OSN alterations or continued olfactory mucosal inflammation is unknown.

In contrast to human infections, animal models of SARS-CoV-2 and other coronavirus
infections are characterized by olfactory neuroinvasion, raising concerns that future variants
could gain neurovirulent capabilities as they repeatedly passage through olfactory tissues.

In the commonly used K18-hACE2 mouse SARS-CoV-2 model, nearly ubiquitous epithelial
hACE?2 expression directs OSN infection and consequent CNS pathology is observed158-160,
resulting in lethal neuroinvasion across multiple SARS-CoV-2 variants'61. Much like in
humans, SARS-CoV-2 was initially only believed to infect olfactory mucosal sustentacular
cells in hamsters162 but more recent variants have been shown to infect OSNs and invade
the CNS163.164 Hamsters also have lasting olfactory perturbations following SARS-CoV-2
infection, indicating that they may be useful for post-COVID olfaction studies®®. Given the
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frequency of coronavirus epidemic outbreaks this century (Table 1), more research on their
olfactotropism is needed.

Naegleria fowleri.—Naegleria fowleri, the ‘brain-eating amoeba’, is perhaps the most
notorious pathogen capable of olfactory transmucosal infection. This free-living amoeba is
ubiquitously present in warm bodies of freshwater but only drives disease when it contacts
olfactory tissue in the nasal turbinates'6%. A fowlericrosses the olfactory epithelium

and quickly rampages through the olfactory nerve into the CNS (Fig. 2d) in which it
causes an almost universally fatal inflammatory condition known as primary amoebic
meningoencephalitis. Olfactory immunity against N. fow/eriis complex: immunization
against NV. fowleriin animal models offers limited protection16, but neutrophils and other
myeloid cells slow disease progression but also contribute to disease pathogenesis34:167,
Because N. fowleriis only pathogenic across the olfactory mucosa, and olfactory
neuroinvasion is conserved across mammals including mice, this infection serves as a
powerful model system to highlight the unique immune properties and vulnerabilities of
the olfactory mucosal68. Seropositivity studies suggest that many humans may have some
protection owing to subclinical exposurel69-171: hut does the BOB prevent antibodies and/or
complement from slowing pathogenesis? Are neutrophils or other cells able to respond to
the amoeba more quickly in non-olfactory tissues?

Influenza virus.—Analysis of patients with influenza has shown that subjective olfactory
dysfunction increases as vaccination rate decreasesl’2, suggesting not only that frequent
olfactory influenza virus infection occurs, but also a preventative immune capacity.
Olfactotropism seems to depend on strain, but influenza virus infection is associated with
neurologic symptoms and sequelael’3174 and in some cases, influenza infection coincides
with meningitis or encephalitis}’>-177. Direct CNS neuroinvasion has been reported in
several mammalian infection models. Influenza A/WSN/33 (H1N1) infects OSNs and
translocates to the CNS in micel’8, and highly pathogenic and pandemic strains are
predisposed to olfactory neuroinvasion in ferrets}’9-182_|n addition, influenza virus-derived
antigen has been identified in human post-mortem olfactory nerves, lending credibility to
an olfactory route of CNS infection83, The recent highly pathogenic avian H5N1 strain of
influenza virus has been shown to infect the brains of some animals184, raising concerns
that olfactory neuroinvasion may contribute to future emergent pandemics. Whereas such
highly pathogenic cases are rare, the olfactotropism of more common, lowly pathogenic
strains is understudied, and much remains to be learned about the viral and host factors

that determine the neuroinvasive potential of various influenza virus strains. More common
influenza virus strains may infect the olfactory mucosa, and potentially even reach the
brain, but olfactory tropism is generally not explored unless a patient develops severe CNS
disease. Supporting this, some influenza viruses infect the olfactory mucosa but innate
mechanisms allow OSNSs to quench viral replication to prevent neuroinvasion123.143, The
olfactory mucosa can also have a role in limiting influenza virus dissemination to the lung,
as type | IFNs and type Il IFNs were shown to be crucial for containing two different strains
of influenza virus to the nasal passages of micel3’. Interestingly, comparing nasal and lung
infection across multiple influenza virus strains in ferrets indicates that only nasal infection
supports airborne transmission between organisms, whereas lung infections are not spread®3.
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These data reinforce the importance of preventing influenza virus infection in the upper
airways to limit propagation.

Opportunistic infections.—Some pathogens may act opportunistically to infect the
olfactory mucosa and reach the CNS. For example, cytomegalovirus (CMV) is a congenital
disease in humans that frequently leads to neurological disorders such as hearing and smell
loss, but whether CMV uses OSNSs to infect the brain is unknown. Olfactory bulb lesions
have been observed in infants with CMV185 and olfactory defects are reported throughout
childhood®6 in a manner that is decoupled from hearing loss18. Furthermore, a human
olfactory receptor was identified as a CMV entry receptor8, opening the possibility that
olfactory invasion may explain some CNS pathologies. Damage of the olfactory mucosa,
whether acute or chronic, can expose it to opportunistic pathogens that may infect the
tissue and penetrate the CNS. Olfactory mucosa damage in mice allows for bacteria such
as Burkholderia pseudomallef?4189190 - Streptococcus agalactiael®t and S. aureust?* to
subsequently colonize the olfactory mucosa and invade the brain, either intracellularly
through OSNs or extracellularly along the axon tract® (Fig. 2d). The olfactory mucosa

is damaged throughout life, from pathogenic and other insults, and maintaining structural
and cellular olfactory mucosal barriers is critical for preventing opportunistic infections.

Post-viral olfactory dysfunction.—Post-viral olfactory dysfunction is one of the

most frequently reported acute and chronic side effects of upper respiratory illness153192-
195 including well-documented short-term and long-term olfactory loss following
COVID-19196-201 potential mechanisms driving post-viral olfactory dysfunction include
direct OSN infection and death, infection of other olfactory mucosal cells leading to
inflammation and/or neuroepithelial damage, CNS consequences resulting in olfactory bulb
dysfunction, or respiratory infection leading to nasal inflammation and airflow blockage.
The immune response is heavily involved in all these pathologies, ranging from the

rapid antiviral responses of epithelial cells to haematopoietic cell recruitment during
sustained inflammation. Indeed, a recent study of olfactory biopsies following clearance

of SARS-CoV-2 has identified that long-term smell loss was associated with immune

cell infiltration and inflammatory gene expression198, Persistent T cell infiltration was
accompanied by a shift in myeloid cell populations away from an anti-inflammatory, wound-
healing phenotype, reflecting a disruption in the balance between productive and deleterious
immune responses to infection. This immune dysfunction extended to an inflammatory gene
signature in sustentacular cells of the olfactory epithelium, as well as lower OSN numbers
in dysosmic patients'98. Exactly how other pathogens mediate the loss of chemosensation
warrants further study.

Damage of the olfactory mucosa

Olfactory injury, inflammation and regeneration.—Respiration brings a constant
stream of airborne environmental pollutants, microbial toxins or inorganic compounds
that can damage the olfactory mucosa and drive inflammationZ02, CRS is a persistent
inflammation of the upper airways that frequently coincides with dysosmia. Biopsies from
patients with CRS indicate that inflammation in the olfactory mucosa is associated with
hyposmial26, and comparison of healthy control and CRS samples indicates increased
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olfactory metaplasia that can be characterized histologically by the type of epithelial
deformation125.135 |nterestingly, one study of olfactory function found that type 11 cytokines
were associated with worse olfaction prior to corrective CRS surgery, but improved
olfaction postoperatively203, By contrast, type 111 cytokines correlated with better olfactory
scores preoperatively, but corresponded with worse scores after surgery, suggesting the
immune response may shape olfactory potentiation. Indeed, immune and glial cell activation
supports phagocytosis of apoptotic debris and tissue regeneration after OSN ablation204,
and infiltrating immune cells facilitate OSN regeneration!28. Furthermore, deficiencies in
TNFR1 or basal progenitor cell NF-xB signalling led to defective olfactory regeneration,
emphasizing the importance of immune crosstalk in neurogenesis28. Overall, resident

stem cells in the olfactory mucosa display remarkable regenerative capacity and therapies
targeting these cells are currently being explored to combat dysosmia205:206,

To understand the olfactory implications of chronic inflammatory conditions such as CRS
and neurodegeneration, mouse lines that inducibly express inflammatory mediators such
as TNF111 and 1L-13 (ref. 207) in the olfactory mucosa have been developed?31:208,

The inducible olfactory inflammation mouse drives TNF expression from CYP2G1*
sustentacular cells2%9 to recapitulate CRS-induced olfactory loss and progressive olfactory
neurodegeneration. Studies in inducible olfactory inflammation mice have indicated
cognitive functional defects, epithelial reorganization, macrophage-mediated and T cell-
mediated cytokine production, and reprogramming of basal progenitor cells from a
proliferative to an inflammatory phenotypel11.209.210 | jkewise, olfactory damage and
inflammation can drive acute cytokine expression in the olfactory mucosa, neutrophil
infiltration and tissue deformation112125211 nhyt critically, this peripheral inflammation
can be communicated into the CNS13L. In zebrafish, olfactory epithelial damage leads to
rapid neutrophil recruitment into the olfactory organ of the brain212. Similarly, in hamsters,
SARS-CoV-2-mediated olfactory mucosa inflammation is sufficient to induce changes in the
olfactory bulb®. The connection between mucosal and brain inflammation has important
consequences, as frequent olfactory inflammation may contribute to neurodegenerative
pressure?13 over time. Further work is needed to understand how olfactory mucosa
inflammation not only drives immune-mediated olfactory disorders but also supports
inflammatory communication between the olfactory mucosa and the CNS.

Presbyosmia and neurodegeneration.—Age-associated olfactory loss, or
presbyosmia, is extremely common in elderly patients (occurring in >50% of adults over
65 years and in 60-80% of those aged over 80 years?14-217), Presbyosmia is associated
with olfactory metaplasia, the replacement of olfactory epithelium with respiratory
epithelium?18.219 This tissue conversion mirrors that observed in models of chronic
olfactory mucosal inflammation209 and is probably owing to inflammation-related changes
in olfactory stem cell progenitors110, Transcriptional evidence of strong cytokine stimuli
and elevated immune cells in a presbyosmic cohort compared with controls suggest a
direct role for sustained inflammation in age-associated olfactory loss*10. Concordant with
age-associated neuroinflammation, impaired olfaction is associated with (and is one of

the strongest predictors of) cognitive decline?20, Alzheimer disease??!, dementia222 and
Parkinson disease?23. Myriad factors probably contribute to this association224, but prior
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olfactory infections may accelerate cognitive decline through repeated inflammatory stimuli.
To this end, individuals with familial Alzheimer disease were found to express signatures of
antiviral inflammation in the olfactory bulb and olfactory tract?2®, Corroborating this, HSV1,
which can infect sensory fibres within the olfactory neuroepithelium, has been implicated

in Alzheimer disease?26. More directly supporting the olfactory infection hypothesis, in

a mouse model, Chlamyudiawas shown to invade the CNS through the olfactory nerve

and upregulate Alzheimer disease-associated gene signatures?2’. Much remains to be
investigated about the bidirectional link between olfaction and neurodegeneration and the
role infection might have in both.

Conclusion

The olfactory mucosa must be considered as a critical component of pathogen defence, both
as part of the respiratory tract and as a mucosal barrier for the brain. Immune protection

of the olfactory mucosa is vital for protection against continued respiratory pathogen
transmission and neurotropic microbial invasion. Previously, it was difficult to reconcile
our assumptions about peripheral immunity with many studies revealing incomplete URT
immunity. We believe that appreciating the unique immunological considerations of the
olfactory mucosa is not only critical for vaccine-induced URT immunity but also provides
clarity into prior data and informs better experimental design. For instance, nasal washes
and swabs insufficiently capture the olfactory mucosal immune response, and increased
upper nasal turbinate sampling may reveal that many URT pathogens have distinct
olfactotropism. An improved understanding of pathogen-induced olfactory dysfunction and
neurodegeneration could lead to better and more targeted therapeutics for diseases such as
COVID-19. A key consideration in drugs that target the olfactory system will be the BOB.
Additional characterization of the BOB, and the role it has in immune defence, is also

of interest for intranasal drug delivery and CNS anatomy. The BOB confers a degree of
immune isolation and privilege to the olfactory mucosa, but very little is known about the
tissue-resident immune cells in this tissue. Analysing these cells, and how they interact with
stromal cells in both health and disease, will shed new light on URT and CNS defence. The
olfactory mucosa deserves more attention as a mucosal immune barrier, and we smell the
dawning of a new age in its study (pun intended).
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Anosmia
The complete loss of smell, typically defined clinically by the University of Pennsylvania
Smell Identification Test scores <19

Blood—-olfactory barrier
(BOB). A blood—endothelial barrier that prevents the movement of large molecules from
circulation into the olfactory mucosa
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Dysosmia
A general term for an altered sense of smell

Hyposmia

A reduced sense of smell, typically defined clinically by the University of Pennsylvania
Smell Identification Test scores in the 19-33 range, although scoring can be adjusted by age
and sex

Olfactory binding proteins
Soluble proteins in the nasal mucus that bind to odourants to facilitate recognition by
olfactory receptors. They have also been shown to have antimicrobial effects

Olfactotropic
A pathogen that is capable of infecting cells within the olfactory mucosa

Presbyosmia
An age-associated loss of smell
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Box 1
Vaccine approaches to protect the upper airway

What immunization approaches most effectively protect the olfactory mucosa? Vaccines
variably protect the olfactory mucosa and respiratory mucosa, and the tropism of many
infectious diseases also differs between these tissues, but recent data measuring general
infection of the nasal passages may provide clues. Prior infection has been shown

to generally providew more complete protection of the URT than immunizations, and
accordingly, live attenuated vaccines show improved nasal passage protection in animal
models compared with inactivated antigen190-310, although the olfactory mucosa (OM)
can still be left exposed4. Mucosal immunization, particularly intranasal dosing, is one
putative approach to induce local immunity. Intranasal vaccines often struggle to induce
strong antibody titres311, probably owing to poor antigen and adjuvant retention, but

can reduce nasal replication better than parenteral immunizations in some cases!418:312,
‘Prime and pull’ strategies try to synergize the efficacy of parenteral and mucosal
immunization313 and can improve nasal protection314:315 Regardless of approach,
immunization should engender lymphocytes that home to the olfactory mucosa to confer
local protection. This homing is imprinted in the lymph node by the inflammatory
signals induced either by infection or by a vaccine adjuvant. If adjuvants can successfully
mimic the lymphocyte activation induced by infection, olfactory homing and protection
would occur regardless of the route of immunization. Indeed, several studies show that
parenteral immunization with non-conventional adjuvants can induce superior protection
of the nasal passages!’#8:316 consistent with data from other mucosal tissues31”. More
analysis of the adaptive response in the lymph node, and dissection of olfactory-specific
protection, is needed to produce the best immunization formula.
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Box 2
Sniffing out the historical link between olfaction and immunity

Emerging data have stirred memories of a long-suspected link between olfaction and
immunity. Fundamentally, these two systems attempt to perform similar functions,
namely, to recognize a foreign substance and coordinate a rapid physiological response.
Olfaction can lead to changes in behavioural immunity318, such as the ‘disgust’
response which is known to trigger a ‘prepared’ immune state in response to

noxious and potentially threatening stimuli19:320, Pleasant odours can also impact

the immune system: exposure to soothing fragrances following stress leads to a
decrease in inflammation321, Removal of the olfactory bulbs leads to depression and

a dysfunctional immune system in a manner not fully understood312:322 byt the
neuroimmune signalling pathways that coordinate olfactory—immune crosstalk have
been profiled in drosophila323. An additional structural parallel between olfactory
chemosensation and immune recognition has been hypothesized to explain the tendency
for mammals to choose mates with dissimilar major histocompatibility complex (MHC)
polymorphisms. Peptides that bind to particular MHC molecules have been shown

to bind receptors in the olfactory and vomeronasal organs324-326, demonstrating a
mechanistic link between olfactory and immune non-self-discrimination that could serve
to increase MHC repertoire diversity and, thereby, disease resistance at the population
level. Another structural analogue between olfactory and immune cells has recently
been demonstrated, as olfactory receptors expressed by leukocytes have important roles
in immunity327. Olfactory—immune communication is not unidirectional; infection and
subsequent immune activation in drosophila led to altered olfaction328 and there is even
growing evidence that mammals, such as dogs, can smell when a person is il1329-333,
This olfactory discernment is responsive to common immune or inflammatory substrates,
especially volatile organic compounds, but can identify molecules specific to particular
diseases334. Although poorly understood, a diverse body of literature indicates that the
immune and olfactory systems can dynamically interact.
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« Located in superior nasal turbinates
« Facilitates sense of smell

« Highly innervated, borders the CNS
« Secluded from high molecular weight

serum proteins
* Protected by local antibody
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« Located in inferior nasal turbinates
« Facilitates air passage to lungs
« Directly adjacent to external environment
« Perfused with blood exudate

~ « Protected by systemic antibody
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Fig. 1 |. Heterogeneity of the upper respiratory tract: the olfaction fraction.
a, The upper respiratory tract consists of two distinct tissues with important implications

for immunity, namely the olfactory mucosa (blue) and the respiratory mucosa (beige). The
olfactory mucosa must balance olfaction with immune defence and acts as a barrier to

the CNS. The olfactory and respiratory mucosae have different requirements for immune
protection, including local humoral protection from resident plasma cells in the olfactory
mucosa. b, Prior studies of intranasal infection and immunity often indicate that upon
rechallenge with a pathogen, pathogen replication is reduced. However, these studies treat
the nasal passages as a homogeneous tissue. In actual fact, the overall reduced pathogen
replication that is observed could represent many different scenarios depending on the
tropism of the pathogens used and the quality of the immune response they induce. The
lower panel indicates some hypothetical examples, considering whether a pathogen shows
tropism for the olfactory mucosa (OM) alone, the respiratory mucosa (RM) alone or for both
the olfactory mucosa and respiratory mucosa. Differences between the olfactory mucosa
and respiratory mucosa, both in pathogen tropism and protective immune parameters, must
be carefully considered and analysed to yield interpretable data regarding consequences of
infection or immunization.
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Fig. 2 |. Cell types and effector mechanisms in the olfactory mucosa.
a, The figure indicates the parenchymal cell types that compose the olfactory mucosa. The

luminal side is coated in mucus and directly exposed to the airway. The neuroepithelium
contains olfactory sensory neurons (OSN), sustentacular cells, microvillar cells and the
Bowman’s glands. Lining the basal lamina are horizontal basal stem cells (HBCs) and
globose basal stem cells (GBCs). Within the lamina propria, OSN axon tracts run

directly towards the olfactory bulb of the brain. Olfactory ensheathing cells (OECs) are
interwoven within these axon bundles. Also, within the lamina propria are lymphatic and
blood endothelial cells. The blood—olfactory barrier (BOB) prevents antibodies and other
large circulating molecules from entering the olfactory mucosa. The exact composition

of the BOB is unknown; beyond endothelial cells, pericytes, macrophages or olfactory
ensheathing cells could contribute to barrier integrity. b, Innate immune cells of the
olfactory mucosa are indicated in dark red. At homoeostasis, macrophages can be observed
within the neuroepithelium and lamina propria with several distinct morphologies. During
inflammation, dendritic cells (DCs), neutrophils, monocytes and eosinophils can infiltrate
the tissue and contribute to the immune response. ¢, Following infection or immunization,
T cells and B lineage cells migrate to the olfactory mucosa and take up long-term
residence. These lymphocytes (shown in purple) can provide protective local immunity
against future challenge. d, Intracellular olfactotropic pathogens can be neuroinvasive or
non-neuroinvasive. Viruses and bacteria may infect non-neuronal epithelial cells or OSNs.
Neurotropic pathogens that infect OSNs may either be cleared before reaching the CNS or
migrate through OSN axons into the olfactory bulb. Extracellular pathogens, such as bacteria
and eukaryotes, can migrate along axon bundles to reach the brain. These pathogens are
better able to infect the olfactory mucosa when the tissue has been previously damaged,
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compromising existing structural impediments. IFN, interferon; iNOS, inducible nitric oxide
synthase; OM, olfactory mucosa; TNF, tumour necrosis factor.
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