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Abstract

Whilst mitochondrial inhibition and micronuclear fragmentation are well established

features of the cannabis literature mitochondrial stress and dysfunction has recently

been shown to be a powerful and direct driver of micronucleus formation and chro-

mosomal breakage by multiple mechanisms. In turn genotoxic damage can be

expected to be expressed as increased rates of cancer, congenital anomalies and

aging; pathologies which are increasingly observed in modern continent-wide studies.

Whilst cannabinoid genotoxicity has long been essentially overlooked it may in fact

be all around us through the rapid induction of aging of eggs, sperm, zygotes, foetus

and adult organisms with many lines of evidence demonstrating transgenerational

impacts. Indeed this multigenerational dimension of cannabinoid genotoxicity

reframes the discussion of cannabis legalization within the absolute imperative to

protect the genomic and epigenomic integrity of multiple generations to come.
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Recent papers in Science provide penetrating and far-reaching insights

into the mechanisms underlying micronuclear rupture a key genotoxic

engine identified in many highly malignant tumours.1,2 Reactive

oxygen species (ROS) generated either by damaged mitochondria or

the hypoxic tumour microenvironment were shown to damage micro-

nuclear envelopes, which made them more sensitive to membrane

rupture. Damage occurred by both increased susceptibility to mem-

brane rupture and impaired membrane repair. Micronuclear rupture is

known to be associated with downstream chromosomal shattering,

pan-genome genetic disruption by chromothripsis, widespread epige-

netic dysregulation and cellular ageing. Clinical expressions of geno-

toxicity are expected to appear as cancer, birth defects and ageing.

CHMP7 (charge multivesicular body protein 7) oxidation caused

heterodimerization by disulphide crosslinking and aberrant cross-

linking with membrane bound LEMD2 (LEM-domain nuclear envelope

protein 2) inducing membrane deformation and collapse. ROS-CHMP7

directly induced chromosomal shattering. Oxidized CHMP7 bound

covalently to the membrane repair scaffolding protein ESCRT-III

(endosomal sorting complex required for transport–III). ROS triggered

homo-oligomerization of the autophagic receptor p62/sequestome

re-routing the CMPH7-ESCRT-III complex away from membrane

repair into macroautophagy via the autophagosome and microauto-

phagy via lysozomes.1–3 Expected downstream consequences of

micronuclear rupture including chromosomal fragmentation, chromo-

thripsis and cGAS-STING (cyclic adenosine-guanosine synthase–

stimulator of interferon signalling) activation were demonstrated.

Cancer-related innate inflammation is known to drive tumour progres-

sion and distant metastasis. These principles were tested both in nor-

mal and also numerous malignant (including head and neck squamous,

cervical, gastric, ovarian and colorectal cancers) cell lines.1,2 Similar

processes including DNA damage and epigenomic derangements have

also been identified in TH1-lymphocytes during fever indicating that

mitochondriopathic-genotoxic mechanisms may in fact be widespread

and fundamental.4
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Cannabis has been known to be linked with both micronuclear

development and mitochondrial inhibition for many decades.5,6

All cannabinoids have been implicated in genotoxicity as the moi-

ety identified as damaging the genetic material is the central olivetol

nucleus on the C-ring itself.7 This finding implicates Δ8-, Δ9-, Δ10-,

Δ11-tetrahydrocannabinol, cannabigerol, cannabidiol and cannabinol

amongst all other cannabinoids.

Historically, the cancer-cannabis link has been controversial. Dif-

fering results in published studies may be attributed to various factors

including multiple exposures (including tobacco), differences in

study design and the rapid rise of cannabis potency. One often quoted

study actually specifically excluded high level cannabis exposure, which

would now appear to have been a major methodological limitation.8 It

is widely documented that there has been a sharp increase in cannabis

concentration from the 1970s to the present day. THC concentrations

of 25%–30% are commonly noted in cannabis herb and flower sold

commercially, and 100% THC concentrations are well known for can-

nabinoid based products such as dabs, waxes and ‘shatter’.
In this context, the recent appearance of a series of continent-

wide epidemiological, space–time and causal inferential studies in

both Europe and North America is notable for many positive signals

for various cancers including breast, pancreas, liver, AML, thyroid, tes-

tis, lymphoma, head and neck squamous cancer, total childhood can-

cer and childhood ALL.9–15 The literature on cannabis and testicular

cancer is almost uniformly positive and has a relative risk of around

2.6-fold,16 this risk factor is now widely acknowledged17–19 and the

effect is quite fast since the median age of exposure may be about

20 years and the median age of testis cancer incidence is only

31 years. Testicular cancer is the adult cancer responsible for the most

years of life lost.17,18,20,21 The inclusion of several childhood cancers

in association with cannabis exposure obviously implicates transge-

nerational transmission of malignant mutagenesis.

An intriguing finding in the case report literature is that in many

cases, cancers occur decades earlier and are very aggressive at diag-

nosis.22 Mechanisms such as the synergistic mitochondriopathic–

micronuclear axis presently proposed in the recent Science papers1–4

may directly explain this very worrying observation.

Whilst cancer is thought to be a rare outcome amongst canna-

bis exposed individuals, ageing effects are not. A dramatic accelera-

tion of cellular epigenetic age by 30% at just 30 years was recently

reported23 with indications this effect likely rises with age,24 and

the demonstration that cannabis exposed patients had adverse

outcomes across a wide range of physical and mental health out-

comes including myocardial infarction and emergency room presen-

tations.25 Importantly, the ageing process itself has been shown to

be due to redistribution of the epigenetic machinery in such a man-

ner as to produce dysregulation (and widespread reduction) of gene

expression and to be inducible by limited genetic damage resulting

from just a handful of DNA breaks.26 Extremely worryingly, age-

related morphological changes have been described in both oocytes

and sperm.27,28

Epidemiological studies of European and American cannabis-

cancer links are supported by epidemiological, space–time and causal

inferential studies of links between cannabis and congenital

anomalies.29–33 Reported congenital anomalies are clustered in the

cardiovascular, neurological, limb, chromosomal, urogenital and gas-

trointestinal systems. The fact that all five chromosomal anomalies

studied here are represented in this list, notwithstanding their high

rate of known foetal loss, is strong evidence for chromosomal mi-

segregation during germ cell meiosis, which is the genetic precursor to

micronucleus development.34,35 The fact that almost identical results

were reported in both the United States and Europe provides strong

external validation to these findings.30

This is consistent with recent press reports of dramatic increases

in babies and calves born without limbs in both France and

Germany36,37 raising the public health spectre of downstream implica-

tions of food chain contamination. Melbourne, Australia, is a multi-

ethnic city, which heads the global leaderboard for babies born with

the serious limb anomalies amelia and phocomelia.37–40 This pattern

of elevated rates of major birth defects is not seen in the host nations

from which these migrant populations are derived. Cannabis farms are

increasingly common around Melbourne, just as they are in the

French province of Ain, which has similar concerns.37,41–43

Major epigenetic changes have been found in human sperm,44

which have also been identified in exposed rodent offspring.44–46

Indeed, 21 of the 31 congenital anomalies described following prena-

tal thalidomide exposure have also been observed epidemiologically

following prenatal cannabis exposure and 12 of 13 cellular pathways

by which thalidomide operates have been similarly identified in the

cannabis mechanistic literature.47 Both human and rodent epigenomic

studies44–46 and epidemiological studies show that adult cannabis

exposure is linked with the incidence of autism48–53 and cerebral pro-

cessing difficulties54–57 in children prenatally exposed. Together, this

data is clear and robust evidence for the transgenerational transmis-

sion of major genotoxic outcomes.

Notwithstanding the well-known ambiguities in the epidemiologi-

cal literature for cannabis, it is clear from the above brief overview

that there is strong and compelling evidence that cannabis genotoxic

outcomes are well substantiated and form a remarkably congruent

skein of interrelated evidence across all three domains of genotoxic

pathology including cancer, congenital anomalies and ageing.

So too compelling epidemiological, morphological and epigenetic

evidence of transgenerational transmission of cannabinoid genotoxi-

city to foetus, egg, sperm and offspring carries far reaching and

transformative implications and indeed reframes the discussion sur-

rounding cannabis legalization from merely personal-hedonistic to the

protection of the national genomic integrity for multiple subsequent

generations.

The present time therefore represents a watershed moment.

The new profoundly insightful studies from Science point the way and

provide the trigger. Clearly, there is a great need for a new

and updated cohort of epidemiological studies on these issues at the

population level in the modern context of the widespread availability

of much more potent cannabinoid preparations.

However, our first responsibility is to act on the evidence we do

have. Given the uniform picture painted by data from myriad
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directions, it can be said that the evidence for cannabinoid genotoxi-

city is at once so clinically significant, robust and compelling as to con-

stitute a resounding clarion call to action: The only outstanding

question is ‘Will we rise to the challenge?’
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