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Graphical Abstract

∙ Single-cell transcriptome analysis with lentiviral barcoding (SCALeBa) to
investigate the molecular characteristics of human HSPCs with different cell
fates in vivo.

∙ Using SCALeBa, human HSPCs are divided into different subsets with
signature genes identified.

∙ The legitimacy of identified genes with SCALeBa was validated using biologi-
cal experiments and a public dataset.

∙ SCALeBa improves the accuracy of differentiation trajectories in monocle2-
based pseudo-time analysis.
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Abstract
Hematopoietic stem and progenitor cells (HSPCs) possess the potential to pro-
duce all types of blood cells throughout their lives. It is well recognized that
HSPCs are heterogeneous, which is of great significance for their clinical applica-
tions and the treatment of diseases associated with HSPCs. This study presents a
novel technology called Single-Cell transcriptome Analysis and Lentiviral Bar-
coding (SCALeBa) to investigate the molecular mechanisms underlying the
heterogeneity of humanHSPCs in vivo. The SCALeBa incorporates a transcribed
barcoding library and algorithm to analyze the individual cell fates and their
gene expression profiles simultaneously. Our findings using SCALeBa reveal that
HSPCs subsetwith stronger stemness highly expressedMYL6B,ATP2A2,MYO19,
MDN1, ING3, and so on. The high expression ofCOA3,RIF1,RAB14, andGOLGA4
may contribute to the pluripotent-lineage differentiation of HSPCs. Moreover,
the roles of the representative genes revealed in this study regarding the stem-
ness of HPSCs were confirmed with biological experiments. HSPCs expressing
MRPL23 and RBM4 genes may contribute to differentiation bias into myeloid
and lymphoid lineage, respectively. In addition, transcription factor (TF) char-
acteristics of lymphoid and myeloid differentiation bias HSPCs subsets were
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identified and linked to previously identified genes. Furthermore, the stemness,
pluripotency, and differentiation-bias genes identified with SCALeBa were veri-
fied in another independentHSPCs dataset. Finally, this study proposes using the
SCALeBa-generated tracking trajectory to improve the accuracy of pseudo-time
analysis results. In summary, our study provides valuable insights for under-
standing the heterogeneity of human HSPCs in vivo and introduces a novel
technology, SCALeBa, which holds promise for broader applications.

KEYWORDS
barcoding technology, hematopoietic stem and progenitor cells, lineage tracing, scRNA-seq

Key points
∙ SCALeBa and its algorithm are developed to study the molecular mechanism
underlying human HSPCs identity and function.

∙ The human HSPCs expressing MYL6B, MYO19, ATP2A2, MDN1, ING3, and
PHF20may have the capability for high stemness.

∙ The humanHSPCs expressingCOA3, RIF1, RAB14, andGOLGA4may have the
capability for pluripotent-lineage differentiation.

∙ The human HSPCs expressing MRPL23 and RBM4 genes may have the
capability to differentiate into myeloid and lymphoid lineage respectively in
vivo.

∙ The legitimacy of the identified genes with SCALeBa was validated using
biological experiments and a public human HSPCs dataset.

∙ SCALeBa improves the accuracy of differentiation trajectories in monocle2-
based pseudo-time analysis.

1 ARTICLE SUMMARY

Junnan Hua et al. developed a technology that com-
bines single-cell transcriptome Analysis with lentiviral
barcoding (SCALeBa) to investigate the molecular charac-
teristics of human hematopoietic stem and progenitor cells
(HSPCs) with different cell fates in vivo. Using SCALeBa
and in vivo transplantation, HSPCs are divided into sev-
eral subsets according to their stemness and differentiation
bias, with the molecular characteristics of these subsets
and the gene-level explanation for the heterogeneity of
HSPCs being identified.

2 INTRODUCTION

Hematopoietic stem and progenitor cells (HSPCs) are the
foundation of the adult hematopoietic system, playing a
pivotal role in the long-term maintenance and continuous
production of all mature blood cell lineages throughout
the lifespan of an organism.1 They serve as an exem-
plary model for studying stem cell biology. Concurrently,

HSPCs-based allogeneic stem transplantation has been
extensively employed in clinical settings for the treatment
of various haematological malignancies and genetic blood
disorders, including transfusion-dependent β thalassemia
and congenital immunodeficiency.2 Therefore, under-
standing the molecular mechanisms underlying HPSC
maintenance and differentiation is important for both
fundamental scientific research and clinical applications.
Previous studies have demonstrated that HSPCs are

functionally heterogeneous cells, including various cell
subsets. Based on their self-renewal capacity and differ-
entiation potency, HSPCs can be categorized into long-
term hematopoietic stem cells (LT-HSCs), short-term
hematopoietic stem cells (ST-HSCs), multipotent progen-
itors (MPPs), common myeloid progenitors (CMPs), and
common lymphoid progenitors (CLPs).3,4 Recent advances
in single-cell RNA sequencing (scRNA-seq) technology
have facilitated the analysis of HSPCs at the single-
cell level, significantly enhancing our comprehension of
HSPCs production, maintenance, and differentiation.5 To
elucidate the molecular mechanisms governing the func-
tional subsets within HSPCs, research scientists have
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utilizedwell-characterized cell surfacemarkers to separate
HSPCs into distinct subsets with different potentials, and
subsequently conducted scRNA-seq to generate molecu-
lar signature maps of subsets of HSPCs at the single-cell
resolution.5–7 However, performing single-cell sorting and
scRNA-seq based on a limited set of reported surface
markers, may compromise the data accuracy and the com-
prehensiveness of analysis, as the subset cells with the
same surface markers are still heterogenous which have
been proved by scRNA-seq. Another strategy is to con-
duct scRNA-seq of HSPCs without cell sorting, and then
define the HSPCs subsets based on the expression pat-
tern at the single-cell level.8 Unsupervised clustering is
widely applied in single-cell RNA-sequencing (scRNA-
seq) to detect distinct cell clusters that can be annotated
as known cell lineages or novel ones. However, it is always
challenging to truly characterize the biological function
of cell clusters identified by scRNA-seq. This makes the
reliability of such annotations questionable.9,10
If the RNA expression profiles of HSPC subsets can

be linked with their corresponding in vivo differentiation
potential at the single-cell level, it would greatly enhance
our understanding of themolecular and regulatorymecha-
nisms driving the diverse differentiation capacities of these
subsets. These insights would provide a crucial theoreti-
cal foundation for utilizing and manipulating HSPCs in
the treatment of various diseases.11 Inspired by T cells
and TCRs if a random barcode sequence is added to the
3′UTR of an exogenous gene carried by a lentivirus, it
is possible to identify and track the cellular identity in
successfully transduced stem cells and their progeny at
the single-cell level while obtaining the single-cell RNA
expression profiles. We refer to this novel technique as the
single-cell transcriptome analysis with lentiviral barcod-
ing (SCALeBa). By developing and optimizing SCALeBa
and combining it with in vivo experiments in mice, we can
establish the correspondence between single-cell expres-
sion profiles and the in vivo differentiation potential of
various cellular subsets within human HSPCs. This will
elucidate the molecular mechanisms underlying the func-
tional heterogeneity of human HSPCs. The established
SCALeBa technology will also serve as an important tool
to advance stem cell research across various fields.

3 RESULTS

3.1 Characterization of human
hematopoietic cells from NCG-X mice
24 weeks after transplantation

The single-cell transcriptome analysis with lentiviral bar-
coding (SCALeBa) technology first utilizes a lentiviral

library to insert random 20 bp barcodes into the genome
of recipient cells. After conducting single-cell sequencing
on the cells, barcode extraction and analysis are performed
to characterize the cell identity and then track the cell lin-
eages. By examining the composition and distribution of
barcodes in the downstream cells, information about the
heterogeneity and differentiation bias of the upstream cells
with the same barcodes can be obtained (Figure 1A and
S1A). To verify the feasibility of SCALeBa technology, we
confirmed the abundance of the barcode library is about
2.5 × 106. Then approximately 5 × 104 HSPCs from mobi-
lized peripheral blood, a quantity less than one-tenth of the
library abundance, were transduced to ensure that most of
the cells could carry unique barcodes after transduction.
On the 12th day, uniform manifold approximation and
projection (UMAP) from single-cell sequencing showed
barcode-positive cells distributed across almost all sub-
sets (Figure S1B,C), indicating that there was no apparent
transduction bias. Meanwhile, the transduction bias val-
ues in different cell subsets were persistent from Day
4 to 7 (Figure S1D). Based on single-cell transcriptome
data and barcode analysis, the average transduction rate
was 76.24% on the fourth day and 75.71% on the sev-
enth day with lentiviral empty loading rates of 1.56%
and 1.41%, respectively (Figure S1E). These results con-
firm that most cells were transduced and carried unique
barcodes. Thus, lentiviral vector transduction of human
HSPCs with SCALeBa resulted in efficient and specific
transduction without affecting differentiation bias. These
findings suggest that this technology can be used to trans-
duce human HSPCs for mice transplantation. Then, we
utilized SCALeBa to track the cell fate of HSPCs and to
understand the correspondingmolecular characteristics in
vivo. CD34 positive .8 × 105 HSPCs derived from human
umbilical cord blood were labelled with SCALeBa lentivi-
ral library and transplanted into NCG-X immunodeficient
mice. After 24 weeks, BM samples from the mice were
collected for human CD45+ cell isolation and single-cell
sequencing, and bioinformatic analysis was performed by
retrieving and using the barcodes to predict cell activities
and differentiations (Figure 1A). We captured a total of
22 493 cells, of which 15 543 passed quality control, with
an average of 2509 genes and 8175 unique molecular iden-
tifiers (UMIs) per cell (Table S1). The cells with barcode
and passed quality control is 3181, with an average of 3014
genes. Then, based on the feature gene expression of the
main cell subsets projected onto UMAP, we divided the
cell subsets into 10 categories, including HSPCs and other
progenitor cells (Figure 1B). The accuracy of clustering
of lymphoid and myeloid subsets was further verified by
pseudo-time series analysis (Figure S2) and expression pat-
tern ofmarker genes (Figure S3). Similarly, we also applied
UMAP to the subset of barcoded cells (Figure 1C) and
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F IGURE 1 Characterization of human hematopoietic cells from NCG-X mice 24 weeks after transplantation. (A) The diagram of using
SCALeBa to characterize human HSPCs in vivo. Human CD34+ HSPCs from umbilical cord blood were transduced with SCALeBa
lentiviruses that carry different barcodes in vitro. Subsequently, the transduced cells were transplanted into immunodeficient NCG-X mice.
After 24 weeks, bone marrow (BM) from these mice were collected and CD45-positive human cells were isolated with magnetic beads and
underwent single-cell sequencing. Subsequent analysis for cell identity and barcode-positive cells was conducted. (B) The UMAP
visualization of the quality control passed 15 543 cells and ten cell lineages were classified. (C) The UMAP visualization of 3183 cells carrying
554 unique barcodes. Each colour represents one kind of barcode. (D) The proportion of barcode-positive cells in each cell population. (E)
Heatmap showing the expression levels of all genes in cell lineages with and without barcodes.

the proportion of cells with barcode in each cell lineage
were about 10%−40% (Figure 1D). Meanwhile, we found
the expression levels of all genes were almost the same
between cells with barcode and without barcode, suggest-
ing the viral transduction did not affect the gene expression
(Figure 1E).

3.2 Identification and characterization
of human HSPCs with different output
capabilities using SCALeBa

To investigate the heterogeneity ofHSPCs,we used barcod-
ing to track the lineage of HSPCs and their downstream
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F IGURE 2 Identification and characterization of human HSPCs with different output capabilities using SCALeBa. (A) The schematic
diagram shows the homeostasis and differentiation of HSPCs with low, med, and high outputs. The low-output HSPCs exhibit more
self-renewal, the med-output HSPCs maintain a balance between self-renewal and downstream differentiation, and the high-output HSPCs
tend to downstream differentiation. (B) The output value of HSPCs is calculated by comparing the distribution ratio of cells with the same
barcode between other cells and HSPCs. High outputs, value > 2.0, med outputs, .8 < value < 1.2, and low outputs, value <.4. (C) The UMAP
plot visually presents the distribution of HSPCs and their progeny cells with different output values. (D) The proportion of cells with different
barcodes in barcode-positive cells in each cell lineage. (E) The GSVA plot displays the scoring of the three output subsets in relation to the
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population. When a specific barcode is identified within
a subset of HSPCs, we will count the fraction with the
same barcode separately in the downstream and HSPCs
subset and calculate the ratio of the two as the “output
value”(Figure 2A). Through barcode tracing analysis, we
found a total of 189 HSPCs have barcodes that also exist in
the downstream population. Therefore, those HSPCs can
be defined with output values and used for the following
studies.
According to the distribution of all the output values,

we found that those HSPCs were clearly divided into three
subsets (Figure 2B). Therefore, we defined the HSPCs sub-
set with output values of 0 to .4 as the low-output subset.
It may indicate that HSPCs are more inclined towards self-
renewal. The output value between .8 and 1.2 was defined
as the med-output subset. It may indicate that the down-
stream differentiation and self-renewal ability of those
HSPCs are roughly equal. The output value greater than
2.0 was defined as the high-output subset. It indicates that
the HSPCs represented by the barcode are more inclined
to downstream differentiation. These three HSPCs sub-
sets and their downstream cells with the corresponding
barcodes were shown in the UMAP (Figure 2C), and the
cells with median- and high-output barcodes show a more
widespread distribution when compared with cells with
low-output barcodes.
In HSPCs, the med and high output population account

for more than 70% of the proportion, suggesting most
HSPCs tend to differentiate. In agreement, in LMP and its
downstream Prog B and B cells, as well as in GMP and
downstreamDC cells, there is a general trend that the pro-
portion of cells with low, med output barcodes decreases
alongwith differentiation (Figure 2D). TheGene Set Varia-
tionAnalysis (GSVA) scores of themed and low output cell
subsets are higher than those of the high output subset in
gene sets related to stemness12 and proliferation,13–20 while
in differentiation-related gene sets,14,21–26 the high output
subset have higher scores (Figure 2E).
Gene enrichment analysis between the low- and high-

output populations revealed that genes highly expressed
in the low-output population were more enriched in

ribosome-related pathways, while genes highly expressed
in the high-output population were more enriched in
nuclear and spindle-related pathways. In Gene Set Enrich-
mentAnalysis (GSEA) differential analysis, the low-output
population was enriched DNA polymerase-related sig-
nalling pathways, further indicating its stronger self-
replication and renewal ability (Figures 2F and S4A).
Whenwe compared the low-output andmed-output popu-
lations, both of which have strong stemness, we found that
they shared enrichment in mitochondrial matrix-related
pathways. It is well known that mitochondrial activity is
one of the indicators of HSPCs stemness, and our results
provide additional evidence for this viewpoint. GSEA
results demonstrated that, compared with the med-output
population, the low-output population enriched in path-
ways related to mitosis and spindle, indicating its slightly
stronger self-renewal ability than the med-output popula-
tion (Figures 2G and S4B). The gene enrichment analysis
between the med-output and high-output populations
showed that genes highly expressed in the med-output
population were enriched in ribosome-related pathways,
and GSEA results demonstrated that med-output enriched
in DNA replication-related pathways. Those results sug-
gest that themed-output population, similar to low-output
populations, has higher stemnesswhen comparedwith the
high-output population (Figures 2H and S4C).
Subsequently, we analyzed the differentially expressed

genes between the three subsets to find the key factors
that might contribute to the output differences of HSPCs.
In the comparison between low output and high output,
we found that genes such as ATP2A2,MYL6B, andMYO19
were highly expressed in the low output subset, while
genes like PPP1R2 and STK17B were highly expressed
in the high output subset (Figure 2I). The ATP2A2 gene
mainly functions in macroautophagy (Figure S4D).
Comparing med output and high output revealed that
genes such as PHF20, MYL6B, and MCM4 were highly
expressed in the med output subset, while genes like
STK17B and PPP1R2 were highly expressed in the high
output subset (Figure 2I). The PHF20 gene functions in
histone modification and the MCM4 gene functions in

gene sets associated with stemness, proliferation (GO:0071425), and differentiation (GO:0060218). p-value was calculated by t-test, *p < .05;
**p < .01. (F–H) The bidirectional gene enrichment plot for GO (Gene Ontology) CC (Cell Component) shows the enrichment of cellular
components between the low, med, and high output HSPCs subsets. (I) The volcano plots showing the differential gene expression between
low, med, and high output HSPCs subsets. The different subset-related genes are shown in red and blue respectively in each panel. Key genes
are highlighted in green. (J) The expression levels ofMYL6B and other reported stemness genes were upregulated in HSPCs that were
transduced with a lentiviral vector for the overexpression ofMYL6B. The error bars are the SD. *p < .05; **p < .01. (K) The proportion of
CD34+CD38− cells was increased in HSPCs overexpressingMYL6B. (L) TheMYL6B indels were induced by CRISPR/Cas9 editing, as
determined by the T7 endonuclease assay. (M) The expression levels of reported stemness genes were decreased in HSPCs that were
transduced with CRISPR/Cas targetingMYL6B. The error bars are the SD. *p < .05; **p < .01; ***p < .001. (N) CFU assay results of human
HSPCs with overexpression or knockdown ofMYL6B. n = 2, the error bars are the SEM.
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F IGURE 3 Identification of pluripotent HSPCs subset and its differential gene expression using SCALeBa. (A) The schematic diagram
shows that the unipotent, multipotent, and pluripotent HPSCs subsets, which refer to the HSPCs that can differentiate into one cell lineage
(n = 1), multiple cell lineages (n = 2∼8) and all cell lineages (n = 9), respectively. (B) The number of unique cell lineages for barcode
distribution is denoted as theM-value. AnM-value of 9 indicates the distribution of one barcode across all cell lineages. Additionally, the
clone count corresponding to barcodes with differentM values is also presented. (C) The bar chart displays the proportion of cells with
pluripotent barcodes in barcode-positive cells in each cell lineage. (D) The UMAP plot visually presents the pluripotent HSPCs subset and
their progenies. (E) The Venn diagram shows the composition of pluripotent-lineage HSPCs in terms of output values. (F–H) The GSVA plot
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DNA replication and double-strand break repair (Figure
S4). Lastly, in comparing the low output subset with
the med output subset, genes like MDN1 and ING3 were
highly expressed in the low output subset, while genes
like SMG1 were highly expressed in the med output
subset (Figure 2I). The MDN1 gene functions in ribosome
biogenesis and nuclear transport-related pathways, ING3
plays a role in DNA damage repair, and the SMG1 gene
functions in nuclear transport-related pathways (Figure
S4F). In conclusion, the high output subset exhibited high
expression of the PPP1R2 and STK17B genes in comparison
with both the low output and med output subsets, and
these genes are referred to as LS (low-stemness) genes.
In pairwise comparisons, we identified genes such as
ATP2A2, MYL6B, MYO19, PHF20, MCM4, MDN1, and
ING3 that may be associated with stronger stemness, and
these genes are referred to as HS (high-stemness) genes.
Moreover, we experimentally verified the role of the

above representative genes on HSPCs stemness. We con-
structed lentiviral vectors to transduce human CD34+
HSPCs for overexpression and knockdown of the cor-
responding genes. We first focused on MYL6B, as it
was both upregulated in low and med output HSPCs
subsets. After being transduced with a lentiviral vector
overexpressing MYL6B, the HSPCs showed a significant
upregulation of the MYL6B gene, as well as several
reported stemness-related genes,27–29 including MYCT1,
MLLT3, CD133, and CD90 (Figure 2J). The flow cytom-
etry results showed that HSPCs overexpressing MYL6B
had an increased CD34+CD38− ratio (Figure 2K). Mean-
while, when MYL6B was knockdown with CRISPR/Cas
(Figure 2L), the stemness-related genes were significantly
downregulated in transduced HSPCs (Figure 2M). The
colony-forming unit (CFU) assay showed that the total
number of four clones (CFU-E, BFU-E, CFU-GEMM,
and CFU-GM), was increased after overexpression of
MYL6B, but decreased after its knockdown (Figure 2N).
Furthermore, we further confirmed that the knock-
down of ING3, MDN1, MYO19, and PHF20 in HSPCs
cells, also led to the downregulation of stemness-related
genes and the decreased clone numbers in CFU assay
(Figure S5).

3.3 Identification and characterization
of human HPSCs with pluripotency using
SCALeBa

Pluripotent differentiation ability is an important indicator
of the stemness of HSPCs. Then we evaluated the pluripo-
tent differentiation ability of the HSPCs using SCALeBa as
a barcode-based lineage tracing approach. The “M-value”
was calculated by counting the number of lineage types in
which each HSPC barcode was distributed, ranging from
0 to 9. An M-value of 9 indicates that the barcode carried
by the HSPCs is distributed across all lineages, indicating
that the HSPCs are capable of all lineage differentiation
and pluripotent. In contrast, if the barcode is found in sev-
eral but not all cell lineages or only in one certain cell
lineage, it suggests theHSPCs carrying this barcodemay be
multipotent or unipotent with differentiation bias, and its
M-value should be less than 9 (Figure 3A). We found that
a large proportion of barcoded HSPCs were pluripotent
(Figure 3B) and thus we first focused on this subset. The
relative distribution of barcodes corresponding to pluripo-
tent HSPCs is approximately similar across all cell lineages
(Figure 3C). In the UMAP plot, all cells with barcodes
related to pluripotency are labelled, demonstrating that
cells derived from the defined pluripotent HSPCs are dis-
tributed across all lineages (Figure 3D). Further analysis
revealed that the majority of pluripotent HSPCs belong to
the low-med output subset, with only a small proportion
belonging to the high-output subset (Figure 3E).
To characterize the HSPCs with stronger self-renewal

capability, we selected pluripotent HSPCs that also belong
to low and medium output subsets and defined these
cells as PL-HSPCs subsets. Then, we performed the gene
expression analysis of this subset. Consistent with our
speculation, the GSVA scores for stemness, proliferation,
and differentiation-related gene sets are higher in these
PL-HSPCs when compared with cells of non-pluripotent
HSPCs subsets (Figure 3F–H). Gene enrichment analy-
sis suggested the PL-HSPCs subset was enriched in the
ribosome-related pathway (Figure 3I), which is similar to
those of the low output subset. The differential gene anal-
ysis showed that COTL1, PTBP3, and KLF6 genes were

displays the scoring of the PL-HSPCs (pluripotent-lineage) to non-pluripotent HSPCs in relation to the gene sets associated with stemness,
proliferation, and differentiation. p-value was calculated by t-test, *p < .05; **p < .01. (I) The GO(CC) bidirectional gene enrichment plot
illustrates the enrichment of cellular component terms between the TL HSPCs and non-pluripotent HSPCs. (J) The volcano plot illustrates
the differential gene expression between the PL-HSPCs and non-pluripotent HSPCs. PL-HSPCs and non-pluripotent HSPCs-related genes are
shown in red and blue, respectively. Key genes are highlighted in green. (K) Circle plot illustrates the signalling pathways enriched for
differentially expressed genes between the PL-HSPCs and non-pluripotent HSPCs subsets. (L) The expression levels of RAB14 and other
reported stemness genes were upregulated in HSPCs that were transduced with a lentiviral vector for the overexpression of RAB14. The error
bars are the SD. *p < .05; **p < .01; ***p < .001. (M) The proportion of CD34+CD38− cells was increased in HSPCs overexpressing RAB14. (N)
CFU assay results of human HSPCs with overexpression of RAB14. n = 2. The error bars are the SEM.
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downregulated, and COA3, OLGA4, RIF1, and RAB14were
upregulated in the PL-HSPCs subset, and these genes are
referred to as pluripotency genes (Figure 3J). Interestingly,
KLF6 is also downregulated in low output HSPCs subset,
suggesting its critical roles in both stemness and pluripo-
tency. Further signalling pathway enrichment analysis of
the upregulated genes in PL-HSPCs revealed that the RIF1
gene is enriched in DNA damage repair-related pathways
(Figure 3K), and DNA damage repair is crucial for main-
taining the stemness and longer lifespan of hematopoietic
stem cells.30
Moreover, we experimentally verified the effect of the

RAB14 gene on stemness. We constructed lentiviral vectors
to transduce human CD34+ HSPCs for overexpression of
the RAB14 gene. After being transduced with a lentiviral
vector overexpressing RAB14, the HSPCs showed a signif-
icant upregulation of the RAB14 gene, as well as several
reported stemness-related genes,27–29 including MYCT1,
MLLT3, CD133, and CD90 (Figure 3L). The flow cytom-
etry results showed that HSPCs overexpressing RAB14
had an increased CD34+CD38− ratio (Figure 3M). The
CFU assay showed that four clones were increased after
overexpression of RAB14 (Figure 3N).

3.4 Identification and characterization
of human HSPCs with biased
differentiation using SCALeBa

After characterizing the HSPCs subset with pluripotency
and self-renewal capabilities, we next focus on HSPCs
subsets with a differentiation bias. Through barcode
lineage analysis, we selected the representative bar-
codes that label HSPCs differentiating into lymphoid
and myeloid lineages respectively. The cells with those
barcodes were displayed on UMAP, showing clear distinct
distribution patterns (Figure 4A,B). Additionally, we
chose a clone with pan-lineage differentiation as a control.
Compared with the distribution of barcodes with differ-
entiation bias, cells marked with pan-lineage barcodes
exhibited a more extensive distribution on the UMAP
(Figure 4C). In consistency, these barcodes also show
distinct enrichment patterns in corresponding progenies
(Figure S6A).
To further understand the molecular mechanisms lead-

ing to differentiation bias, we analyzed the differentially
expressed genes in HSPCs with differentiation bias. In the
myeloid bias HSPCs subset (Mye HSPCs), genes such as
LAMTOR5, MYO19, MYL6B, IDH1, ATP2A2, and MRPL23
are highly expressed, while in the lymphoid differentia-
tion bias HSPCs subset (LymHSPCs), genes such as KLF6,
RBM4, SATB1, CYTH4, and JADE1 are highly expressed
(Figure 4D). Further gene enrichment analysis revealed

that the highly expressed MRPL23 gene in Mye HSPCs is
mainly enriched in mitochondrial gene expression-related
pathways, while the highly expressed RBM4 gene in the
Lym HSPCs is mainly enriched in mRNA processing and
RNA splicing-related signalling pathways (Figure 4E). It
is worth mentioning that GSEA analysis confirmed that
the Lym HSPCs were more enriched in immune response
and activity-related gene sets compared with the pluripo-
tent HSPCs subset (Figure S6B). This further validates
the differentiation heterogeneity within HSPCs and the
practicality and accuracy of lineage tracing based on bar-
codes. Overall, enrichment analysis between these two
subsets identified 10 significantly enriched signalling path-
ways, including the three signalling pathways involving
the MRPL23 and RBM4 genes (Figure 4E,F). This con-
firms, to some extent, the role played by the MRPL23
and RBM4 genes and the signalling pathways they reg-
ulate in the differentiation bias of HSPCs. MRPL23 and
RBM4 are referred to asmyeloid differentiation bias (MDB)
genes and lymphoid differentiation bias (LDB) genes,
respectively.
To explore the differences in regulatory mechanisms

between different differentiation bias subsets, we con-
ducted SCENIC TF analysis on Mye and Lym HSPCs. In
the Mye HSPCs subset, BRF1 and IRF8 regulons showed
relatively high AUC values, while in the Lym HSPCs sub-
set, regulons such as E2F4, POLR2A, and IRF3 exhibited
relatively high AUC values (Figure 4G). From the perspec-
tive of TF binary regulon activity, among the TFs with high
AUC values mentioned above, the BRF1 TF in the Mye
HSPCs subsetwas “on”,while theE2F4,POLR2A, and IRF3
TFs in the LymHSPCs subset were “on” (Figure 4H). Upon
further investigation of the genes regulated by the TFs
mentioned above, we found that the genes regulated by the
E2F4 TF specifically include the RBM4 gene (Figure 4I),
suggesting E2F4-RBM4 may play an important role in
lymphoid differentiation.

3.5 The stemness, pluripotency, and
differentiation-bias genes identified with
SCALeBa can be verified in another
independent dataset

In order to validate the consistency of the stemness,
pluripotency, and differentiation bias-related genes iden-
tified by SCALeBa with findings from other single-cell
transcriptome datasets, we conducted an analysis on a
dataset consisting of 10 776 Lin−CD34+ cells obtained from
healthy controls, transplant patients, and their grafts.31
After clustering, annotation, and further analysis, we
specifically focused on 9844 cells annotated as HSPCs
(Figure 5A,B).
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F IGURE 4 Identification and characterization of human HSPCs with biased differentiation using SCALeBa. (A–C) The UMAP plot
visually presents the barcoded subsets with differentiation bias and pluripotency. (D) The volcano plot illustrates the differential gene
expression between Mye and Lym HSPCs subsets. Mye HSPCs and Lym HSPC-related genes are shown in red and blue, respectively. Key
genes are highlighted in green. (E) Circle plot illustrates the signalling pathways enriched for differentially expressed genes between the Lym
HSPCs and Mye HSPCs subsets. (F) GO enrichment circle diagram shows the signalling pathways enriched by the differential genes of Lym
HSPCs and Mye HSPCs, and the GO term ID and description are shown in the table. (G) The AUC values of all cells in Lym HSPCs and Mye
HSPCs were normalized for presentation. The colour keys from blue to red indicate AUC values from low to high. The names of regulons
specifically upregulated in Lym HSPCs are shown in red, and the names of regulons upregulated in Mye HSPCs are shown in blue. (H) The
binary regulon activity matrix was distributed and plotted as a heat map from the AUC of SCENIC, and the values of regulons in Lym HSPCs
and Mye HSPCs were normalized. The dark colours in the diagram indicate the ON status of corresponding regulons. (I) The network
diagram shows the genes regulated by the E2F4.
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F IGURE 5 The stemness, pluripotency, and differentiation-bias genes identified with SCALeBa can be verified in another independent
dataset. (A) The UMAP visualization of 10776 Lin−CD34+cells passed the quality control, and 15 cell lineages were classified. Colour intensity
indicates expression levels. (B) Expression of HSPCs signature genes were projected onto UMAP. Colour intensity indicates expression levels.
(C) Subsets of HSPCs that exhibit high expression levels of high stemness genes (HS) or low stemness genes (LS) were labelled with different
colours on the UMAP. The expression pattern of the signature genes of the two subsets was projected onto UMAP. Colour intensity indicates
expression levels. p-value was calculated by t-test, **p < .01; ***p < .001. (D) Subsets of HSPCs that also highly/do not express pluripotency
genes projected onto UMAP. Colour intensity indicates expression levels. The expression levels of the target genes of the two subsets are
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Initially, we divided the 9844 HSPCs into subsets based
on stemness-related genes that had been identified with
SCALeBa in our study. We identified subsets that exhib-
ited high expression of HS- and LS genes, respectively
(Figure 5C). Similarly, based on the pluripotency-related
genes identified with SCALeBa, we distinguished sub-
sets that showed high expression of these pluripotency
genes from those that did not (Figure 5D). Using the pre-
viously identified myeloid and lymphoid differentiation
bias genes, we categorized HSPCs subsets into those with
high expression of MDB/LDB genes and those that did not
(Figure 5E,F).
Subsequently, we used sets of stemness,12

homeostasis,32,33 proliferation,13–20 and differentia-
tion genes14,21–26 to performGSVA scoring on these HSPCs
subsets categorized by the aforementioned gene sets.
The results indicated that subsets with high expression
of all HS genes exhibited higher scores for stemness,
proliferation, and differentiation-related genes, except
for homeostasis, which aligned with our expectations
(Figure 5G). Similarly, the subsets with high expression of
all pluripotency genes scored higher in stemness, home-
ostasis, proliferation, and differentiation-related gene
sets, which was fully consistent with our expectations as
well (Figure 5H). For the HSPCs subsets with high and
non-expression of MDB/LDB genes, we used authoritative
myeloid/lymphoid differentiation gene sets (GO:0045639,
GO:1905458) for scoring. The results were as expected:
HSPCs subsets with expression of MDB showed higher
score in myeloid differentiation gene sets (Figure 5I), and
HSPCs subsets with expression of LDB showed higher
score in lymphoid differentiation gene sets than those
without expression (Figure 5J).
In summary, we conducted a digital validation study

to assess the performance of stemness, pluripotency,
and differentiation bias-associated genes identified using
SCALeBa. Using another independent single-cell tran-
scriptome dataset, we confirmed that the HSPCs subsets
characterized with our specific gene sets display the corre-
sponding molecular signatures, suggesting the legitimacy
of genes identified with SCALeBa.

3.6 SCALeBa application in
pseudo-time analysis using monocle2

Conventional pseudo-time algorithms, in the absence of
time-series data, infer cell developmental paths based
on gene expression patterns. This is predicated on the
assumption that cells exhibit continuous changes in gene
expression throughout their development.34 Therefore, we
hypothesized thatmore accurate cell differentiation trajec-
tories could be delineated by combining barcode tracing
technology.
We utilized monocle2 to plot cell differentiation trajec-

tories for all cells, as well as for cells with barcodes of
lymphoid and myeloid biases, respectively (Figure 6A).
Then, we separately compared the cell trajectories of sev-
eral terminally differentiated lymphoid and myeloid cell
lineages that are supposed to be at the end of the differen-
tiation trajectory. B cell locations were more concentrated
at terminal ends in the trace plotted using cells with the
lymphoid bias barcode, as compared with the trace plot-
ted using all cell data (Figure 6B). Further examination
showed that the B cell marker genes such as CD19, CD22,
CD38, CD40, IRF4, CD79A, and CD79B were expressed at
a higher level in the B cells with lymphoid bias barcodes
when compared with that of all other B cells (excluding
barcoded B cells) (Figure 6C). Similarly, pDC locations
were more concentrated at terminal ends in the trace plot-
ted using cells with the myeloid bias barcode, as compared
with the trace plotted using all cell data (Figure 6D). The
marker genes such asNRP1, LILRA4, CLEC4C, GZMB, and
CD123 were expressed at a higher level in barcoded pDC
when compared with all other pDC (Figure 6E). In the
other two myeloid terminal differentiation subsets (DC1
and DC2), after redrawing with the cell myeloid bias bar-
codes, theDCdifferentiation trajectorieswere all at the end
of the trajectories, and the DCmarker genes of the two DC
subsets, including CPVL, CLEC9A, ITGAE, ITGAX, THBD,
XCR1 and CD1C, NOTCH2, SIRPA, CLEC10A, CD2 were
expressed at a higher level in these barcoded DCs when
compared with all other DCs (excluding DC with myeloid
bias barcodes) (Figure 6F–I).

shown. p-value was calculated by t-test, ***p < .001. (E) Subsets of HSPCs that also highly and do not express MDB genes projected onto
UMAP. Colour intensity indicates expression levels. On the right, the expression levels of the target genes of the two subsets are shown.
p-value was calculated by t-test, ***p < .001. (F) Subsets of HSPCs that also highly and do not express LDB genes projected onto UMAP.
Colour intensity indicates expression levels. On the right, the expression levels of the target genes of the two subsets are shown. p-value was
calculated by t-test, ***p < .001. (G) The GSVA plot displays the scoring of the highly expressed HS/LS genes HSPCs subsets in relation to the
gene sets associated with stemness, homeostasis, proliferation, and differentiation. p-value was calculated by t-test, **p < .01; ***p < .001. (H)
The GSVA plot displays the scoring of the highly or not expressed pluripotency genes HSPCs subsets in relation to the gene sets associated
with stemness, homeostasis, proliferation, and differentiation. p-value was calculated by t-test, ***p < .001. (I) The GSVA plot displays the
scoring of the highly or not expressed MDB genes HSPCs subsets in relation to the gene sets associated with myeloid differentiation. p-value
was calculated by t-test, **p < .01; ***p < .001. (J) The GSVA plot displays the scoring of the highly or not expressed LDB genes HSPCs subsets
in relation to the gene sets associated with lymphoid differentiation. p-value was calculated by t-test, *p < .05.
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F IGURE 6 SCALeBa application in pseudo-time analysis using monocle2. (A) Based on the pseudo-time analysis plot using monocle2,
it shows the differentiation trajectory using all cells, cells with lymphoid bias barcode and cells with myeloid bias barcode. The cell
populations are labelled in different colours. (B) Using pseudo-time analysis plots based on monocle2, the localization of B cells on trajectory
was shown using all cell data, as well as cells with the lymphoid bias barcode. (C) Bar graph shows the difference in CD19, CD22, CD38, CD40,
IRF4, CD79A, and CD79B genes expression between Lym bias B cells and all B cells (Lym bias barcoded B cell was eliminated). Unpaired
t-tests were used. nLym bias B = 67, nall B cell = 5536, *p < .05; **p < .01. The error bars are the SEM. (D) Using pseudo-time analysis plots based on
monocle2, the localization of pDC cells on trajectory was shown using all cell data, as well as cells with the myeloid bias barcode. (E) Bar
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4 MATERIALS ANDMETHODS

4.1 Enrichment of CD34+ cells from
human CB and mPB samples

Human CB and mPB samples were obtained with
informed consent from a health donor (Shenzhen Chil-
dren’s Hospital). Mononuclear cells (MNC) were obtained
by centrifugation on Lymphoprep medium, and MNC
was enriched for CD34+ cell selection with the CD34
Microbead kit and LS column using MACS magnet tech-
nology (Miltenyi). The sorted CD34+ cells were subjected
to downstream experiments.

4.2 Preparation of lentivirus with
barcode

Based on the third-generation lentiviral shuttle plasmid
pCDH, the region between the long terminal repeat region
(LTR) was modified, including replacing the promoter,
adding GFP, and inserting the Nn Tag sequence at the
3 end of the gene and before the polyA signal. The Tag
sequences were synthesized in vitro (n = 20), denatured,
and annealed to form double strands, and then assem-
bled with lentiviral shuttle plasmids through Gibson to
obtain a lentiviral shuttle plasmid library carryingN20Tag.
The lentiviral shuttle plasmid library and helper plasmid
were successfully constructed and co-transfected into 293T
packaging cells. The culturemedium containing lentivirus
particles was collected and concentrated.

4.3 Cell culture

For cell culture, CD34+ cells were resuspended in SCGM
medium (Cellgenix) with the following recombinant
hematopoietic cytokines: recombinant human stem cell
factor (rhSCF) 100 ng/mL, recombinant human throm-
bopoietin (rhTPO) 100 ng/mL, recombinant human fms-
related tyrosine kinase-3 ligand (rhFlt3-L) 100 ng/mL.
CD34+ cells were cultured in 24-well tissue culture plates.
The culture was maintained at 37◦C in an atmosphere of
5% CO2 in an incubator (Thermo Fisher).

4.4 Lentiviral transduction

CD34+ cells were seeded into 24-well plates at a density
of 2−4 × 106 cells/mL, with 5 mL of cell suspension per
well. After a 24 h preactivation period, an equal volume of
.5 mL of transduction reagent was added to each well. The
transduction reagent consisted of a viral solution mixed
with amedium. Additionally, 100 ng/mL of poloxamer 407
and 100 ng/mL of dmPGE2 were incorporated into each
mL of the transduction reagent. The culture medium was
changed the day after transduction.

4.5 Animal guidelines

All animal procedures followed relevant guidelines and
regulations. All protocolswere approved and supervised by
The Institutional Review Board of BGI.

4.6 Transplantation in mice

We used the immunodeficient mice model-NCG-X, with
an age range of 4−6 weeks and female gender. A total of
.8 × 105 cells were transplanted into the mice via tail vein
injection. The mice were provided by GemPharmatech.

4.7 Bone marrow preparation and
human CD45+ cell isolation

After euthanasia, bonemarrow of NCG-Xmice was imme-
diately isolated by flushing and crushing in 2% FBS-PBS,
and erythrocytes were removed with RBC lysis buffer.
The mononuclear cells were then enriched for CD45+ cell
selection using the CD45 Microbead kit and LS column
using MACS magnet technology (Miltenyi).

4.8 scRNA-seq

The DNBelab C Series High-throughput Single-Cell RNA
Library Preparation Kit (MGI, #940-000047-00) was uti-
lized to construct the sequencing libraries according to the

graph shows the difference in NRP1, LILRA4, CLEC4C, GZMB and CD123 gene expression between Mye bias pDC and all pDC (Mye bias
barcoded pDC was eliminated). Unpaired t-tests were used. nMye bias pDC = 70, nall pDC = 1950, *p < .05; **p < .01; ***p < .001. The error bars are
the SEM. (F) Using pseudo-time analysis plots based on monocle2, the localization of DC1 cells on trajectory was shown using all cell data, as
well as cells with the myeloid bias barcode. (G) Bar graph shows the difference in CPVL, CLEC9A, ITGAE, ITGAX, THBD, and XCR1 gene
expression between Mye bias DC1 and all DC1 (Mye bias barcoded DC1 was eliminated). Unpaired t-tests were used. nMye bias DC1 = 47,
nall DC1 = 890, *p < .05; ***p < .001. The error bars are the SEM. (H) Using pseudo-time analysis plots based on monocle2, the localization of
DC2 cells on trajectory was shown using all cell data, as well as cells with the myeloid bias barcode. (I) Bar graph shows the difference in
CD1C, NOTCH2, SIRPA, CLEC10A, and CD2 gene expression between Mye bias DC2 and all DC2 (Mye bias barcoded DC2 was eliminated).
Unpaired t-tests were used. nMye bias DC2 = 25, nall DC2 = 701, *p < .05; **p < .01. The error bars are the SEM.
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manufacturer’s protocol. In brief, single-nucleus suspen-
sionswere used for droplet generation, emulsion breakage,
beads collection, reverse transcription, second-strand syn-
thesis, cDNA amplification, and droplet index product
amplification to generate barcoded libraries. The sequenc-
ing libraries were quantified by Qubit ssDNA Assay Kit
(Thermo Fisher Scientific, #Q10212) and sequenced on
the ultra-high-throughput DIPSEQ T1 or DIPSEQ T10
sequencers sequencer at the China National GeneBank.

4.9 Quality control of scRNA-seq data

The DNBelab C Series HT scRNA analysis
Software Suite (https://github.com/MGI-tech-
bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-
software/tree/version1.0) was used for demultiplexing,
barcode processing and single-cell UMI counting. The
software was applied with default parameters. The
sequencing reads were paired-end, with Read1 consisting
of 30 bases. The first 20 bases of Read1 corresponded to
cell barcodes, while the next 10 bases represented UMIs.
Read2 contained 100-bp cDNA sequences.
The processed reads were then aligned to the UCSC

hg38 human genome using the STAR aligner with default
settings.35 The resulting alignment files (SAM format)
were converted to BAM format and annotated using a
reference gene set with the help of PISA. UMIs within
reads sharing the same cell barcode and gene annota-
tion, and having a 1-bp mismatch, were corrected to the
most supported UMI. Gene-cell metrics were generated
to analyze valid cells, which were automatically identi-
fied based on the UMI number distribution for each cell.
The Seurat R package (v.3.2.1)36 was employed for subse-
quent analysis. Quality control was performed using three
indicators: the number of genes expressed per cell, the
number of UMIs, and the proportion of mitochondrial
RNA.Cellswith abnormal gene expression (lower thanQ1-
IQR or higher than Q3+IQR) were removed. Cells with
a mitochondrial mRNA ratio greater than 10% were also
excluded.Doubletswere removedusing theDoubletFinder
R package (v.2.0.3).37

4.10 Dimensionality reduction and cell
cluster

The Seurat (v.3.2.1) package was utilized to process the
final cell-gene matrix and create a Seurat object. This
involved employing several functions in a sequential
manner, namely “CreateSeuratObject”, “NormalizeData”,
“FindVariableFeatures”, “ScaleData”, and “RunPCA”.38
The data were first normalized and scaled, followed by
dimensionality reduction using principal component anal-

ysis (PCA). The top 40 significant principal components,
which provide a compressed representation of the dataset,
were identified using the “RunPCA” function. Subse-
quently, a graph-based clusteringmethodwas employed to
construct a shared nearest neighbour graph for the dataset.
This was accomplished using the “FindNeighbors” func-
tion, which calculated the pairwise distances between
cells. Themodularity functionwas optimized to determine
clusters, employing the “FindClusters” functionwith a res-
olution set to .6. Finally, the UMAP algorithm was utilized
to learn the underlyingmanifold of the data and project the
cells in a low-dimensional space. This step aimed to group
similar cells into clusters.

4.11 Cell type annotation

Cell type annotation was performed using marker
genes obtained from the CellMarker 2.0 (http://bio-
bigdata.hrbmu.edu.cn/CellMarker/) and panglaoDB
website (https://panglaodb.se/).

4.12 Identification and labelling of cells
with barcodes

We developed a Perl program to capture barcodes from
FASTQ files. It identifies barcodes through different
patterns based on fixed upstream and downstream
sequences.The program performs quality control on these
barcodesand maps each one to a unique cellid. Finally, it
annotates the barcode information into the Seurat object
in subsequent analyses.

4.13 Output value analysis

We took each cell in the HSPCs as the research object,
counted the number of cells with the same barcode in all
non-HSPCs cells, divided by the total number of cells in all
non-HSPCs cells, denoted asO1. Subsequently, we counted
the number of cells with the barcode in theHSPCs, divided
by the total number of cells in the HSPCs, denoted as O2.
The ratio of O1 to O2 is referred to as the “output value”.
Due to the accuracy of barcode tracing, we deleted HSPCs
with more than three barcodes, and for HSPCs with two
barcodes, we connected two barcodes into one barcode for
tracing.

4.14 Pluripotency analysis

Taking each cell in the HSPCs as the research object, we
counted the number of types of cells with the same bar-
codes in the downstream lineages as the M value. Since

https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software/tree/version1.0
https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software/tree/version1.0
https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software/tree/version1.0
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
https://panglaodb.se/
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there are nine types of downstream cell lineages, the range
of M value is 0−9. We define HSPCs with an M value of
1 as unipotent, those from 2 to 8 as multipotent, and 9 as
pluripotent.

4.15 Lineage differentiation bias
analysis

We took each cell in the HSPCs as the research object,
counted the number of cells with a specific barcode in a
downstream lineage and divided by the total number of
cells in that lineage, denoted as D1. Next, we calculated the
number of cellswith the barcode in all lineages and divided
by the total number of cells, denoted as D2. D1/D2 rep-
resents the differentiation bias score of the HSPCs subset
with that specific barcode. After calculating the differenti-
ation bias scores of all HSPCs, we identified HSPCs with
lymphoid/myeloid lineage differentiation bias.

4.16 Differential gene expression
analysis

We identified the DEGs differential gene expression by
applying the “FindMarkers” function (Wilcoxon rank-sum
with p-values for multiple testing with the Benjamini–
Hochberg correction). The plot was generated using R
software (v.4.2.2) package “ggpubr” (v0.4.0) and “ggplot2”
(v3.4.2).

4.17 Gene enrichment analysis

Gene enrichment analysis was performed by using Gene
Enrichment Analysis (GO database) tools in Hiplot Pro
(https://hiplot.com.cn/), a comprehensive web service for
biomedical data analysis and visualization. Terms with the
q value < .05 were considered statistically significant.

4.18 GSEA analysis

GESA analysis was performed by using GSEA (GO
database) tools in Hiplot Pro (https://hiplot.com.cn/), a
comprehensive web service for biomedical data analysis
and visualization.

4.19 GSVA Signature scoring

Assessing function among different cell subpopulations
was conducted by scoring the genes related to stemness,10
homeostasis (GO:0061484), proliferation (GO:0071425),
differentiation (GO:0060218) and myeloid/lymphoid
differentiation gene sets (GO:0045639, GO:1905458) using

GSVA. (https://www.bioconductor.org/packages/devel/
bioc/vignettes/GSVA/inst/doc/GSVA.html). p-value < .05
were considered statistically significant.

4.20 Pseudo-time analysis

The single-cell pseudotime trajectories were gen-
erated with the monocle2 package in R4.0.3.39
The newCellDataSet(), estimateSizeFactors(), and
estimateDispersions() were used to perform these
analyses.

4.21 Construction of knockdown and
overexpression vectors

The CRISPR/Cas9 systemwas utilized for the construction
of knockdown vectors. Guide RNAs (gRNAs) targeting the
gene of interest were designed using online tools (https://
chopchop.cbu.uib.no/). The gRNA sequences were cloned
into a lentiCRISPRv2 vector, which co-expresses Cas9 and
the gRNA. The target sequences for gRNA were selected
based on their efficiency and specificity scores. The knock-
down vector included a puromycin resistance gene for
the selection of stably transfected cells. For overexpres-
sion studies, the coding sequence (CDS) of the target genes
was amplified and cloned into the lentiviral shuttle plas-
mid pCDH under the control of the EF1a promoter. The
overexpression vector contains GFP, which can be used to
identify stably transduced cells in flow cytometry. All the
vectors were verified by Sanger sequencing to ensure cor-
rectly construction. The sequences of gRNA and primers
are provided in Table S2.

4.22 Preparation of knockdown and
overexpression lentiviral vectors

Lentiviral particles were produced by co-transfecting the
knockdown or overexpression vectors along with packag-
ing plasmids (psPAX2 and pMD2.G) into 293T cells using
jetOPTIMUS DNA transfection reagent. After 48 and 72 h,
the supernatant containing lentivirus was collected, fil-
tered through a .45 µm filter membrane, concentrated,
and stored. The titer of the virus was determined by
transducing HEK293T cells at a gradient concentration.

4.23 Hematopoietic colony-forming
unit assay

For the CFU assay, 1000 HSCs transduced with lentivirus
were plated in 35mmPetri dishes using 1mL ofMethoCult

https://hiplot.com.cn/
https://hiplot.com.cn/
https://www.bioconductor.org/packages/devel/bioc/vignettes/GSVA/inst/doc/GSVA.html
https://www.bioconductor.org/packages/devel/bioc/vignettes/GSVA/inst/doc/GSVA.html
https://chopchop.cbu.uib.no/
https://chopchop.cbu.uib.no/
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H4435 medium. The dishes were incubated at 37◦C in a
humidified atmosphere with 5% CO2 for 14 days. After 14
days of incubation, colonies were scored using an inverted
microscope. Colonies were classified as BFU-E, CFU-E,
CFU-GM, or CFU-GEMMbased on theirmorphology. The
total number of colonies and the percentage of each colony
type were calculated.

4.24 Flow cytometry analysis of HSPCs

HSCs transduced by lentivirus at day 10 were collected,
washed in DPBS, and then incubated with fluorescence
conjugated antibody CD34 (Biolegend) and CD38 (Biole-
gend) at 4◦C for 30min, washed and resuspended in DPBS
for flow cytometry analysis. In the analysis, we selected
cells expressing GFP, which were stably transduced by
the lentiviral vector and overexpressed the gene of inter-
est. The stemness of the cells was assessed by analyzing
the proportion of CD34+CD38− cells among GFP-positive
cells. Compensation was applied to correct for spectral
overlap.

4.25 Puromycin selection of HSPCs
transduced with knockdown lentivirus

The screening concentration of purinomycin was deter-
mined by pretest with gradient concentration. Fresh stem
cell media were added to the cells containing puromycin at
a final concentration of 2 µg/mL. The cells were then incu-
bated at 37◦C in a humidified atmosphere with 5% CO2.
The media were changed every 2 days.

4.26 T7 Endonuclease I (T7E1) assay

After 48 h of puromycin selection, collect the cells and
extract genomic DNA using Tiangen’s reagent kit. Amplify
the region of interest through PCR using PrimeStar GXL
(Takara) and purify the PCR product using the NucleoSpin
Gel and PCR clean-up kit. 200 ng of the purified PCR prod-
uct was digested with .5 µL of T7E1 (NewEngland Biolabs)
at 37◦C for 15 min. The sequences of PCR amplification
primers are provided in Table S2.

4.27 Real-time quantitative reverse
transcription PCR for the detection of
stemness genes

The total RNA was extracted by TRIzol (Invitrogen)
following the manufacturer’s protocol. We performed

reverse transcription using the PrimeScript RT reagent
Kit (Takara) according to the protocol. The PCR primer
pairs’ sequences are provided in Table S2. The relative
gene expression levels were calculated using the 2−ΔΔCt
method, normalizing to the housekeeping gene GAPDH.
The efficiency of each primer pair was confirmed to
be approximately equal to ensure accurate quantifica-
tion. Statistical analysis was performed using Student’s
t-test or one-way ANOVA as appropriate. p-value < .05
were accepted as statistically significant (*p-value < .05;
**p-value < .01; ***p-value < .001).

5 DISCUSSION

SCALeBa presents a scRNA-seq compatible lineage-
tracing methodology that diverges from traditional
lineage-tracing strategies,40 as it concurrently associates
cell states with clonal fates from diverse initial condi-
tions, eliminating the necessity to specifically target each
progenitor state. It is an unbiased multilineage tracing
technology. In our study, this technology enables the
investigation of the molecular mechanisms underlying
the heterogeneity of human HSPCs. Additionally, the
SCALeBa lineage tracing technique proved to be a useful
tool to correct pseudo-time analysis results and address
potential artefacts in the analysis process. In previous
studies, researchers have developed a similar technology
called LARRY to study the underlying mechanism of
mice hematopoiesis and uncover TCF5’s critical role.41
Here, we independently developed SCALeBa with an
abundance of lentiviral libraries reaching 2.5 × 106, which
is important for unique barcoding. Meanwhile, we applied
this technology to the human HSPCs by overcoming the
low transduction efficiency of human HSPCs.
By utilizing the SCALeBa technology, we gained valu-

able insights into the molecular mechanisms underlying
the heterogeneity, stemness, and differentiation bias of
human HSPCs. Our study confirms the previously dis-
covered heterogeneity of HSPCs,42 which has significant
implications for research related to hematopoietic stem
cell diseases, clonal hematopoiesis, and ageing of HSPCs.
Our analysis of low, med, and high output subsets showed
that high expression of MYL6B genes may be related to
high stemness, and their related mechanisms may be
related to p53.43 The MYL6B gene has been reported
to promote the development of HCC,43 and we further
confirmed the role of MYL6B gene in the stemness of
HSPCs by means of SCALeBa and in vitro experiments.
In addition, MYO19, ATP2A2, PHF20, MDN1, ING3, and
MCM4, which are highly expressed in stronger stemness
subset, may also affect the stemness of HSPCs by acting on
different pathways, such as ridging of the mitochondria
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cristae (MYO19), macroautophagy (ATP2A2), histone
modification (PHF20, ING3), nuclear transport (MDN1),
and DNA replication (MCM4). Previous studies have
shown that ING3 promotes prostate cancer growth by
activating the androgen receptor,44 and PHF20 promotes
glioblastoma cell malignancies through a WISP1/BGN-
Dependent pathway.45 The mitochondria localized actin
motor-MYO19 is critical for maintaining cristae structure,
by associating with the SAM-MICOS super complex.46
MDN1mutation is associatedwith a high tumourmutation
burden and unfavourable prognosis in breast cancer.47
However, the effects of these aforementioned genes on the
stemness of HSPCs are still unknown. We have confirmed
the relationship between these genes and the stemness
of HSPCs through SCALeBa technology and further
validated their potential function in the maintenance of
HSPCs stemness via cell culture experiments. At the same
time, the high expression of PPP1R2 and STK17B genes
may be related to the low stemness of the high output
subset. In the analysis of the pluripotent HSPCs subset,
we found the high expression of previously reported
stem cell growth factor CLEC11A.48 Meanwhile, two
previously reported genes related to tumour invasion and
migration, RIF149 and RAB14,50 are also highly expressed
in PL-HSPCs. Previous studies have shown that the RAB14
gene can promote the development of bladder cancer and
non-small-cell lung cancer.50,51 Here we have shown the
higher expression of RAB14 in PL-HSPCs by SCALeBa,
and its overexpression results in increased CD34+CD38−
HPSCs ratio and colony number, suggesting its important
roles in HSPCs. In addition, COA3 and GOLGA4, which
are highly expressed in the pluripotent-lineage HSPCs
subset, may also affect the pluripotent of HSPCs by acting
on mitochondrial gene expression (COA3), Golgi vesicle
transports (GOLGA4) pathways, respectively. Moreover,
human HSPCs expressing MRPL23 and RBM4 genes
demonstrate a tendency to differentiate into myeloid and
lymphoid lineages respectively in vivo. Regulon analysis
indicated that transcription factor E2F4, which was highly
expressed in lym-HSPCs, might regulate the downstream
effector RBM4. This suggests that E2F4-RBM4 might play
a critical role in lymphoid differentiation. Moreover, the
legitimacy of the identified genes with SCALeBa was also
validated using public human HSPCs dataset. In terms of
methodology, our application of SCALeBa to pseudo-time
analysis using monocle2 has clarified the differentiation
trajectories of several cell lines, particularly at the terminal
end of differentiation. This advancement underscores the
importance of considering potential artefacts in pseudo-
time analysis and the value of SCALeBa in refining such
analytical approaches. The above findings may provide
valuable insights into the broader principles of stem cell

biology. We suggest that future studies should consider
combining SCALeBa with other omics techniques to fully
elucidate the complex regulatory networks in stem cells
and their impact on disease and regeneration.
In the realm of HSPC research, the SCALeBa lineage-

tracing methodology stands as a beacon of promise, poised
to transform our comprehension of the lineage commit-
ment, heterogeneity, and differentiation processes that are
pivotal in blood cell formation.52 This technology’s capac-
ity to refine and optimize its tracing capabilities will sig-
nificantly enhance our ability to identify and monitor the
developmental paths of these critical stem cells. The poten-
tial of SCALeBa is not limited to HSPCs; its application
can be broadened to other stem cell fields, including those
involved in organogenesis and induced pluripotent stem
cells (iPSCs), where it can elucidate the complex processes
of tissue regeneration and cellular reprogramming.53 Look-
ing forward, the ongoing development of SCALeBa will
likely integrate with other cutting-edge single-cell omics
technologies, such as epigenomics, transcriptomics, pro-
teomics, and metabolomics, to offer a multidimensional
characterization of cells and further augment its analytical
power and versatility.40,41,53,54 This integration promises to
reveal novel biomarkers and regulatory mechanisms, ulti-
mately driving the advancement of innovative therapeutic
strategies and reinforcing SCALeBa’s role in the future of
stem cell research and regenerative medicine.
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