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Genome-wide meta-analysis of myasthenia
gravis uncovers new loci and provides
insights into polygenic prediction

Alice Braun 1,2, Sudhanshu Shekhar 3,4, Daniel F. Levey 5,6, Peter Straub7,8,
Julia Kraft 1,2, Georgia M. Panagiotaropoulou1,2, Karl Heilbron1,2,
Swapnil Awasthi1,2, Rafael Meleka Hanna9,10, Sarah Hoffmann9,10,
Maike Stein 9,10,11, Sophie Lehnerer9,10, Philipp Mergenthaler 9,10,12,13,
Abdelrahman G. Elnahas14, Apostolia Topaloudi4, Maria Koromina 15,16,17,
Teemu Palviainen 18, Bergrun Asbjornsdottir 19, Hreinn Stefansson19,
Astros Th. Skuladóttir 19, Ingileif Jónsdóttir 19, Kari Stefansson 19,
Kadri Reis14, Tõnu Esko14, Aarno Palotie 18, Frank Leypoldt 20,
Murray B. Stein 21,22, Pierre Fontanillas 23, Estonian Biobank Research Team*,
23andMe Research Team*, Jaakko Kaprio 18, Joel Gelernter 5,6,
Lea K. Davis 7,8,17, Peristera Paschou4, Martijn R. Tannemaat 24,
Jan J.G.M. Verschuuren 24, Gregor Kuhlenbäumer20,25, Peter K. Gregersen 26,
Maartje G. Huijbers 24,27, Frauke Stascheit 9,10,29, Andreas Meisel 9,10,12,29 &
Stephan Ripke 1,2,28,29

Myasthenia gravis (MG) is a rare autoantibody-mediated disease affecting the
neuromuscular junction. We performed a genome-wide association study of
5708 MG cases and 432,028 controls of European ancestry and a replication
study in 3989 cases and 226,643 controls provided by 23andMe Inc. We
identified 12 independent genome-wide significant hits (P < 5e−8) across 11 loci.
Subgroup analyses revealed two of these were associated with early-onset (at
age <50) and four with late-onset MG (at age ≥ 50). Imputation of human
leukocyte antigen alleles revealed inverse effect sizes for late- and early-onset,
suggesting a potential modulatory influence on the time of disease manifes-
tation. We assessed the performance of polygenic risk scores for MG, which
significantly predicted disease status in an independent target cohort,
explaining 4.21% of the phenotypic variation (P = 5.12e−9). With this work, we
aim to enhance our understanding of the genetic architecture of MG.

Myasthenia gravis (MG) is an autoimmune disease of the neuromus-
cular junction with a prevalence of approximately 20 per 100,000
individuals1,2. Its core characteristics include muscle weakness and
fatigue after physical activity, with some patients experiencing
respiratory failure during acute symptom exacerbation2. Auto-
antibodies directed against the nicotinic acetylcholine receptor

(AChR-Ab), found in 80% of patients, along with muscle-specific tyr-
osine kinase (MuSK-Ab) and low-density lipoprotein receptor-related
protein 4 (LRP4-Ab) serve as diagnostic markers for MG. However,
around 10% of patients do not show evidence of any known MG
antibody3,4. MG is frequently categorized into early-onset (EOMG; <50
years old at disease manifestation) and late-onset (LOMG; ≥50 years
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old at disease manifestation) due to variations in symptom spectrums
such as a higher prevalence of thymic hyperplasia in EOMG5,6.

To date, no large-scale twin studies of MG have been conducted,
but previous genome-wide association studies (GWAS) have estimated
the single-nucleotide polymorphism (SNP) based heritability to be
around 25.6%7. While approximately 5% of patients have a family his-
tory ofMG, 28.4%of cases report having relatives diagnosedwith other
autoimmune diseases8–10.

Previous GWAS ofMG have identified genetic loci at theMHC and
close to PTPN22 (Chr1:114377568), CHRNA1 (Chr2:175629220), CTLA4
(Chr2:204729153), SFMBT2 (Chr10:7452743), FAM76B (Chr11:95311422),
and TNFRSF11A (Chr18:60009814)7,11–14. Variants specific to EOMG
were identified near TNIP1 (Chr5:150440097) and LINC02151
(Chr11:116028750)11,14 while variants at ZBTB10 (Chr8:81364205) were
exclusively associated with LOMG13. MG has been linked to multiple
human leukocyte antigen (HLA) alleles that play a crucial role in
immune function6,13–18, as well as to elevated complement system
activation, particularly in AChR-Ab positive patients19.

Understanding the genetic architecture ofMG can provide crucial
insights into pathogenesis which may aid in identifying individuals at
risk and facilitate drug development efforts. Here, we present a com-
prehensive genetic analysis of MG, which includes a GWAS meta-
analysis utilizing data from 12 cohorts and a replication sample pro-
vided by 23andMe Inc.

Results
Genome-wide association study of MG
We performed a GWAS meta-analysis of 5708 MG cases and 432,028
controls of European ancestry (effective nhalf = 9867), and 7,142,359
SNPs. Individual-level genotype data was available for 1927 cases. This
discovery GWAS had a λGC of 1.07 and an LDSC intercept of 1.017,
indicating that a polygenic signal was themain source of inflation. The
GWAS identified nine genome-wide significant index SNPs across eight
loci and 24 index SNPs below a P-value of 1e−6 (Supplementary
Figs. 1–3). Seven additional loci reached genome-wide significance
across leave-one-out GWAS. Summary statistics for index SNPs with
P < 1e−4 are included in Supplementary Data 1.

We conducted a replication study of the index SNPs detected
across discovery GWAS, leave-one-out GWAS, and previous publica-
tions in a 23andMe MG cohort of 3989 cases and 226,643 controls.
Overall, we identified 12 independent genome-wide significant SNPs
(P < 5e−8) through the combined meta-analysis of discovery and repli-
cation GWAS, including six novel associations (Table 1, Fig. 1a). Fur-
thermore, all seven index SNPs between P < 1e−6 and P > 5e−8 in the
discovery and replication meta-analysis had the same direction of
effect. A sign test indicated statistically significant enrichment of
consistent effects (P = 7.81e−3).

Antibody-stratified association analysis
Themeta-analysis includes cohorts restricted to AChR-Ab-positive MG
cases (n = 2798) and ICD-based cohorts potentially incorporating
patients from other antibody-mediated MG or seronegative cases
(n = 2910). Notably, for the 12 reported index SNPs we found no sig-
nificant differences in effect sizes between these two data sources
except for the MHC locus (Supplementary Fig. 4).

Genome-wide association study of early-onset MG
We additionally conducted a GWAS on a subset of 1391 EOMG
cases utilizing the available phenotypic information. The control
group included 22,407 individuals (effective nhalf = 2056). Our dis-
coveryGWAS of EOMGwas performed on 7,542,347 SNPs (λGC = 1.024)
(Supplementary Fig. 5). We found genome-wide significant associa-
tions with four loci and seven additional index SNPs with P < 1e−6.
Summary statistics for SNPs with P < 1e−4 are included in Supplemen-
tary Data 2.Ta
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The results were replicated in 871 23andMe cases that reported a
diagnosis of EOMG and 109,843 control subjects, all of whom were
under 50 years old. Overall, we report two loci that reached genome-
wide significance in the meta-analysis of discovery and replication
GWAS (Table 2). SOS1, which is the only unique locus not found in the
combined MG GWAS, and TNIP1 were not replicated (Table 1B, Fig. 1b,
Supplementary Fig. 6).

Genome-wide association study of late-onset MG
We further conducted a GWAS of 2404 LOMG cases and 64,103 controls
not included in the EOMG GWAS (effective nhalf = 3701). The LOMG
discovery GWAS included 6,310,403 SNPs (λGC= 1.015) and identified
three genome-wide significant loci (Supplementary Fig. 7) and four
additional index SNPs below a P-value of 1e−6. Results for all SNPs with
P< 1e−4 are included in Supplementary Data 3. A replication study was
conducted in the 23andMe dataset of 3989 cases and 226,643 controls

because information on the age at diagnosis was unavailable. We found
four genome-wide significant loci in the meta-analysis of discovery and
replication, all of which overlapped with the combinedMGGWASmeta-
analysis (Table 3, Fig. 1c, Supplementary Fig. 8).

Human leukocyte antigen results
We performed association analyses of 135 imputed HLA class I and II
alleles in a subsample of 1927 cases and 5549 controls with available
genotypes. Subsequently, we conducted separate analyses for EOMG
(1080 cases and 3321 controls) and LOMG (846 cases and 2179 con-
trols). Effects sizes for the strongest associations across the three
subgroups are visualized in Fig. 2.

Our analysis revealed HLA-B*08:01 as the top risk-conferring HLA
allele for MG (OR= 2.349, P = 1.15e−52, SE = 0.056; Supplementary
Data 4, Supplementary Fig. 9). The top protective allele was HLA-
C*05:01, (OR =0.599, P = 3.21e−10, SE = 0.082). After conditioning on
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the top variant rs4143332 (LD-r2 of 0.988 to HLA-B*08:01), or com-
plement component 4 (C4) expression levels HLA-C*05:01 remained
nominally significant (rs4143332: OR =0.6869, P = 5.662e−6, SE =
0.0828; C4 expression: OR = 0.68991SE = 0.0865, P = 1.774e−5), indi-
cating partial independence from HLA-B*08:01 and C4. After con-
ditioning on C4A and C6B expression levels HLA-B*08:01 remained
genome-wide significant (OR = 2.34527, SE = 0.0777, P = 5.69e−28).

HLA-B*08:01was also the top risk-conferring allele associatedwith
EOMG (OR= 4.677, P = 2.18e−94, SE = 0.075; Supplementary Data 5,
Supplementary Fig. 10) while DRB1*07:01 was the top protective
(OR =0.3996, P = 1.11e−16, SE = 0.111). After conditioning on the top
variant rs2596565 (LD-r2 of 1 to HLA-B*08:01), the protective effect of
HLA-DRB1*07:01 remained genome-wide significant (OR =0.529,
P = 2.63e−8, SE = 0.115), indicating HLA-DRB1 as an independent HLA-
haplotype. When additionally conditioning on C4 expression both
effects remained genome-wide significant (HLA-B*08:01: OR = 5.00531
SE = 0.0.1082P = 4.453e−50; DRB1*07:01: OR =0.34311, SE = 0.1334,
P = 1.048e−15)

The top HLA allele associated with LOMG was HLA-DRB1*03:01
which implied a protective effect (OR =0.479, P = 2.37e−9, SE = 0.123;
Supplementary Data 6, Supplementary Fig. 11). After conditioning on
C4 expression the effect remained genome-wide significant (OR =
0.36400, SE = 0.1583 P = 1.724e−10).We observed a significant opposite
direction effect for HLA-DRB1*03:01 in MG (OR = 1.916, P = 2.72e−30,

SE = 0.057) and much more pronounced in EOMG (OR= 3.689,
P = 6.12e−71, SE = 0.073). The top risk-conferring allele DRB1*07:01 in
LOMG did not reach genome-wide significance (OR = 1.414, P = 8.86e−5,
SE = 0.088).

Complement component 4 results
We performed association tests and meta-analyses of imputed C4
haplotypes in 1927MG cases and 5549 controls, 1080 EOMG cases and
3321 controls, and 846 LOMGcases and 2179 controls. Two isoformsof
C4 are encoded by the genes C4A and C4B located at the MHC class III
region. These vary in size and copy number combinations, resulting in
long forms (L; ~21 kilobases) and short forms (S; ~14 kilobases). Spe-
cifically, we examined four common structural haplogroups ofC4A (A)
and C4B (B) (BS, AL-BS, AL-BL, and AL-AL). We calculated multiple
logistic regressionmodels with BS as the reference haplogroup, which
has the fewest gene copy numbers. The resulting odds ratios ranged
from 0.46–0.54 in MG, 0.21–0.27 in EOMG, and 1.83–2.27 in LOMG
(Supplementary Data 7).

Gene prioritization results
To link loci implicated by the GWAS to protein-coding genes, we
applied positional mapping, expression quantitative trait loci (eQTL),
and chromatin interaction gene mapping. This resulted in 52 mapped
genes across 11 loci, excluding the extendedMHC region. Four of these

Fig. 2 | HLA association analysis results. The forest plot displays the top risk-
conferring and protective HLA allele across all main analyses. The log10 of the odds
ratio (OR) from inverse-variance-weighted fixed-effects meta-analysis is indicated
as diamonds for each HLA allele and dataset used along with the 95% confidence

intervals (error bars). Different P-value significance levels are indicated by asterisks
for nominally significant (P <0.05*), Bonferroni-corrected (P < 3.70e−4**), and
genome-wide (P < 5e−8***). MG myasthenia gravis; EOMG early-onset myasthenia
gravis, LOMG late-onset myasthenia gravis.
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loci (rs6433501, rs231779, rs6861227, rs215918) only contained a single
protein-coding gene (CHRNA1,CTLA4, TNIP1, TBX18). Furthermore, our
analyses highlighted the index SNP rs2476601 in PTPN22 on chromo-
some 1 (PIP = 66%) and rs231775 inCTLA4on chromosome 2 (PIP = 14%;
max. PIP = 19%; LD-r2 =0.97 with lead variant rs231779) as non-
synonymous variants. On chromosome 11 there were no protein-
coding genes within the defined locus boundaries. For the remaining
loci, positional, eQTL, and chromatin interaction mapping nominated
multiple genes in the loci, none of which can be prioritized with high
confidence. Gene-level results are shown in SupplementaryData 8, and
annotated results for SNPs in the credible set with PIP > 0.01 are
included in Supplementary Data 9.

We performed drug target enrichment analysis on the set of 52
prioritized genes as input to the Genome for REPositioning drugs
(GREP) pipeline20. Significant enrichment was observed only for the
ATC category “ectoparasiticides, incl. scabicides, insecticides and
repellents” (OR = 28.73 and Fisher’s exact P = 4.3e−2). However, this
result does not withstand multiple testing corrections, and the target
gene ALDH2 is situated within the complex chromosome 12 locus.

Transcriptome-wide association study results
TWAS using the individual tissue-based prediction matrix of gene
expression identified 138 significant genes whose transcript expression
was significantly associated with MG. Permutation and co-localization
tests identified 56 and 45 gene hits below the significance threshold.
Combining TWAS, permutation, and co-localization tests, we identified
24 significant unique geneswith high confidence. TheTWAShighlighted
individual genes in the highly complex loci on chromosome 12 and 17, as
well as genes in additional loci that did not reach genome-wide sig-
nificance in the GWAS, including PAPPA and EPS15L1 (Supplementary
Data 10, Supplementary Figs. 12–14).

Polygenic risk scoring results
After excluding the test sample, our training GWAS comprised 5318
cases and 431,304 controls. Conservatively adjusting for 50 tests
resulted in a Bonferroni-corrected P-value of <0.001. In the test sample
of 390 cases and 724 controls the polygenic risk score (PRS) for MG
explained 4.21% of variation in disease status (R2

observed) at a P-value
thresholds (PT) of <0.001 (P = 5.12e−9, AUC =0.607, R2

liability = 0.96%;
Fig. 3, Supplementary Data 11). In a sample of 176 EOMG cases and 613
age-matched controls, the MG-PRS performed best at a PT <0.1. It
explained 2.6% of the variation between early-onset cases and controls
(P = 2.58e−4, AUC =0.579, R2

liability = 0.64%; Supplementary Fig. 15A,

Supplementary Data 12). In a sample of 213 LOMG cases and 62 mat-
ched controls, the MG-PRS explained 7.6% of the variation between
cases and controls at PT < 0.001 (P = 3.36e−4, AUC=0.643,
R2

liability = 1.75%; Supplementary Figs. 15B, Supplementary Data 13). We
further assessed the performance of the MG-PRS when stratifying
cases by antibody profile. We identified 73 cases that tested negative
for AChR-Ab, including MuSK- and LRP4-Ab-positive patients. These
cases were merged with 343 randomly selected controls. The MG-PRS
explained 2.9% of the phenotypic variation at a PT of <0.5. However,
the P-value remained above the Bonferroni-corrected threshold
(P = 7.4e−3, AUC=0.556, R2

liability = 0.71%; Supplementary Fig. 16A,
Supplementary Data 14). Finally, we calculated the MG-PRS in 371
AChR-Ab-positive cases and 333 independent controls which
explained 4.8% of phenotypic variation at a PT <0.0001 (P = 1.18e−6,
AUC =0.620, R2

liability = 1.01%; Supplementary Fig. 16B, Supplementary
Data 15).

Genetic correlation and variant lookup results
We assessed the genome-wide genetic correlation (rg) of MG, EOMG,
and LOMG with 15 autoimmune and neurological traits via Linkage
DisequilibriumScoreRegression21 (LDSC).We identifiedfive significant
genetic correlations with MG. The strongest correlations were
observed with type-1 diabetes (rg =0.523, P = 1.42e−6, SE = 0.109) and
rheumatoidarthritis (rg =0.5082,P = 1.11e−6, SE = 0.104). For EOMG, the
strongest correlation was with systemic scleroderma (rg =0.686,
P = 5.18e−6, SE = 0.151), and for LOMG with vitiligo (rg =0.442,
P = 9.69e−5, SE = 0.113). The full results are presented in Supplementary
Fig. 17 and Supplementary Data 16-18.

Genetic correlation analyses performed with 835 medical end-
points in FinnGen R8 and MG highlighted 17 traits that passed the
Bonferroni adjusted P-value of 5.88e−5 (correcting for overall 850
tests). We found the strongest correlations between MG and auto-
immune hyperthyroidism (rg =0.586, P = 6.27e−7, SE = 0.118), and ser-
opositive rheumatoid arthritis, strict definition (rg =0.50, P = 1.09e−5,
SE = 0.114). Results for all traits below nominal significance (P < 0.05)
are presented in Supplementary Data 19.

We have further assessed the genetic correlation between data-
sets ascertained through clinical studies without antibody-based
inclusion criteria (effective nhalf = 507), clinical studies limited to
AChR-ab cases (effective nhalf = 5,067) and electronic healthcare
records (EHR) (effective nhalf = 4293). We observe the highest corre-
lation between AChR-ab filtered and clinical datasets (rg = 0.6831,
SE = 0.2137, P = 0.0014). However, correlations between EHR based
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and clinical samples (rg =0.4774, SE = 0.2430, P = 0.0494) andbetween
EHR based and AChR-ab filtered (rg = 0.4021, SE = 0.1323, P =0.0024)
were nominally significant.

We conducted a lookup of index SNPs included in the discovery
GWASand those in LD (LD-r2 > 0.1) inGWASCatalog toassesspleiotropy.
Furthermore,GWASCatalog,UKBiobank, andFinnGenR6datasetswere
searched for associations with individual index SNPs. The lookups
revealed large pleiotropywith other autoimmune diseases and immune-
related molecular phenotypes, including white blood cell count. GWAS
Catalog results for all SNPs with P< 1e−4 are included in Supplementary
Data 1. Genome-wide significant associations with other traits for each
index SNP are shown in Supplementary Fig. 18.

Heritability estimates
We have estimated the SNP-based heritability (h2

SNP) of MG using
LDSC22 and the genome-wide complex trait analysis23 (GCTA) software
package. The h2

SNP on the liability scale based on the 7476 individuals
with available genotypes measured through GCTA was 0.1818 (SE =
0.0149). The h2

SNP for the same 7476 individuals was 0.1184 (SE =
0.0272) using LDSC. The h2

SNP on the liability scale as measured by
LDSC based on the summary statistics of the whole sample of 437,736
individuals was 0.0552 (SE =0.0091).

Discussion
The current GWAS represents the largest genetic study of MG to date,
tripling the sample size of prior studies and encompassing all pub-
lished genotyped samples of European ancestry7,11–14. Novel associa-
tions in overall MG included variants close toMAGI3 (Chr1:114217705),
TBX18 (Chr6:85513783), RNASET2 (CHR6:167437988), ATXN2
(Chr12:111904371), IKZF3 (Chr17:37912377), and finally TNIP1
(Chr5:150447128), which has been implicated in EOMG before14.
Moreover, we confirm six previously reported associations7,11,12. The
MHC as well as variants close to PTPN22, CTLA4, TNIP1, FAM76B, IKZF3,
and TNFRSF11A are well-established loci implicated in immune func-
tion and disease24–29. Among the novel loci, IKZF3, which encodes a
transcription factor involved in regulating lymphocyte differentiation
and activation, has been linked to rheumatoid arthritis30,31 and sys-
temic lupus erythematosus32. ATXN2 was found to be involved in
neurodegeneration33 and thyroid disease34. However, some of these
loci are complex, making the causal gene difficult to pinpoint. We
employed multiple mapping techniques to associate GWAS-identified
loci with protein-coding genes, identifying 52 mapped genes across 11
loci, excluding the MHC region, which we analyzed separately. Nota-
bly, four loci contained only a single gene. First, CHRNA1, a nicotinic
acetylcholine receptor subunit and a target of neuromuscular blocking
agents35. Second, CTLA4, a member of the CD28 immunoglobulin
superfamily regulating T-cell responses and an immunotherapy
target36. Third, TNIP1, which plays a key role in inflammatory processes
showed a high loss-of-function intolerant probability (pLI) of 0.93.
Fourth, TBX18, involved in embryonic development37, whichhad a high
pLi score of > 0.99 andmapped SNPs reached amaximumCADD score
of 18.77, indicating deleteriousness38,39. Furthermore, our analyses
highlighted rs2476601 in PTPN22 on chromosome 1 and rs231775 in
CTLA4 on chromosome 2 as nonsynonymous variants.

The MHC represents one of the strongest signals in MG across
subtypes. Our analyses identified HLA-B*08:01 as the top associated
allele, replicating the results of smaller-scale studies14,17,40–42. While we
confirmaprotective effectofHLA-DQB1*03 and a risk-conferring effect
of HLA-DRB1*07 on LOMG15 we found opposite direction effects in
EOMG. Inverse odds ratios based on the onset subtype were addi-
tionally observed forHLA-B*08:01 and DRB1*03:01. Given that the vast
majority of cases in this analysis tested positive for AChR-Ab (~97% of
EOMG and ~96% of LOMG cases), it is unlikely that antibodies drive
these effects. These findings could imply a modulating effect of HLA
alleles on the time of disease onset. However, due to the complex LD

structure of the MHC, independent large-scale sequencing studies are
needed to dissect the functionality of individual HLA alleles in the
etiology of MG. The link between C4 allele copy number and MG risk
suggests a contribution of complement activity variation to the auto-
immune response targeting the neuromuscular junction, particularly
in AChR-Ab-positive MG patients, where complement activation is
more prominent19,43.

We demonstrated that the PRS for MG predicted disease status in
an independent sample while performing better at P-value thresholds
above genome-wide significance. This indicates that more loci are
likely to be discovered with increasing sample size and statis-
tical power.

We replicated the genetic correlation of MG with type 1 diabetes,
rheumatoid arthritis, and vitiligo12 and further found positive correla-
tions of MGwith systemic lupus erythematosus andmultiple sclerosis.
LOMG was most strongly associated with vitiligo and EOMG showed a
strong association with systemic sclerosis. In a less restrictive analysis
utilizing the FinnGen R8 dataset, autoimmune hyperthyroidism
emerged as the strongest correlation. This analysis further confirmed
the correlation with rheumatoid arthritis. However, these correlations
could be driven by the presence of autoimmune comorbidity. Future
studies could further investigate the results, e.g., by excluding co-
morbid individuals.We detected significant genetic correlation among
all data sources, EHR, clinical samples, and clinical samples limited to
AChR-ab positive cases. As would be expected, the strongest correla-
tion was found between themore rigorously collected clinical samples
and AChR-ab positive cases, underscoring some variability introduced
by the EHR collections.

We present h2
SNP estimates ranging from 0.056 to 0.18 on the lia-

bility scale, obtained using LDSC and GCTA GREML. Our GCTA estimate
in clinically-ascertained samples (n= 7,476) was similar to the value ori-
ginally reported by Renton and colleagues7 (h2

SNP =0.26). Our LDSC
estimate in the same sample was lower, which was expected given that
LDSC h2

SNP estimates tend to be smaller than those from GCTA and
capture the lower boundofh2

SNP
44. Our LDSCh2

SNP estimate (0.0552)was
lower still when including samples from large biobanks. This may be due
to a higher rate ofmisdiagnosis in biobank cases, and/or due to clinically-
ascertained cases and controls representing a more severe phenotype45.

Our analyses have multiple limitations to be considered. Firstly,
antibodyphenotypeswerenot available for all cohorts. AGWASstratified
by antibody profiles could reveal distinct etiological differences, con-
sidering the significant impact of antibody subtypes on therapeutic
stratification, future studies should concentrate on the currently low
number of genotyped AChR-Ab negative MG patients. The diagnoses in
the replication sample were based on self-reporting, which could
potentially render them less reliable compared to diagnoses obtained
through clinical ascertainment. Furthermore, conditional analyses con-
ducted by employing C4 gene expression may not fully account for the
LD with HLA alleles, which were imputed using a different reference
panel. Sequencing studies are needed to confirm the observed effects
and establish their independence. Finally, our analyses are based on
Europeanancestry samples, limiting thediscovery rate and thepredictive
capability of PRSacross ancestries. In thenext step,weaim toexpandour
analyses to include samples from non-European ancestries.

The presented GWAS identified 12 genome-wide significant index
SNPs associated with MG, contributing to an advancement in our
comprehension of MG genetics. Our study elucidated the role of HLA
alleles on disease onset and demonstrated that the PRS for MG effec-
tively predicts MG in an independent sample, suggesting its potential
to complement current diagnostic tools.

Methods
Sample ascertainment
We obtained genotypes from two unpublished and three published
GWAS7,13,14. We additionally received summary-level data from two
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previous GWAS11,12, and from the UK Biobank46, the Million Veteran
Program47,48, deCODE genetics49, the Estonian Biobank50, FinnGen51,
and BioVU52.

Information on age of onset was available for a subset of cohorts
resulting in a smaller sample size of 1,391 cases and 22,407 controls in
the early-onset GWAS and 2,404 cases along with 64,103 controls in
the late-onset GWAS. We calculated half of the effective sample size
(Neff) for each cohort separately using the following formula: (4×Nca-
ses×Ncontrols/(Ncases+Ncontrols))/2 and summed it across all
cohorts.

Antibody phenotypes were available for 3188 cases, of which 3115
were AChR-Ab positive. We had access to the serotype and genotype
information of 73 confirmed non-AChR-Ab cases (MuSK-Ab- and LRP4-
Ab positive aswell as seronegative), rendering these samples too small
for specific genetic association analyses. Information on previous
publications, sample sizes and phenotypes per cohort are shown in
Supplementary Data 20–22.

Inclusion criteria
Cases met the international classification of diseases (ICD) diagnostic
criteria for MG (ICD-10 code G70.0 or ICD-9 code 358.0). Newly
obtained control samples were filtered for common autoimmune
diseases due to the overall high genetic correlation with MG27 (Sup-
plementary Data 23). All individuals included in the analyses were of
European ancestry and provided written informed consent. All inclu-
ded cohorts received approval by their respective local institutional
review boards. More detailed sample descriptions are included in the
Supplementary Information.

Genomic quality control and imputation
Quality control and imputation were performed using software
implemented in the Rapid Imputation for Consortias Pipeline
(RICOPILI)53 for all cohorts that provided genotypes. We applied
standard quality filters to retain individuals and SNPs. These filters
include SNPmissingness <0.05, subject missingness <0.02, autosomal
heterozygosity deviation Fhet < 0.2, SNP missingness after sample
exclusion <0.02, minor allele frequency (MAF) > 0.01, a difference in
SNP missingness between cases and controls <0.02, and Hardy-
Weinberg equilibrium of P > 10e−6 in controls and P > 10e−10 in cases.
Related individuals were filtered based on identity by descent seg-
ments (PI-HAT >0.2). One member of the related pairs was retained
while cases were preferred to control subjects. Externally generated
GWAS summary statistics were aligned to Genome Reference Con-
sortium Human Build 37 and filtered to include only SNPs with a
MAF >0.01 if necessary. A principal component analysis of the geno-
typed SNPs was performed via EIGENSTRAT54 and plotted to identify
and exclude ancestral outliers by visual inspection. After quality con-
trol, all cohorts showed a genomic inflation factor (λGC) of 1.034–1.073.
Imputation was carried out using the Haplotype Reference Con-
sortium reference panel release 1.155. Haplotype pre-phasing and
imputation were performed using EAGLE version 2.4.156 and
MINIMAC357.

Genome-wide association meta-analyses
We ran GWAS on imputed dosage files of SNPs with aMAF >0.01 using
additive logistic regression models for MG versus controls, LOMG
versus controls, and EOMGversus controls. By default, we included the
first six principal components (PCs) in the models as covariates.
Results were meta-analyzed using METAL58 with the effect size esti-
mates weighted by the inverse of the corresponding standard errors
(SE). We defined an independent signal as the area around an index
SNP with a P-value < 5e−8 and a linkage disequilibrium (LD) of r2 < 0.1
within a 3-megabase window. We conducted leave-one-out GWAS to
identify additional significant candidate loci for replication that were
potentially lost due to heterogeneity in our overall sample. All newly

identified or previously reported GWAS loci were subsequently con-
firmedor rejected via replication analyses, includingmeta-analysis and
binomial sign-tests.

Replication sample
We replicated our results in a sample ascertained through 23andMe,
Inc. The diagnosis ofMGwas self-reported by the participants. Control
individuals were selected at random, constituting 5% of the 23andMe
control group, to enhance computational efficiency while minimizing
power reduction. We defined EOMG cases as those under 50 years old
at participation. 871 individuals met this criterion and were merged
with 109,843 randomly drawn controls younger than 50. As no age of
onset information was available, we replicated the LOMG discovery
GWAS loci using the full 23andMe MG dataset.

Human leukocyte antigen imputation
For all available genotypes, we imputed HLA alleles via a European
1000 Genomes59 phase 3 reference panel of 503 individuals with HLA
types inferred from sequencing data60. The reference was downloaded
from the CookHLA61 GitHub repository and includes 151 HLA alleles
with a frequency > 0.01. Pre-phasing and imputation were carried out
via SHAPEIT2 and IMPUTE462. We conducted association analyses with
the same three dichotomous outcomes as in the GWAS on imputed
dosage files. Conditional analyses were conducted via the stepwise
inclusion of variants with the lowest P-value as covariates in logistic
regression models until no signal below P < 1e−6 was left. To further
account for the complex LD structure of the MHC we conducted
additional conditional analysis by calculating the C4A and C4B
expression levels for each individual based on imputed C4 alleles. We
have used the formula proposed by Sekar and colleagues63: C4A
expression = (0.47 * AL) + (0.47 * AS) + (0.20 * BL); C4B expression =
(1.03 * BL) + (0.88 * BS).

Complement component 4 imputation
We used a reference panel based on 1265 sequenced individuals from
the Genomic Psychiatry Cohort64 to infer C4 haplogroups, which were
imputedusing Beagle 5.465.We initially filtered the imputedC4 variants
based on the gene composition levels (e.g., BS, AL-BS, AL-BL, AL-AL) by
allele frequency (>0.01) in controls and imputation quality (INFO >
0.80). Subsequently,we removed individualswithdosage sums≤1.9 to
avoid these being attributed to the reference group in the logistic
regression model. Dosages for all remaining C4 variants were then
modeled together in a logistic regression for each outcome, incor-
porating the first six principal components and excluding the BS
reference group, denoting the shortest C4 variant. Fixed-effects meta-
analyses forMG, EOMG, and LOMGwere conducted in R version4.3.266

using meta version 7.0–067.

Gene prioritization
In order tomapSNPs within the identified loci to protein-coding genes
we applied the SNP2GENE module implemented in FUMA version
1.5.268 via positional (10 kilobase window), eQTL (GTEx version 8 tis-
sues, database of immune cell expression eQTLs), and chromatin
interaction mapping (HiC of adult and fetal cortex, and GSE87112 tis-
sues). We used the discovery GWAS summary statistics along with the
set of 11 pre-defined index SNPs as input files for FUMA. Due to its
complex LD structure we excluded the extended MHC region (Chro-
mosome 6: 25–35Mb) from all analyses. We additionally filtered the
mapped genes with the LD-based locus boundaries defined by RICO-
PILI (LD-r2 > 0.1). Furthermore, we intersected FUMA functional anno-
tations with SNPs in the 95% credible set with a PIP > 0.01 (calculated
via the R package coloc 5.2.3 finemap.abf module69).

To evaluate the enrichment of clinical indication categories (ICD-
10 andATC) of druggable target genes in our GWAS, we utilized the set
of genes prioritized by FUMA as input to the GREP pipeline20. The
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pipeline employs Fisher’s exact tests to determine whether the gene
set demonstrates enrichment in genes targeted by medications.

Transcriptome-wide association study
Transcriptome-wide association study (TWAS) was performed using
FUSION70 to predict tissue-specific gene expression based on the MG
discovery GWAS summary statistics excluding the extended MHC
region (Chromosome 6: 25–35Mb). Gene expression weights from
three Genotype-Tissue Expression (GTEx) version 871 tissues were used
for transcriptomic imputation and association testing: Muscle Skeletal
(n = 8602), Nerve Tibial (n = 11,360), andWhole Blood (n = 8059). Gene
associations were considered significant at a P-value < 0.05/N of genes
per tissue. A permutation test, which shuffles the quantitative trait loci
(QTL) weights (Nmax = 1000) was performed to correct inflated asso-
ciations from by-chance QTL co-localization. Co-localization was
computed for genes with a P-value < 1e-5. A posterior probability
value ≥0.75 was considered as evidence for the expression-QTL-GWAS
pair influencing both the expression and the GWAS trait in a particular
region.

Polygenic risk scoring
PRS analyses were performed to assess the capacity of the discovery
results to predict MG, EOMG, and LOMG in an independent sample.
Additionally, we evaluated PRS performance in AChR-Ab positive- and
negative cases. We performed a leave-one-out GWAS meta-analysis to
generate independent training and test datasets. PRS for MG were
calculated via the LD-clumping and P-value thresholding method in
PLINK 1.972. The training dataset was clumped to account for LD,
retaining only themost significant SNP within 500 kilobases and an LD
of r2 > 0.25. PRS was generated across ten P-value thresholds (PT): 5e−8,
1e−6, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1. The first six PCs were
included in all logistic regression models as covariates. Control sub-
jects were matched by age for onset-specific analyses and split ran-
domly in antibody-specific analyses. The observed phenotypic
variation was measured via Nagelkerke’s pseudo-R2 and the predictive
performance via the area under the receiver operator curve (AUC).

Genetic correlation analyses and variant lookup
The bivariate genetic correlations of MG, EOMG, and LOMG with 15
pre-selected neurological and autoimmune traits were computed via
LDSC73. We downloaded publicly available summary statistics26,31,74–85

from the GWAS catalog website [https://www.ebi.ac.uk/gwas/]86

and formatted summary statistics from Dr. Alkes Price’s research
group’s repository [https://alkesgroup.broadinstitute.org/sumstats_
formatted]22.

We have additionally performed genetic correlation analyses
betweenMGand835medical endpoints, utilizingdata fromdigital health
record data of the 342,499 participants included in FinnGen Release 851.
We limited themedical endpoints to thosewith at least onegenome-wide
significant hit in FinnGen, indicating genetic susceptibility to the trait and
ensuring anadequate sample size.Wehaveexcluded theFinnGensample
from our MG summary statistics for this purpose.

In order to assess pleiotropy, we conducted a lookupof all SNPs in
the discovery GWAS and those in LD (LD-r2 > 0.1) in GWAS Catalog
(version from September 2018)86 for associations with other traits.
Additionally, we performed a lookup for the 11 individual index SNPs
highlighted by the combinedmeta-analysis, excluding theMHC indata
sources aggregated by Open Targets Genetics. The data sources
include associations identified by the SAIGE study and the Neale lab
conducted in the UK Biobank, summary statistics fromGWAS Catalog,
and FinnGen Release 687.

Heritability estimates
Weused LDSC22 and the genome-based restrictedmaximum likelihood
(single-component GREML) module implemented in GCTA23 to assess

h2
SNP of MG in our sample. We used summary statistics including all

samples in the discovery GWAS and samples with available genotypes
to estimate h2

SNP via LDSC. We further merged the PLINK files of all
available genotypes as input for GCTA along with the first six PCs. We
assumed a population prevalence of 20 per 100,000 individuals to
transform the heritability estimates into the liability scale.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics for the discovery GWAS meta-analyses of
myasthenia gravis, early-onset myasthenia gravis and late-onset myas-
thenia gravis generated in this study have been deposited in GWAS
catalog under accession codes GCST90432156, GCST90432157,
GCST90432158. A subset of individual-level genetic data used in this
article were downloaded through the database of Genotypes and Phe-
notypes (dbGaP). These include the Renton et al. 7 case dataset (acces-
sion code phs000726) [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000726.v1.p1], the controls merged with the
Renton et al. 7 cases (accession code phs000196): [https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000196.v3.p1],
and the controls merged with the Gregersen et al. 14 cases (accession
code phs000882). [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000882.v1.p1]. Other individual-level data used
in this study will be available upon request through a data transfer
agreement with the respective institutions responsible for the data.
Other publicly available data used in this study include the 1000 Gen-
omes Project HLA reference [https://github.com/WansonChoi/
CookHLA/tree/master/1000G_REF], the Chia et al.11 summary statistics
(GWASCatalog accession codeGCST90093061) [https://www.ebi.ac.uk/
gwas/studies/GCST90093061], the FinnGen data release 8: [https://
www.finngen.fi/en/access_results], LDSC formatted summary statistics
[https://alkesgroup.broadinstitute.org/sumstats_formatted/] and the
Haplotype Reference Consortium reference panel release 1.1: [https://
ega-archive.org/studies/EGAS00001001710].
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