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Breathing patterns (respiratory kinematics) contain vital prognostic information. This dimension of 
physiology is not captured by conventional vital signs. We sought to determine the feasibility and 
utility of quantifying respiratory kinematics. Using inertial sensors, we analyzed upper rib, lower rib, 
and abdominal motion of 108 patients with respiratory symptoms during a hospital encounter (582 
two-minute recordings). We extracted 34 features based on an explainable correspondence with well-
established breathing patterns. K-means clustering revealed that respiratory kinematics had three 
dimensions apart from the respiratory rate. We represented these dimensions using respiratory rate 
variability, respiratory alternans (rib-predominant breaths alternating with abdomen-predominant 
ones), and recruitment of accessory muscles (increased upper rib excursion). Latent profile analysis 
of the kinematic measures revealed two profiles consistent with the established clinical constructs 
of labored and unlabored breathing. In logistic regression, the labored breathing profile improved 
model discrimination for critical illness beyond the Sequential Organ Failure Assessment (SOFA) score 
(AUROC 0.77 v/s 0.72; p = 0.02). These findings quantitatively confirm the prior understanding that 
the respiratory rate alone does not adequately represent the complexity of respiratory kinematics; 
they demonstrate that high-dimensional signatures of labored breathing can be quantified in routine 
practice settings, and they can improve predictions of clinical deterioration.
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Breathing patterns (or respiratory kinematics) contain vital diagnostic and prognostic information. The normal 
breathing pattern is slow, regular cycles, usually 8–20 per minute, and a stable phenotype of predominantly 
abdominal or lower thoracic motion. These features make for an unmistakably effortless appearance. To 
clinicians, a normal breathing pattern is an important and reassuring physical examination finding1. In contrast, 
abnormal breathing patterns are important markers of disease2.

Labored breathing patterns, for example, are physical examination signs of an increased work of breathing3. 
They are considered to be red-flag signs which often herald clinical deterioration4. Labored breathing patterns 
include abnormalities of rate, rhythm, and relative movements of the upper chest, lower chest, and abdomen. 
Increased respiratory rate, or tachypnea, is an important feature of labored breathing. Its association with 
clinical deterioration is well known, as evidenced by its use in prominent criteria like quick Sequential Organ 
Failure Assessment (qSOFA) and National Early Warning Score (NEWS)5,6. Additionally, the rhythm of labored 
breathing can be unusually irregular7,8. More subtle but equally important are abnormalities in the relative 
movements of the chest and abdomen. It is abnormal for the major motion of breathing to alternate between the 
chest and the abdomen; it signifies an overload of the primary respiratory muscles (diaphragm and intercostal)9. 
It is also abnormal for the upper chest to have large excursions during breaths; it signifies increased recruitment 
of accessory respiratory muscles in the neck (sternocleidomastoid and scalene)9. Many such breathing patterns 
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have been linked to the work of breathing. However, a precise operational definition for the overarching construct 
of labored breathing has remained elusive.

Conventional vital signs do not report on respiratory kinematics beyond the average respiratory rate, and 
clinicians rely on qualitative visual inspections for a complete assessment of high risk breathing patterns10. 
Such assessments lack sensitivity and inter-rater reliability11, and they are manual effort intensive. Methods 
like plethysmography (inductance or optoelectronic) allow automated, quantitative analysis9,12,13. Their use 
has remained largely confined to specialized laboratories14. In routine clinical settings, respiratory kinematic 
information has not yet been quantified on a scale required for predictive modelling14.

We previously developed time-series methods to detect breath intervals and characterize respiratory 
kinematics using inertial sensors in healthy adults in an exercise physiology laboratory15. Here, we evaluated 
these respiratory kinematic characteristics at the hospital bedside. We describe a clinically explainable, high-
dimensional signature of labored breathing, and validate it as a physiomarker of clinical deterioration during 
hospital encounters.

Methods
This study was approved by University of Virginia Health Sciences Institutional Review Board (study number 
20844). All study procedures were performed in accordance with relevant guidelines and regulations, and 
informed consent was obtained from all subjects. We recruited 121 adults during a hospital encounter for 
dyspnea. We excluded patients with neuro-cognitive impairments and those requiring mechanical ventilation 
(non-invasive / invasive) that alters respiratory kinematics at the time of screening. We recorded demographics, 
comorbidities, and severity of illness in the span of 24  h from the kinematic recording (discharge home vs. 
non-critical care in hospital vs. critical care in hospital). We defined critical care as admission to an intensive 
care unit (ICU) or ICU level interventions (invasive or non-invasive mechanical ventilation, fraction of inspired 
oxygen > 50%, or cardiopulmonary resuscitation).

Kinematic recording apparatus and signal processing
To record respiratory kinematics, we used the MbientLab MetaMotion R inertial sensors which contain Bosch 
BMI160 inertial measurement units. We made recordings at 6 locations: midline sternal head, bilateral second 
rib in the midclavicular line, bilateral eighth rib in the anterior axillary line, and midline abdomen. At each 
location, we analyzed three axes each of accelerometer and gyroscope signals (sampling frequency: 100 Hz). 
Multiple two-minute recordings were obtained over 6  h (number of recordings and the intervals between 
them varied by clinical circumstances; details in supplement Sect. 1). We used non-causal band-pass filtering 
(corner frequencies: 0.05 and 1 Hz). We used 4th and 6th order Butterworth kernels for the low and high filters, 
respectively; we achieved zero-phase filtering with forward-backward filtering, resulting in a filter strength of 
8th and 12th orders.

Feature extraction: Respiratory rate series
After filtering, we separated breaths using the phase angle from the analytic representation of the signals. The 
analytic representation is a complex plane where the Hilbert transform of a signal is represented on the imaginary 
y-axis as a function of the untransformed signal on the real x-axis. The phase of any point of the analytic signal 
is the angle between a line joining that point to the origin and the positive x-axis. We used phase landmarks to 
identify breath intervals and to extract an interpolated instantaneous respiratory rate series from each of the 36 
signal streams (6 streams per sensor x 6 sensors)15,16. In noise-free segments, the rate series converged on the 
true respiratory rate. In noisy segments, there was no convergence. We considered the signal clean if a majority 
(≥ 18) of the rates clustered together. We deemed a recording as acceptable if ≥ 30 s of the recording was clean. 
This process is depicted in Fig. 1 (and in the supplement Sect. 2). In clean segments, we used the centroid of 
convergent rates as the final respiratory rate. To assess the rate of breathing, we measured the mean of the 
kinematics-derived respiratory rate series. To assess the rhythm of breathing, we measured the dispersion of the 
kinematics-derived respiratory rate series (standard deviation and coefficient of variation of the respiratory rate 
time series, and 9 other measures; details in supplement Sect. 4).

External validation of the respiratory rate series
To validate our respiratory rate series, we applied it to 60 respiratory kinematic signals that were recorded in 
synchrony with volumetric air flow signals during our previous study in an exercise physiology lab (EPL)15. We 
compared the kinematics-derived and flow-derived mean respiratory rates using the Bland-Altman method. We 
calculated the cross-correlation coefficients between kinematics-derived and flow-derived respiratory rate time 
series (details in supplement Sect. 3).

Feature extraction: Signal amplitude series
We extracted instantaneous amplitude time series from the linear acceleration signals to measure features of 
the relative movements of the chest and the abdomen (Fig. 2; supplement Sect. 3). The instantaneous amplitude 
of any point in a signal is the magnitude (distance from origin) of the corresponding point in the analytic 
representation of that signal (Fig. 1E). This method allowed us to assess: (a) the average magnitude of movement 
at a certain location of the torso (e.g., to what extent do the upper ribs move during breathing), (b) the average 
relationship between movements at two locations (e.g., on average, is breathing rib dominant or abdomen 
dominant or mixed), and the (c) the degree of variability in the relationship between movements at two locations 
(e.g., do rib dominant breaths alternate with abdomen dominant breaths).
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Feature selection and latent profile analysis
In all, we extracted the average respiratory rate and 33 novel metrics from each recording: 11 metrics that 
reported on the rhythm of breathing, and 22 metrics that reported on the relative movements of the sensor 
locations (details in supplement Sect. 4). We selected mean respiratory rate based on its clinical import. We 
applied k-means clustering to the remaining 33 metrics to determine how many and which of the features 
should be selected to represent the observed respiratory kinematic variability in our dataset. We determined the 
number of features to use by looking for an “elbow” in the Within Sum of Squares (WSS) plot. We decided to 
select metrics from different clusters to avoid selecting multiple features that captured overlapping information 
(e.g., features that turn out to be highly correlated). We selected the metrics with the most well-established link 
to work of breathing in the bedside diagnosis and physiological laboratory literature. This process is detailed 
further in supplement Sect.  5. We avoided a purely clinically-driven feature selection approach to minimize 
arbitrary choices as much as possible. We avoided a supervised data-driven feature selection approach to avoid 
the problem of spurious associations due to multiple comparisons.

To uncover high-dimensional breathing pattern phenotypes, we applied latent profile analysis (LPA) to the 
selected measures (supplement Sect.  5). We determined the number of profiles to create based on a plateau 
(“elbow”) in Bayesian Information Criterion (BIC) improvement. We identified the profile consistent with the 
clinical construct of labored breathing. Each recording was thereby classified as either labored or unlabored 
breathing. For each patient, we calculated the proportion of their recordings that were classified as labored 
breathing (i.e., the frequency of labored breathing).

Fig. 1.  Respiratory rate and rhythm. Panels A and B show a respiratory kinematic signal from an 
accelerometer (A) and a synchronized volumetric air flow signal (B). The colored dots correspond to phase 
landmarks in the analytic representation of these signals (E), evenly spaced in phase at intervals of π/2 
radians. The phase of any point of the analytic signal (E) is the angle between a line joining that point to the 
origin and the positive x-axis. We used analytic phase landmarks to identify breath intervals and to extract an 
interpolated instantaneous respiratory rate series from each kinematic signal. Panel C shows 36 interpolated 
respiratory rate time series from one patient (6 kinematic signals per location; 6 locations). The rates extracted 
from clean kinematic signals converged on the true respiratory rate whereas the rates extracted from noisy 
kinematic signals deviated from the true respiratory rate to a varying degree. We identified the largest cluster 
of converging respiratory rates (thick bundle in Panel C) and adjudicated its centroid as our estimate of the 
respiratory rate (black line in Panel D). The final kinematics-derived rate series (black line) matched the 
flow-derived rate series (red line) with high fidelity. Panel F plots the kinematics-derived respiratory rate as a 
function of flow-derived respiratory rate in 60 paired recordings, with 95% limits of agreement of ± 0.9 breaths 
per minute.
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Statistical analysis
We used Poisson regression to assess the relationship between the frequency of labored breathing and the 
severity of their illness. This approach accounted for variability in number of recordings per patient. Further, we 
used logistic regression to assess whether the frequency of labored breathing, plus each feature independently, 
improved model discrimination (area under receiver operator characteristic curve or AUROC) for critical illness 
beyond the Sequential Organ Failure Assessment (SOFA) score5,17.

The SOFA score is calculated every 15 min at the University of Virginia Medical Center using methods that 
have been previously described18. The renal, hepatic, and coagulation components are updated every time a new 
result of a pertinent laboratory test is available (creatinine, total bilirubin, and platelet count respectively). The 
cardiovascular and neurologic components are updated every time a new entry of a pertinent vital sign (blood 
pressure), medication administration record (vasopressors) or nursing assessment (Glasgow Coma Scale) 
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is available. The respiratory component is calculated using a previously validated method to non-invasively 
estimate the P/F ratio19,20. It is updated every time a new pulse oximetry result or oxygen supplementation 
setting is available. If no new data are available for a given component, the last known value is carried forward for 
up to 12 h. In this study, we used the patient’s highest recorded SOFA score in the 12 h before the final respiratory 
kinematic recording.

Results
Signal quality and cohort characteristics
We successfully recorded 790 high-quality two-minute inertial signals from 108 of the 121 patients during their 
hospital encounter for shortness of breath. 582 (74%) of the 790 recordings met our acceptability criterion; at 
least 30 s of these 582 recordings was free of non-respiratory motion artefacts. In the remaining 208 recordings, 
notwithstanding the high-quality inertial signal, fewer than 30 s was free of non-respiratory motion capture. 
Each of the 108 patients had at least 1 acceptable recording, and the median number of acceptable recordings 
per patient was 5 (range 1–11). In all, 717 min of noise-free inertial signal was used in the final analysis from 582 
recordings (an average of 1.23 min per two-minute recording).

The demographic, clinical, and outcome data from our cohort are detailed in Table 1. At least one chronic 
pulmonary condition was present in 42% of the patients (n = 46). Chronic obstructive pulmonary disease 
(n = 35) and asthma (n = 15) were the most common chronic conditions. Other diagnoses (n = 13) included 
interstitial lung disease, bronchiectasis, lung cancer, and sarcoidosis; some patients had more than one diagnosis. 
Of the 582 recordings, 120 (21%) were from the 26 patients that required critical-care hospitalization, 355 (61%) 
were from the 60 patients that required acute-care hospitalizations, and 107 (18%) were from the 22 patients that 
were discharged home.

Examples of signal analysis
Figure 1 illustrates our method of assessing the rate and rhythm of breathing. This method performed well in our 
external validation dataset (supplement Sect. 3). Compared to the gold standard respiratory rate series (obtained 
using volumetric air flow sensors), the kinematics-derived respiratory rate series was highly accurate (bias: -0.02 
breaths per minute; 95% limits of agreement: ±0.9 breaths per minute; average cross correlation coefficient: 

Fig. 2.  Relative movements of the chest and abdomen. This figure illustrates the information contained in the 
amplitude-relationships between the kinematic signals by displaying the signals of three patients (rows 1–3) 
whose breathing pattern varied in this regard. The first column of panels (A1-A3) shows one accelerometer 
signal from the lower rib (blue) and abdominal (orange) sensor of each patient. The instantaneous amplitude 
series of the signals in A1-A3 is plotted in panels B1-B3 respectively. Panels C1-C3 show the amplitude ratio 
series that is obtained by dividing the lower rib amplitude series by the abdominal amplitude series in B1-B3. 
The first patient (Row 1) has a stable phenotype of rib-predominant breathing: the lower rib sensor (blue) 
has a higher amplitude kinematic signal than the abdominal sensor (orange) in A1; the lower rib (blue) has 
higher instantaneous amplitude than the abdomen (orange) in B1; and the amplitude ratio series in C1 has a 
mean value greater than 1. In contrast to the rib-predominant breathing of the first patient, the second patient 
(Row 2) has abdomen-predominant breathing (A2 and B2) which results in an amplitude ratio that is less 
than 1 (C2). Despite their different breathing patterns, both of these patients have a stable pattern from one 
breath to the next. As a result, their amplitude ratio time series (C1 and C2) have low variability. In contrast, 
the third patient (row 3) has an unstable breathing pattern where rib predominant breaths alternate with 
abdomen predominant ones. This results in an amplitude ratio time series (C3) with high variability. Panel D 
schematically represents the derivation of our measures for respiratory alternans and recruitment of accessory 
muscle.

◂

Age, median (range) 65 (19–91)

Sex (percentage)

 Female 54

 Male 46

Race (percentage)

 White 85

 Black 13

 Other 2

SOFA score, median (range) 3.5 (0 to 11)

Severity of Illness (percentage)

 Critical-care hospitalization 24

 Acute-care hospitalization 56

 Discharge home 20

Table 1.  Patient characteristics.
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0.89). Figure 2 illustrates our method of assessing the relative movements of the upper chest, lower chest, and 
abdomen by analyzing the instantaneous amplitudes of linear acceleration.

A latent profile of labored breathing
By applying k-means clustering21,22 to the 33 novel measures, we found that the elbow in the Within Sum 
of Squares (WSS) plot occurred with 3 clusters (Figure S6 in supplement Sect. 5). Based on this, we elected 
to represent the respiratory kinematic variability across the 582 recordings using 3 metrics, one each from a 
different K-means cluster (details in supplement Sect.  5). These measures correspond with respiratory rate 
variability (short breaths alternating with long ones), respiratory alternans (rib-predominant breaths alternating 
with abdomen-predominant or mixed breaths), and recruitment of accessory muscles (increased upper chest 
expansion caused by contraction of neck muscles like scalene and sternocleidomastoid). The metrics were not 
correlated with each other; correlation coefficients were under 0.2 in all pairs.

In the latent profile analysis23–25, we determined that the data were most consistent with two latent phenotypes 
of breathing (details in supplement Sect. 5). One phenotype, had high means in all four metrics (respiratory 
rate: 24 bpm [70th percentile]; respiratory rate variability: 6.8 bpm [76th percentile]; respiratory alternans: 0.53 
[74th percentile]; recruitment of accessory muscles: 1.9 [81st percentile]). This is consistent with the clinical 
construct of labored breathing. The other phenotype had lower mean values, consistent with unlabored breathing 
(respiratory rate: 20 bpm [42nd percentile]; respiratory rate variability: 4.6 bpm [46th percentile]; respiratory 
alternans: 0.37 [45th percentile]; recruitment of accessory muscles: 1.1 [42nd percentile]).

Statistical analysis
The overall frequency of the labored breathing phenotype was 33% (193 of 582 total recordings). Poisson 
regression revealed an association between the proportion of a patient’s recordings that contained the labored 
breathing phenotype, and the severity of the patient’s illness. The frequency of the labored breathing phenotype 
was lowest (21%) in patients who were discharged home. Compared to this group, the frequency of labored 
breathing was higher in patients who required non-critical care hospitalization (33% v/s 21%; p = 0.06) and in 
patients requiring critical care hospitalization (44% v/s 21%; p = 0.004).

Logistic regression revealed that the frequency of labored breathing was independently associated with 
critical illness even after adjusting for the SOFA score. Every percentage point increase in a patient’s frequency 
of labored breathing was associated with an adjusted odds ratio of 1.02 (p = 0.02). The frequency of labored 
breathing ranged from 0 to 100% in the 108 patients (mean 35%; standard deviation 32). Comparing patients 
with entirely labored and entirely unlabored breathing profiles (i.e., frequency of labored breathing of 100% 
and 0% respectively) that odds ratio for critical illness was 5.5 even after adjusting for the SOFA score. Model 
discrimination for critical illness (AUROC) improved significantly (0.72 to 0.77, p = 0.02) when the frequency 
of labored breathing was added to the SOFA score in the logistic regression model. Mean recruitment of 
accessory muscles was the individual metric that improved model performance the most, but the performance 
improvement of individual metrics was not statistically significant (details in the supplement Sect. 6).

Further, as shown in Fig. 3, labored breathing was identified in 20% (48/242) non-tachypneic recordings. The 
re-classification of critical illness improved when the labored breathing phenotype was added to tachypnea as a 
marker of respiratory distress.

Clinical vignettes
Figures 4, 5 and 6 contain six respiratory kinematic recordings along with a narration of their clinical context. 
These cases were selected to illustrate the various scenarios where quantitative characterization of respiratory 
kinematics may significantly enhance medical decision making. For ease of illustration, we displayed a single 
kinematic stream at each sensor location that conveys the features that are measured by the metrics.

Figure  4 contains the respiratory kinematic recordings of two patients who presented with shortness of 
breath. Neither patient was tachypneic; both had a normal and virtually identical respiratory rate. However, only 
one of these patients exhibited a labored breathing phenotype. The patient with non-tachypneic and non-labored 
breathing was uneventfully discharged home. The patient with the non-tachypneic but labored breathing was 
admitted to the intensive care unit for life-threatening respiratory failure. This vignette demonstrates how high-
risk labored breathing is detectable even in the absence of tachypnea.

Figure 5 also contains the respiratory kinematic recordings of two patients who were initially admitted to 
the acute care for the treatment of pneumonia and mild hypoxemic respiratory failure. Both patients were 
tachypneic, and the risk predicted by the Pneumonia Severity Index was comparable26. However, the breathing 
patterns of one patient were more labored than the other (larger elevations in respiratory rate variability, 
recruitment of accessory muscles, and respiratory alternans). The patient with lower degrees of labored breathing 
derangements remained stable and was uneventfully discharged home after recovery. The patient with higher 
degrees of labored breathing derangements developed an abrupt clinical deterioration requiring an emergent 
endotracheal intubation and an unplanned transfer to the intensive care unit for life-threatening respiratory 
failure. That patient died within 24  h of their respiratory kinematic recording. This vignette exemplifies the 
clinical scenario where respiratory kinematic characteristics may provide alerts that are more specific than 
tachypnea for respiratory muscle overload and imminent respiratory deterioration.

Figure  6 contains two respiratory kinematic recordings obtained from one asthmatic patient whose 
acute respiratory failure resolved rapidly after breathing treatments were administered. The recordings show 
improvements in the patient’s respiratory kinematic characteristics that match their clinical trajectory. This 
vignette highlights how respiratory kinematic characteristics can reveal dynamic pathophysiologic trends27.
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Discussion
We studied the breathing motion patterns of patients with active respiratory symptoms. Our major findings are 
that (a) respiratory kinematics are a rich source of quantifiable physiological information, with more complexity 
than is adequately represented by the respiratory rate alone, and (b) high-risk respiratory kinematic phenotypes 
can be quantified in routine practice settings through multi-dimensional analysis of respiratory kinematics.

Clinicians have long recognized that the respiratory rate is an important vital sign. Equally well understood 
is the degree of inaccuracy with which it is currently measured28,29. We derived a method for respiratory rate 
estimation in our hospital patient population and validated that it results in highly accurate estimates in new 
populations (bias and 95% limit of agreement of -0.02 ± 0.9 breaths per minute in the exercise physiology 
laboratory subjects). Improving the accuracy of respiratory rate documentation can enhance patient safety, 
especially in the more remote parts of the world. For example, approximately 750,000 children under 5 years 
of age die from pneumonia every year30. UNICEF estimates that many deaths can be prevented if parents and 
community health workers can simply be trained to measure the respiratory rate and detect tachypnea31. But 
even this basic assessment (fast vs. normal respiratory rate) cannot be reliably achieved in many parts of the 
world32. The respiratory rate estimation methods described in this paper may improve diagnosis and save lives.

Notwithstanding the importance of the respiratory rate, it is only one among many breathing motion patterns 
that convey respiratory distress. A patient’s breathing can exhibit high-risk labored breathing despite a normal 
respiratory rate. In such scenarios, the risk can be captured by detecting other abnormal patterns like excessive 
upper rib excursion during breathing or an unstable breath phenotype (chest predominant breaths alternating 
with abdomen predominant ones). Seasoned clinicians caution their trainees, therefore, against the use of 
respiratory rate as the sole marker of labored breathing3. In the absence of quantitative clinical and research 
tools, however, such insights have been largely restricted to the domain of conventional clinical wisdom. A 
major contribution of our study is to quantitatively confirm this prevailing clinical intuition and provide one 
of the first estimates of its magnitude in a real-world clinical setting. Our novel physiomarkers revealed signs 
of labored breathing in a fifth of the recordings that had a normal respiratory rate, even when we used one 
of the most sensitive clinical definitions of tachypnea (respiratory rate ≥ 20 breaths per minute). The resulting 

Fig. 3.  Labored breathing phenotype improved model discrimination for critical illness. Multi-dimensional 
analysis of respiratory kinematics revealed a signature of labored breathing that was associated the severity 
of illness. The statistical significance of this association was demonstrated by Poisson and logistic regression. 
The clinical significance of that association is conveyed by this figure. Of the 582 recordings, 20% belonged 
to patients who required critical care hospitalization. When we used respiratory rate as the sole respiratory 
kinematic physiomarker (which is the prevailing clinical standard), tachypnea (respiratory rate ≥ 20 breaths 
per minute) was associated with a 1.5-fold rise in risk of critical illness (24% v/s 16%). Arguably, this is 
classification alone is clinically useful and affirms the validity of the kinematics-derived respiratory rate. 
Importantly, however, the classification improved when the low-risk (non-tachypneic) recordings were further 
separated based on the presence of the labored breathing. More than one fifth of the 242 non-tachypneic 
recordings contained the labored breathing phenotype. These recordings were associated with a 3-fold rise in 
risk of critical illness when compared to the non-tachypneic non-labored recordings (34% v/s 11%).
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reclassification led to improved model discrimination for critical illness. This points to a major opportunity 
for improvement in clinical risk stratification and early warning scores. Unanticipated respiratory compromise 
and unplanned intubation are common and catastrophic events in patients hospitalized in general medical and 
surgical units of a hospital33,34. Early warnings triggered by high-risk respiratory kinematic phenotypes may 
empower clinicians to address this menacing problem.

A major strength of this work is that it builds on principles that are fundamental to bedside diagnosis and 
to the pathophysiology of human ventilation. The physiomarker extraction was clinically-driven. As such, the 
respiratory kinematic characteristics reported in this study have an easily explainable correspondence with 
physical examination signs that are commonly used by clinicians. Additional clinically-driven kinematic signal 
analysis can lead to a more comprehensive characterization of respiratory kinematics. Thoraco-abdominal 
asynchrony (“abdominal paradox”), Cheyne-Stokes breathing, and apneas are examples of well-known 

 

Scientific Reports |        (2024) 14:27794 8| https://doi.org/10.1038/s41598-024-77778-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


physical examination findings that were not operationalized in this study. Moreover, a data-driven approach 
to physiomarker extraction may also be useful when larger respiratory kinematic datasets become available. In 
this latter approach, physiomarkers selection would be based on either an association with clinical outcomes 
(supervised learning), or an observed pattern in unlabeled data (unsupervised learning). Such physiomarkers 
may be poorly understood at first, but they may generate hypotheses and lead to the discovery of new 
pathophysiologic mechanisms. Another strength of our work is that acceptable recordings were unobtrusively 
achieved in a busy hospital environment. Every patient had at least 1 acceptable recording and 75% of all 
recordings were acceptable. This demonstrates the technical feasibility of large scale respiratory kinematic 
monitoring in real-world clinical settings.

This study is limited in generalizability because of convenience sampling. Also, due to the small sample 
size, we encountered the problem of an unfavorable EPV (events per variable). We preselected two candidate 
predictors based on clinical domain knowledge, favoring summary predictors to save degrees of freedom35,36. It 
is a limitation, nonetheless, that the study was not able to adjust for any pertinent variable other than respiratory 
kinematics and the Sequential Organ Failure Assessment (SOFA) score (such as age, sex, race, comorbidities, 
and non-respiratory vital signs like heart rate or temperature). Further, the present study does not address the 
variations in signatures of labored breathing related to the etiology of dyspnea or to willful manipulation by 
the subject (e.g., malingering). Finally, the study does not address factors of respiratory kinematic analysis that 
pertain to hardware or implementation science (e.g., form factor of sensors, ease of use, or practicality of sensors 
across the torso). Here, we demonstrate the technical feasibility and clinical utility of a novel signal analysis 
approach to respiratory physiological monitoring.

Fig. 4.  Labored breathing without tachypnea. This figure shows the respiratory kinematic recordings of two 
patients with a normal respiratory rate (≤ 20 breaths per minute). Patient 1 (panels A - E) was a 77-year-old 
female who presented to the emergency room with shortness of breath. She exhibited not only a normal 
respiratory rate (22nd percentile in our dataset) but also an entirely unlabored breathing phenotype. Her 
breath intervals were regular. This was captured by a low respiratory rate variability (31st percentile). Her 
upper rib motion amplitude was low. This led to a low value on the recruitment of accessory muscles metric 
(7th percentile). And finally, she had a stable phenotype of lower rib dominant breathing. As a result, her 
respiratory alternans metric was also low (2nd percentile). Her emergency room workup was negative for any 
major acute illness. She was diagnosed with a viral upper respiratory infection and discharged home from the 
emergency room. Patient 2 (panels F - J) was a 57-year-old male who presented with shortness of breath and 
lethargy. Patient 2 also had a normal respiratory rate (19th percentile) and a low respiratory rate variability 
(20th percentile). Yet, he was classified as having labored breathing. This was driven by the recruitment of 
accessory muscle and respiratory alternans metrics which were at the 99th and 92nd percentiles. The elevated 
respiratory alternans metric resulted from the variable abdominal signal amplitude relative to a constant 
lower rib amplitude. The elevated recruitment of accessory muscles metric corresponds with the fact that the 
amplitude of the upper rib signal exceeds that of the lower rib or abdominal signals. He was found to have 
acute on chronic hypoxemic and hypercarbic respiratory failure from severe chronic obstructive pulmonary 
disease. He required 15 L per minute supplemental oxygen to maintain SpO2 > 88%; his pH was 7.2 and 
pCO2 was 105. He was initiated on corticosteroids, antibiotics, non-invasive positive pressure ventilation and 
admitted to the ICU (not intubated only due to his advanced directive). These examples show how a high-
dimensional analysis of respiratory kinematics can improve discrimination for critical illness. [SpO2: oxygen 
saturation on pulse oximetry; pH: potential of hydrogen; pCO2: partial pressure of carbon dioxide; ICU: 
intensive care unit]
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Fig. 5.  Respiratory muscle overload and imminent respiratory collapse. This figure shows the respiratory 
kinematic recordings of two female patients with elevated respiratory rates (90th and 99th percentiles for our 
dataset). They were both initially admitted to the acute care unit of the hospital for pneumonia and sepsis 
with acute respiratory failure. At admission, their supplemental oxygen needs were low (4 and 2 L per minute) 
and their blood gas studies were normal (pH of 7.43 and 7.44; pCO2 of 33 and 40 mmHg). Their Pneumonia 
Severity Index scores were also comparable at 127 and 125 [scores of 91–130 are Risk Class 4 (moderate 
risk) and are associated with a 30-day mortality of 9%]. Apart from tachypnea and hypoxemia, the drivers 
of risk were age, hyponatremia, and confusion in patient 1, and fevers, anemia, and neoplastic disease (acute 
myelogenous leukemia) in patient 2. Despite the similarities in these patients’ presentations and conventional 
risk levels, their clinically trajectories were dramatically different. Patient 1 remained stable on the acute 
care unit after her kinematic recording and was discharged home after a 7-day hospitalization. In contrast, 
Patient 2 developed a sudden respiratory collapse within 6 h of her kinematic recording (required emergent 
intubation), and died within 24 h of this recording. Severe hypoventilation from respiratory muscle overload 
was deemed to be the likely mechanism of the collapse; this conclusion was consistent with the rapidity of 
collapse, unresponsiveness to oxygen supplementation prior to intubation (low SpO2 despite 100% FiO2), and 
acute hypercapnia (pH 6.9 mm Hg; pCO2 103 mm Hg). A majority of both patients’ recordings were classified 
as labored breathing in the latent profile analysis (3 of 4 recordings in patient 1, and 3 of 3 recordings in patient 
2). However, a comparison of the respiratory kinematic characteristics of these patients revealed an important 
difference. Patient 1 (the survivor) had lower grade derangements in all non-tachypnea physiomarkers than 
the deceased patient 2. The breath intervals were more regular in Panels B-D than in panels G-I (respiratory 
rate variability at 39th percentile in panel E vs. 99th percentile in panel J). The upper rib motion amplitude was 
much smaller than lower rib or abdominal motion amplitude in panels B-D than in panels G-I (recruitment 
of accessory muscles at 1st percentile in panel G vs. 81st percentile in panel J). And the breath phenotype was 
much more stable in patient 1 than in patient 2. Each breath had a same degree of lower rib dominance in 
panels C-D, whereas rib dominant breaths alternated with abdomen dominant ones in panels H-I (respiratory 
alternans at 11th percentile in panel E vs. 51st percentile in panel J). Consistent with the conventional wisdom 
in the field of bedside physical diagnosis, these findings suggest that respiratory kinematic characteristics 
contain signatures that are much more specific for respiratory muscle overload than just tachypnea.
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Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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