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Dynamic LR and QR factorization are fundamental problems that exist widely in the control field. 
However, the existing solutions under noises are lack of convergence speed and anti-noise ability. To 
this end, this paper incorporates the advantages of Dynamic-Coefficient Type (DCT) and Integration-
Enhance Type (IET) Zeroing Neural Dynamic (ZND), and proposes an Adaptive and Robust-Enhanced 
Neural Dynamic (AREND). On this basis, a Strategy of Integration-Coupling (SIC) is proposed to 
address multiple error function problems, improving model stability and application scenarios. This 
strategy is experimentally proven to be effective and has potential expansion capability. After that, 
the convergence and robustness of our AREND is theoretically analyzed. Furthermore, the proposed 
AREND is verified by numerical experiments of low-to-high dimensional factorization in comparison 
with existing solutions. Finally, the real-time 3-D Angle of Arrival (AoA) localization in multiple high-
noise conditions, is validated to the accuracy of the proposed model. Code is available at  h t t p s :  / / g i t h  u b 
. c o m  / A l a n  a 2 a 3 / A R E N D - C o d e - I m p l e m e n t a t i o n     .  
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Matrix factorization is a fundamental tool to simplify problems by splitting a matrix into the form of a product 
of several matrices of a particular type1–4. Among them, LR and QR factorization, as the names suggest: are 
a matrix M factorization into two matrices. The LR factorization is: a unit lower triangular matrix Λ and an 
upper triangular matrix RL to the multiplication, and the QR factorization is: an orthogonal matrix Q and an 
upper triangular matrix RQ to the multiplication. The LR factorization can be utilized in parallel computation5–7, 
applied in many engineering and technology needs like data movement analysis and circuit simulation8–10. Due 
to the special attributes of the orthogonal matrix after the QR factorization, the computation is more efficient 
and stable, often applied in least squares problems and optimization problems11,12. In real life, QR factorization is 
applied in areas such as the smart grid, pathological matrix problems, and harmonic compensation of inductors, 
among others13–16.

In practical applications, matrix factorization has to account for noise in the environment. To improve 
the stability of matrix factorization, algorithms minimize the accumulation and amplification of noise in the 
computation to provide reliable results17–22. With the development of neural dynamics in various fields23–30, 
researchers turn their attention to matrix factorization. Most of the work is on static matrices. While for the 
general case of dynamic matrices, 31,32only assume quasi-stationary case, and 33,34have no consideration of noise 
conditions. 35more focuses on improving the convergence speed of the solution. But under the noisy condition, 
it is more disturbing to the factorization. The practical solution for factorization is not satisfactory.

In recent years, a novel kind of neural dynamic called Zeroing Neural Dynamic (ZND) has been proposed36, 
which is commonly employed for solving dynamic problems. ZNDs utilize first-order derivative and are 
susceptible to noise. In order to improve the accuracy of ZNDs, they are extended to solve for a variety of 
noise types, resulting in an Integration-Enhance Type (IET) of ZNDs, which have been designed by control 
theory37, applied to robotic arm38, and used for constrained dynamic optimization39, among other applications. 
But they have shortcomings that fail to rapidly regulate the two evolutionary direction guidance volumes, the 
residual error and integration information. Fortunately, there is a Dynamic-Coefficient Type (DCT) of ZNDs40,41 
designed. It essentially applies adaptive coefficient to adjust the residual error guidance. Nevertheless, the ZNDs 
still lack the integration information guiding, and they are only considered to solve problems under slight noise. 
In addition, ZNDs are also applied to the dynamic matrix factorization42–44, but suffer from improvement 
deficiency, limited speed of model convergence and robustness. In35, two nonlinear-activated ZNDs designed 
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for LR and QR factorizations resolving the problem of convergence speed, but there is still potential to improve 
anti-noise ability. At the same time, dynamic target localization is also drawing attention. Among them, the 
Angle-of-Arrival (AoA) localization is a wide range of algorithms can be applied to the positioning system45, 
wireless communication46, satellite localization47. On the downside of AoA, it is susceptible to noise and the 
ZND of IET is poor in noisy situations45.

A single error function built for a problem is universal, while multiple error functions arising from problem 
characterization are correlated. The two guiding volumes are the basis for the construction of the error function48, 
then the volumes between themselves are also correlated. Preventing instability in solving, the above issue has to 
be taken into account when choosing model similar to the IET relied on the two guiding volumes.

In general, related work on the dynamic study lacks an improved ZND with strong robustness. In this paper, 
we propose an Adaptive and Robust-Enhanced Neural Dynamic (AREND) by combining the advantages of 
the IET and DCT for solving the dynamic matrix LR and QR factorization, utilizing the activation function to 
stimulate the adaptive control of the guiding volumes. In addition, a Strategy of Integration-Coupling (SIC) is 
also given for the multiple error function problems.

The rest of the paper is structured as follows: Section “Preliminaries and existing solutions” gives preliminaries 
and existing solutions for the LR and QR factorization. Section “Methodology” explains the motivation of the 
SIC and unifies the AREND evolution formula, subsequently the constructions of the AREND for LR and QR 
factorization is designed. Section “Theorem analysis” gives a theoretical analysis of the AREND convergence 
and robustness. Section “Numerical experiments” conducts comprehensive assessments and comparative 
experiments, and proves the effectiveness and superiority of the AREND. Section “Conclusions” summarizes the 
whole paper. The main contributions of this paper are as follows: 

 1.  Unlike the existing ZNDs, the AREND introduces the adaptive regulation of the evolutionary guiding vol-
umes, which contributes to its fast convergence speed and strong robustness for solving the LR and QR 
factorization problems.

 2.  For the multiple error function problems, the SIC is proposed for the first time, which alleviates the conver-
gence instability of the IET of ZND solution. Then the AREND is unified into a double-coupling evolution 
formula, improving the model application scenarios.

 3.  The convergence speed and robustness of the AREND are verified by different dimension matrix LR and QR 
factorization under noise-free or noise perturbed cases, and the accuracy of the AREND is validated by the 
real-time 3-D AoA localization.

Preliminaries and existing solutions
LR and QR factorization
The mathematical expression for the definition of LR factorization is as follows:

 ML(t) = Λ(t)RL(t), (1)

where time t ∈ [0,+∞), the dynamic full-rank matrix ML(t) ∈ Rn×n, unit lower triangular matrix ΛL(t) ∈ Rn×n

, and upper triangular matrix RL(t) ∈ Rn×n are assumed to be smooth. Then the error function of LR factorization 
is defined as

 ϵL(t) = ML(t)− Λ(t)RL(t). (2)

The mathematical expression for the definition of QR factorization is given as

 MQ(t) = Q(t)RQ(t), (3)

where the dynamic column full-rank matrix MQ(t) ∈ Rm×n, orthogonal matrix Q(t) ∈ Rm×m, and upper 
triangular matrix RQ(t) ∈ Rm×n are supposed to be smooth as well.

Remark The QR factorization can exploit the orthogonality of the factored matrix to reconstruct the other 
two error functions, ensuring uniqueness and stability of the factorization. Of course, this has advantages and 
disadvantages. On the positive side, the target residual error tends to decrease rapidly over time, indicating an 
effective self-correction mechanism. However, multiple error function constraints can complicate the process. 
Introducing multiple feedback volumes can inadvertently increase the residual error when it becomes negligi-
ble, contrary to the goal of minimizing it. This puts forward the model requirement of adaptive control for the 
residual errors decline.

Base on the definition and orthogonality of the QR factorization, the error functions are given: one 
definition-error function ϵ1(t) = MQ(t)−Q(t)RQ(t), two property-error functions ϵ2(t) = QT(t)Q(t)− I , 
ϵ3(t) = QT(t)MQ(t)−RQ(t), where I is a unit matrix, and (·)T represents transpose operation.

To improve the efficiency and simplicity, we propose extracting and arranging the elements of the factorized 
matrices into column vectors, satisfying the matrix multiplication and vectorization calculations. Therefore, the 
following lemmas are introduced and more information is available in35,44:
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Lemma 1 The primary elements of the unit lower triangular matrix Λ  are extracted as column vector ⃗l ∈ R
n(n−1)

2 ×1, 
the major elements of the upper triangular matrix RL are extracted as column vector υ⃗ ∈ R

n(n+1)
2 ×1. Then has 

x⃗ = [⃗l; υ⃗] ∈ Rn×1 and the substitution matrices H1 ∈ Rn×n,, H2 ∈ Rn×n, which satisfy the equations H1x⃗ = vec(Λ) 
and H2x⃗ = vec(RL).

Lemma 2 The matrix RQ ∈ Rm×n and the transpose QT   of the matrix Q ∈ Rm×m  after vectorization can be 
respectively denoted as

 vec(RQ) = C1r⃗Q,  (4)

 vec(QT ) = C2q⃗,  (5)

 where C1 ∈ Rm2×m(m+1)
2  and C2 ∈ Rmn×mn  are the operation matrix and transpose matrix, respectively. 

r⃗Q ∈ R
m(m+1)

2 ×1 is obtained by vectorizing the upper triangular non-zero elements of RQ into columns, q⃗ ∈ Rmn×1  
is obtained from Q column vectorization.

Existing solutions
The experimental principle is to make all the comparison models to achieve the optimal convergence results, 
i.e., to choose the optimal activation function, variable parameter function to make the comparison models to 
achieve the optimal convergence performance. Then show the superiority of AREND proposed in this paper. 
The LR, QR factorization studies lack solutions for comparison, here the exist ZNDs are provided. The Original 
ZND (OZND) evolution formula is as

 ϵ̇(t) = −ξϵ(t), (6)

where ξ is a adjustable positive coefficient. The evolution formula of the Nonlinear-activated ZND (NZND)35 is

 ϵ̇(t) = −ξΩ
(
ϵ(t)

)
, (7)

in this paper, an exemplary representation of the activation function is given, where Ω(·) denotes the activation 
function that acts on each element s of each of the example matrices S. And the activation function employed by 
the NZND in the experiments is as

 Ω
(
s
)
= exp

(
|s|α

)
|s|α−1sign(s), (8)

where α ∈ (1, 2), sign(·) is expressed as

 

sign(s) =




1, s > 0,

0, s = 0,

−1, s < 0.

A representative of IET of ZNDs, the Noise-Tolerance ZND (NTZND)37 is

 
ϵ̇(t) = −γϵ(t)− λ

∫ t

0

ϵ(δ) dδ, (9)

the residual error control coefficient γ > 0, and the integration feedback coefficient λ > 0.

For DCT of ZNDs, a variable parameter function determines the automatic adjustment of the sampling interval, 
i.e., it varies with the error, decreasing the step to speed up the convergence rate when the error is large, and 
increasing the step accordingly to conserve computational resources when the error is small. A DCT of ZND 
canonical example40 in 2021 called VPZND is as

 ϵ̇(t) = −κ(t)Ω
(
ϵ(t)

)
, (10)

and κ(·) is the optimal variable-parameter function as

 
κ(t) =

{
βexp(t), 0 < β ≤ 1,

βt + 2βt + β, β > 1,

Ω(·) is the optimal activation function of VPZND as follows:

 Ω(s) = 0.5
(
|s|ζsign(s) + s + |s|

1
ζ sign(s)

)
,

where ζ ∈ (0, 1).
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Methodology
AREND
In view of the high stability requirements of dynamic matrix factorization, the AREND is proposed in this section, 
which makes the solution system adaptive to control the stable decrease of residual error. Adaptive activation 
functions are utilized to couple the two components of guiding volumes to ensure adaptive adjustment. Unlike 
the previous work, a novel evolution formula is designed as

 
ϵ̇(t) = −γΘ

(
ϵ(t)

)
− λΦ

(
ϵ(t) + γ

∫ t

0

Θ
(
ϵ(δ)

)
dδ
)
, (11)

where ϵ̇(t) is the derivative form of ϵ(t), the functions Θ(·) and Φ(·) represent adaptive activation functions act 
on each matrix S element s, which all can be constructed from the following adaptive function types.

• Adaptive activation function type I: 

 

f (s) =




σ+, s > σ+,

|s|νs + µs, σ− ≤ s ≤ σ+,

σ−, s < σ−.

 (12)

• Adaptive activation function type II: 

 

f (s) =




σ+, s > σ+,

exp
�
|s|


s + µs, σ− ≤ s ≤ σ+,

σ−, s < σ−,

 (13)

where σ is a positive parameter define the upper and lower bounds, controlling the behavior of the functions, 
and limiting the solution system guiding information feedback and enhance robustness. The parameters µ > 1 
and ν > 1 are hyperparameters used to control the adjustment speed of the guiding volumes.

SIC
Considering the QR factorization involves several mutually constrained error functions, the IET of ZNDs is 
always affected by the other integration and leads to instability, if it relies solely on the single integration. So the 
SIC, coupling multiple integration, is proposed to solve this kind of problem. And a unified double-coupling 
AREND evolution formula is as

 
ϵ̇i(t) = −γΘ

(
ϵi(t)

)
− λΦ

(
ϵi(t) + γ

N∑
j=1

∫ t

0

Θ
(
ϵj(δ)

)
dδ
)
, (14)

where i, j = 1, 2, ..., N , N depends on the number of error functions. In order to simplify equation, (14) is 
transformed into:

 ϵ̇i(t) = −∆i(t), (15)

where ∆i(t) = γΘ
(
ϵi(t)

)
+ λΦ

(
ϵi(t) + γ

∑N
j=1

∫ t

0 Θ
(
ϵj(δ)

)
dδ
)

. In order to prove the SIC effective, a unified 
evolution formula of the NTZND is also given as

 
ϵ̇i(t) = −γϵi(t)− λ

N∑
j=1

∫ t

0

ϵj(δ) dδ. (16)

AREND for LR factorization
In this subsection, the AREND for LR factorization (AREND-LR) is designed in steps. According to35, first, 
substitute the error function of LR factorization (2) into (14), and then

 ∆L(t) = −ṀL(t) + Λ̇(t)RL(t) + Λ(t)ṘL(t). (17)

Second, apply the Kronecker product to the above formula (17), the equation after vectorization is formulated as

 

vec
(
∆L(t)

)
= −vec

(
ṀL(t)

)
+
(
RT

L(t)⊗ I
)
H1

⃗̇x(t)+(
I ⊗ Λ(t)

)
H2

⃗̇x(t),
 (18)

where ˙⃗x(t) is the derivative form of ⃗x(t), H1 and H2 and ⃗x(t) are obtained by substituting the matrices L(t), RL(t) 
into the lemma 1, I is a unitary matrix, and ⊗ represents the symbolic Kronecker product.
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Finally, let ⃗gL(t) = vec
(
ṀL(t)

)
+ vec

(
∆L(t)

)
, and VL(t) =

(
RT

L(t)⊗ I
)
H1 +

(
I ⊗ Λ(t)

)
H2, the AREND-LR is 

given as

 ⃗̇x(t) = V †
L(t)g⃗L(t), (19)

where V †
L(t) represents the pseudo-inverse of VL(t).

Recognizing the unavoidable noise in the actual system, to monitor the performance of the AREND in a noisy 
environment, the model under noise is designed as

 ⃗̇x(t) = V †
L(t)g⃗L(t) + ρ⃗(t), (20)

where ρ⃗(t) is the noise in vector form.

AREND for QR factorization
This subsection is a design of AREND for QR factorization (AREND-QR). First, substitute the QR error 
functions into the evolution formula (14), then Ėi(t) = −∆i(t), where i = 1, 2, 3. Second, apply the Kronecker 
product and Lemma 2 to the above formula, the equation after vectorization is as follows:

 




vec
�
∆1(t)


=

�
RT

Q(t)⊗ I

˙⃗q(t)− vec

�
ṀQ(t)



+
�
I ⊗Q(t)


C1

⃗̇rQ(t),

vec
�
∆2(t)


=−

�
QT(t)⊗ I


C2 + I ⊗QT(t)


˙⃗q(t),

vec
�
∆3(t)


=

�
MT

Q(t)⊗ I

C2

⃗̇q(t) + C1
⃗̇rQ(t)

− vec
�
QT(t)ṀQ(t)


,

 (21)

where ṀQ(t), Q̇(t), ṘQ(t), ˙⃗q(t), ˙⃗rQ(t) are the form of the derivative of B(t), Q(t), RQ(t), q⃗(t), r⃗Q(t). I represents 
the unit matrix. C1 and ˙⃗rQ(t) are obtained by substituting ṘQ(t) into Lemma 2 (4), while C2 and ˙⃗q(t) are obtained 
by substituting Q̇T(t) into Lemma 2 (5).

Finally, the above equations are transformed into the form of matrix product, the AREND-QR is (
⃗̇y(t) = V †

Q(t)g⃗Q(t)
)

 as

 

 ˙⃗y1(t)
˙⃗y2(t)


=



V11(t) V12(t)

V21(t) V22(t)

V31(t) V32(t)



†

g⃗1(t)

g⃗2(t)

g⃗3(t)


 , (22)

where

 

• ˙⃗y1(t) = ˙⃗q(t) •V21(t) =
(
QT(t)⊗ I

)
C2 + I ⊗QT(t)

• ˙⃗y2(t) = ˙⃗rQ(t) •V22(t) = 0

•V11(t) = −RT
Q(t)⊗ I • g⃗1(t) = −vec

(
∆1(t)

)
− vec

(
ṀQ(t)

)
•V12(t) = −

(
I ⊗Q(t)

)
C1 • g⃗2(t) = −vec

(
∆2(t)

)
•V31(t) =

(
MT

Q(t)⊗ I
)
C2 • g⃗3(t) = −vec

(
∆3(t)

)
− vec

(
QT(t)ṀQ(t)

)
•V32(t) = −

(
I ⊗ I

)
C1,

and V †
Q(t) represents the pseudo-inverse of VQ(t), the model under noise is as follows:

 

 ˙⃗y1(t)
˙⃗y2(t)


=



V11(t) V12(t)

V21(t) V22(t)

V31(t) V32(t)



†

g⃗1(t)

g⃗2(t)

g⃗3(t)


 +


ρ⃗1(t)

ρ⃗2(t)


, (23)

where ρ⃗(t) is the noise in vector form.

Theorem analysis
Convergence and robustness are undoubtedly important for a model. In this section, we provide theoretical 
analysis and proofs for the convergence and robustness of the AREND. Notice that although there is only one 
error function discussed, it also applies to the multiple error function case.

Convergence analysis
The following theorem is formulated to investigate and verify the global convergence of the AREND.

Scientific Reports |        (2024) 14:27923 5| https://doi.org/10.1038/s41598-024-76537-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Theorem 1 At the state of random initialization, the residual error of the AREND under no external noise distur-
bance can converge to the theoretical solution of the target error function.

Proof First, according to the evolution formula of the AREND, the ijth element of the model is transformed 
into:

 
ϵ̇ij(t) = −γΘ

(
ϵij(t)

)
− λΦ

(
ϵij(t) + γ

∫ t

0

Θ
(
ϵij(δ)

)
dδ
)
, (24)

based on Lyapunov’s theory, an intermediate variable is constructed as Z(t) = ϵij(t) + γ
∫ t

0 Θ
(
ϵij(δ)

)
dδ, then 

its derivative form can be get: Ż(t) = ϵ̇ij(t) + γΘ
(
ϵij(t)

)
. Subsequently, a Lyapunov function is defined to prove 

the stability:

 L1(t) = ZT(t)Z(t)/2,

where L1(t) is proven to be positive definite. Then it is easy to get: L̇1(t) = −γΘT
(
Z(t)

)
Z(t). In term of the 

definition of (12) and (13), the following inequality is ∥Θ
(
Z(t)

)
− Z(t)∥2F ≤ ∥Y − Z(t)∥2F. When Y = 0, 

get ∥Θ
(
Z(t)

)
− Z(t)∥2F ≤ ∥Z(t)∥2F, then ΘT(Z(t))Θ(Z(t))− 2ΘT(Z(t))Z(t) ≤ 0 is derived. Consequently, 

−ΘT
(
Z(t)

)
Z(t) ≤ −ΘT

(
Z(t)

)
Θ
(
Z(t)

)
/2 ≤ 0. View L̇(t), obtain L̇(t) ≤ −ηΘT

(
Z(t)

)
Θ
(
Z(t)

)
/2 ≤ 0, so L̇(t) 

is negative definite. Only when Z(t) = 0 does it satisfies L1(t) = 0 and L̇1(t) = 0. It can be proven that Z(t) can 
converge to zero.

Furthermore, Z(t) = ϵ(t) + γ
∫ t

0 Θ
(
ϵ(δ)

)
dδ = 0, refer to LaSalle’s invariance principle49, meaning 

ϵ̇(t) = −γΘ
(
ϵ(δ)

)
. Consistent with previous discussion, a new Lyapunov function is designed as 

L2(t) = ϵT(t)ϵ(t)/2. Similar to L1(t), the above proof steps can prove that L2(t) ≥ 0 and its derivative form 
L̇2(t) ≤ 0. The prior proofs that the AREND can converge stably to the theoretical solution of the objective error 
function.

The proof is completed.

Robustness analysis
Noise immunity is an important indication of model robustness, and the next section focuses on analyzing the 
performance of the AREND with common conditions perturbed by different noises.

Theorem 2 Under the condition of constant noise ρ, the AREND can converge to the theoretical solution of the 
target error function.

Proof Using the Laplace transform50 to represent the ith and jth subsystems of the AREND polluted by constant 
noise ρ:

 
sϵij(s)− ϵij(0) = −γΘ

(
ϵij(s)

)
− λΦ

(
ϵij(s) +

γ

s
Θ
(
ϵij(s)

))
+ ρij. (25)

Without loss of generality and also for simplicity, the nonlinear activation functions Θ(ϵ(t)) = ϵ(t) and 
Φ(ϵ(t)) = ϵ(t) are exploited and investigated in this subsection. The following equation can be written as

 
ϵij(s) =

s
(
ρij/s + ϵij(0)

)
s2 + sγ + sλ + γλ

.

According to the final value theorem51, it can be obtained as lim
t→∞

ϵij(t) = lim
s→0

sϵij(s) = 0. Thus, the AREND can 
converge to zero. Constant noise has no effect at all on the performance.

The proof is completed.

Theorem 3 For period noise ρ(t) with upper and lower bounds ρ+ > 0, ρ− < 0 and period T, the AREND can 
converge to the theoretical solution of the objective problem. Upper bound for each element of the residual error 
can be expressed as limt→∞ ϵij(t) =

ρ+

γλ .

Proof Using the Laplace transform, the ith and jth subsystems of the AREND polluted by period noise ρ(t) is 
written as

 

sϵij(s)− ϵij(0) = −γΘ
(
ϵij(s)

)
− λΦ

(
ϵij(s) +

γ

s
Θ
(
ϵij(s)

))

+
1

1− exp(−Ts)

∫ T

0

exp(−st)ρij(t)dt,
 (26)

where 1
1−exp(−Ts)

∫ T

0 exp(−st)ρij(t)dt is the Laplace transform of ρij(t). Then, according to the final value 
theorem, we can get
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∣∣∣∣∣ limt→∞
ϵij(t)

∣∣∣∣∣ =
∣∣∣∣∣lims→0

sϵij(s)

∣∣∣∣∣

=

∣∣∣∣∣lims→0

s

(
1

1−exp(−Ts)

∫ T

0 exp(−st)ρij(t)dt + Eij(0)

)

s2 + sγ + sλ + γλ

∣∣∣∣∣

≤

∣∣∣∣∣lims→0

∣∣s∣∣(∣∣ρ+ij/s
∣∣ + ∣∣ϵij(0)

∣∣)
∣∣s2 + sγ + sλ + γλ

∣∣
∣∣∣∣∣ =

ρ+

γλ
.

In general, when the coefficients γ and λ are large enough, the final value of the residual error tends to be zero 
in the presence of period noise. In other words, these two coefficients determine the robustness of the AREND 
under period noise.

Thus, the proof is completed.

Numerical experiments
The theoretical analysis in the previous section proves the convergence and robustness of the AREND. In this 
section, numerical experiments from low-dimensional to high-dimensional matrices are designed to further 
demonstrate the performance of the proposed model, as well as model validation in the application of the 
AoA localization. The parameters γ = 60, λ = 30, ξ = 5, α = 1.5, β = 4, ζ = 0.4, and hyperparameters σ = 2, 
ν = µ = 5 are utilized throughout the experiments, except where noted specifically. But the tuning of these 
hyperparameters can only be deployed empirically. Only when addressing the QR factorization, ν and µ are 
adjusted to be 12. In these experiments, the phase in which ZND adjusts the guidance volumes is depicted by the 
AREND through residual error curve fluctuations, as Figs. 1 and 5a,b shown.

Instances for evaluation
LR factorization
In order to verify the convergence of the AREND-LR, a following dynamic matrix ML(t) ∈ R3×3 is designed as

 




sin(t) + 3 sin(2t) sin(t)
sin(t) cos(t) + 5 cos(2t)

sin(t)− 1 cos(2t + 2) cos(t) + 3


 .

Figure 1 is a comparison of the AREND, OZND, NZND, VPZND, NTZND for the LR factorization in the 
absence of noise. The OZND converges the latest. The NZND and VPZND converge at around 0.3 s and 0.4 s, 
respectively. The NTZND cannot adaptively adjust the two guiding volumes and its convergence is incomplete. 
However, the AREND converges to zero quickly at 0.1 s. The adaptive activation functions of the AREND adjust 
the level of the two guiding volumes in a very short time. It is demonstrated that the AREND has the excellent 
performance addressing LR factorization this kind of single-error function problem.

Fig. 1. The comparisons of the residual error ∥ϵL(t)∥F by models solving LR factorization.
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QR factorization
To verify the convergence of the AREND-QR and the effectiveness of the SIC, a dynamic matrix MQ(t) ∈ R3×3 
is designed as

 




sin(3t) sin(2t)− 2 sin(t) + 1

sin(2t) cos(t) 2cos(t)
−sin(t) cos(2t) cos(t)− 3


 .

 (1)  Integration-coupling VS. single-integration: In terms of Fig. 2, two ZNDs of IET, the AREND and NTZND, 
compare the employment of the SIC and single integration. From the surface, the single-integration strategy 
to solve the problem has precarious convergence. There are a number of up and down oscillations, pointing 
out that the IET of ZNDs guiding by the single-integration fail to solve the QR factorization this kind of 
multiple error function problem. On the contrary, the IET of ZNDs all develops stability and convergence 
capability with the help of the SIC. NTZND-I, the original model, focuses only on the integration feedback 
from one of the error functions and cannot eliminate the internal errors of the system. NTZND-II, with 
the help of SIC, enables all the error functions to play a comparable role in solving the system, coupled in 
the form of cumulative and integral terms, which eliminate the multinomial errors from each other. Fur-
thermore, the adaptive functions activated AREND is more capable of controlling the residual error drop, 
indicating the superiority of the AREND. Note that the ZNDs of IET are all utilizing the SIC in the following 
experiments.

 (2)  Convergence under noise-free case: Refer to Fig. 3, for ∥ϵ1(t)∥F and ∥ϵ2(t)∥F, the convergence time of the 
OZND, NZND, VPZND are around 1s, 0.4s, 0.5s, whereas the NTZND obviously only converges to a small 
value. Within 0.1s, the two residual errors solved by the AREND converge to zero. The real-time adaptive 
tuning of the activation functions is justified playing a crucial role in ensuring strong competitiveness of the 
AREND-QR.

Fig. 2. The comparisons of residual errors by integration-coupling and single-integration models for solving 
QR factorization, where II and I represents integration-coupling and single-integration models, respectively. 
(a) and (c) ∥ϵ1(t)∥F. (b) and (d) ∥ϵ2(t)∥F.
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High-dimensional situations
LR factorization
To investigate the performance of high dimensional matrix LR factorization in terms of model convergence and 
robustness in noisy environments, a dynamic matrix ML(t) ∈ R4×4 is designed as

 




sin(t) + 3 sin(2t) sin(t) −cos(t)
cos(t) cos(t) + 5 cos(2t) sin(t)

sin(t)− 1 cos(2t + 2) cos(t) + 3 cos(2t)
cos(t) sin(t + 3) sin(t− 5) 2− cos(t)


 .

 (1)  Convergence and robustness discussion: Fig. 4 is a comparison of multiple models solving the high dimen-
sional LR factorization. Figure 4a points out that the NZND and VPZND converge in 0.4 s, the AREND 
has the best convergence performance, converging in 0.1 s. Figure 4b,d indicate that results by all models 
with the constant noise ρc(t) = [10]4×4 and random noise ρr(t) ∈ [8, 12]4×4 are generally consistent, Fig. 4c 
shows under the period noise ρp(t) = [10]4×4 × sin(2t), the compared ZNDs fluctuate more. It can be seen 
that the VPZND is resistant to noise but converges slowly. Only the AREND is the fastest to converge under 
the three types of noise, and still converges in 0.1s. The activation-coupling contributes to it perfect access to 
integration information. It turns out the convergence of the AREND-LR is almost unaffected by the noises.

 (2)  Different values of model parameters: Fig. 5 are the comparison of the different values of the two AREND pa-
rameters. In Fig. 5a, when λ is a fixed value, the larger γ is, the faster the adjustment control of the residual 
error is, and the shorter the time of convergence is. In Fig. 5b, when γ is a certain value, the larger the value 
of λ, the more rapid the adjustment control of the two guidance volumes becomes, and the more brief the 
time of convergence is. In summary, the two variables are kept in a certain proportion to increase, the speed 
of adjustment of the two guiding volumes increases, and the convergence is faster.

QR factorization
Aiming to explore more performance of the AREND-QR for high-dimensional matrix, a dynamic matrix 
MQ(t) ∈ R5×5 is designed as

 




sin(t) cos(t) sin(2t) cos(2t) sin(3t)
cos(3t) sin(4t) cos(4t) sin(5t) cos(5t)
sin(6t) cos(6t) sin(7t) cos(7t) sin(8t)
cos(8t) sin(9t) cos(9t) sin(10t) cos(10t)
sin(11t) cos(11t) sin(12t) cos(12t) sin(13t)



.

 (1)  Under no noise: Fig. 6 is a comparison of the two residual errors of models solving high-dimensional matrix 
QR factorization. The residual errors by the AREND almost all converge in about 0.01 s. In addition to the 
role of hyperparameters, the double-coupling of the AREND ensures that the residual error of the solver 
system decreases rapidly by integrating multiple pieces of information, making the AREND suitable for 
even high-dimensional matrix.

 (2)  Under different noises: Fig. 7 shows a comparison of the two residual error of models under noises. It reveals 
that the AREND, NTZND, and VPZND are resistant to all three types of noise. However, notices that the 
VPZND has the disadvantage of being slower to converge, requiring longer time work and more computa-
tional cost. The NTZND with integration term undoubtedly gives it some immunity to noise, yet the per-

Fig. 3. The comparison of residual errors by different models for solving QR factorization. (a) ∥ϵ1(t)∥F. (b) 
∥ϵ2(t)∥F.
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Fig. 5. The comparisons of the residual error ∥ϵL(t)∥F by AREND-LR (19) solving high dimensional matrix 
with different values of the two parameters. (a) γ. (b) λ.

 

Fig. 4. Multi-model comparisons of the residual error ∥ϵL(t)∥F for solving high-dimensional matrix LR 
factorization with different noises. (a) With noiseless. (b) With constant noise ρc(t) = [10]4×4. (c) With period 
noise ρp(t) = [10]4×4 × sin(2t). (d) With random noise ρr(t) ∈ [8, 12]4×4.
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formance is not satisfactory. But the AREND converges in a very short time about 0.1 s. It is firmly proven 
that the AREND has an superiority in dealing with QR factorization in noisy environments.

 (3)  Different values of the parameter: Fig. 8 shows the comparison of different values of the control parameters 
of the AREND. The same as the LR factorization Fig. 5 is that the speed of convergence of the AREND is 
positively correlated with the values of γ, λ. And the difference from the LR factorization is the SIC makes 
the control adjustment speed of the parameters γ, λ better, and improves the model accuracy.

Quantitative analysis
The quantitative experiment results are shown from Tables 1, 2, 3 and 4, which detailedly records the Average 
Steady-State Residual Error (ASSRE) and Maximal Steady-State Residual Error (MSSRE) when different models 
solve the high-dimensional LR and QR factorization. The mathematical description of MSSRE is defined as 
limt→∞ sup ∥ϵ(t)∥F, tm ∈ [ts, tmax], and ASSRE is defined as 

∫ tmax

ts
∥ϵ(δ)∥F dδ/(tmax − ts), where t(s) represents 

the length of time in seconds. In these tables all point out the ZNDs of DCT, such as DPZND41, DVPEZND52, 
are mostly not suitable for solving LR and QR factorization.

Fig. 7. The comparisons of residual errors by multiple models for solving high-dimensional matrix QR 
factorization with multiple large noises. (a) and (d) With constant noise ρc(t) = [10]5×5. (b) and (d) With 
period noise ρp(t) = [10]5×5 × sin(3t). (c) and (f) With random bounded noise ρr(t) ∈ [8, 12]5×5.

 

Fig. 6. The comparison results by multiple models for solving high-dimensional matrix QR factorization. (a) 
∥ϵ1(t)∥F. (b) ∥ϵ2(t)∥F.
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 (1)  Performance under noise-free conditions: The AREND performs well under noisy conditions, both on the 
LR and QR problems. Table 1 shows that AREND has an ASSRE of 2.24× 10−7 for the LR problem, which 
is much lower than other models such as 1.60× 10−3 for OZND and 2.73× 10−2 for NTZND. The QR 
problem in Table 3 yields similar results, with AREND’s ASSRE of 2.62× 10−6 and 2.22× 10−6, respective-
ly, which are significantly better than the other models. The results of MSSRE further support this conclu-
sion. In Tables 2 and 4, the MSSRE of the AREND is 4.89× 10−7 for the LR problem, and 5.35× 10−6 and 
3.71× 10−6 for the QR problem, which are much smaller than the other comparative models, and show an 
extremely high accuracy.

 (2)  Performance under constant noise conditions: In the constant noise condition, AREND still performs the 
best, although the errors of most models have increased. The LR problem in Table 1 shows that AREND has 
an ASSRE of 5.41× 10−4, which is significantly better than NZND’s 5.17× 100 and VPZND’s 6.40× 10−3. 
For the QR problem (see Table 3), AREND’s ASSRE of 4.29× 10−2 and 3.30× 10−2 is much smaller than 

Model MSSRE with NF MSSRE with CN MSSRE with PN MSSRE with RN

OZND 3.60× 10−3 1.08× 102 5.11× 101 1.35× 102

NZND 7.54× 10−4 5.15× 100 3.49× 100 5.37× 100

VPZND 7.52× 10−4 1.66× 10−2 1.05× 10−2 2.10× 10−2

NTZND 2.93× 10−2 8.50× 10−1 1.42× 100 9.51× 10−1

DPZND Divergent Divergent Divergent Divergent

DVPEZND Divergent Divergent Divergent Divergent

AREND 4.89× 10−7 6.60× 10−4 2.20× 10−3 6.30× 10−3

Table 2. Compare the MSSREs of different models when solving the LR problem. NF, CN, PN, and RN signify 
the noises free, constant noises, period noises, and random noises, respectively. The bold font denotes the best 
result in the corresponding item

 

Model ASSRE with NF ASSRE with CN ASSRE with PN ASSRE with RN

OZND 1.60× 10−3 1.17× 102 1.97× 101 1.33× 102

NZND 5.61× 10−5 5.17× 100 1.58× 100 5.34× 100

VPZND 5.96× 10−5 6.40× 10−3 6.00× 10−3 8.70× 10−3

NTZND 2.73× 10−2 7.29× 10−1 1.26× 100 7.97× 10−1

DPZND Divergent Divergent Divergent Divergent

DVPEZND Divergent Divergent Divergent Divergent

AREND 2.24× 10−7 5.41× 10−4 1.10× 10−3 1.30× 10−3

Table 1. Compare the ASSREs of different models when solving the LR problem. NF, CN, PN, and RN signify 
the noises free, constant noises, period noises, and random noises, respectively. The bold font denotes the best 
result in the corresponding item

 

Fig. 8. The residual error results ∥ϵ1(t)∥F by AREND-QR (22) solving the high dimensional matrix with 
different values of two parameters. (a) γ. (b) λ.
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OZND’s 2.66× 102 and 3.99× 102. From the MSSRE point of view, AREND has a MSSRE of 6.60× 10−4 
in the LR problem (Table 2), compared to 5.16× 10−2 and 4.96× 10−2 in the QR problem (Table 4). Com-
pared with other models, AREND is less affected by constant noise and shows good robustness.

 (3)  Performance under period noise conditions: Period noise has a large impact on most models, but AREND is 
still able to maintain a good performance. In Table 1, AREND’s ASSRE for the LR problem is 1.10× 10−3

, while the errors for OZND and NTZND are as high as 1.97× 101 and 1.26× 100, respectively. The AS-
SRE for the QR problem in Table 3 show a similar trend, with AREND having errors of 4.01× 10−2 and 
1.67× 10−2, significantly better than the other models. From the MSSRE point of view, the MSSRE of 
AREND is 2.20× 10−3 for the LR problem (Table 2) and 5.32× 10−2 and 2.32× 10−2 for the QR problem 
(Table 4), which compared with the other models, are results prove the periodical robustness under noisy 
conditions again.

 (4)  Performance under random noise conditions: Random noise is usually the most challenging type of noise, 
and many models perform poorly or even diverge under this condition. For example, DPZND and 
DVPEZND diverge under noisy conditions (Tables 1 and 3). However, AREND still maintains a low error. 
In the LR problem in Table 1, AREND has an ASSRE of 1.30× 10−3, compared to 1.33× 102 for OZND 
and 5.34× 100 for NZND. In the QR problem in Table 3, AREND’s ASSRE of 4.01× 10−2 and 1.67× 10−2 

ϵ(t) Model MSSRE with NF MSSRE with CN MSSRE with PN MSSRE with RN

ϵ1(t)

OZND 3.90× 10−3 2.64× 102 9.72× 101 3.20× 102

NZND 1.65× 10−4 7.65× 100 7.18× 100 7.82× 100

VPZND 7.62× 10−4 1.44× 10−1 6.05× 10−2 6.06× 10−2

NTZND 1.67× 10−2 8.50× 10−1 1.42× 100 9.51× 10−1

DPZND Divergent Divergent Divergent Divergent

DVPEZND Divergent Divergent Divergent Divergent

AREND 5.35× 10−6 5.16× 10−2 5.32× 10−2 5.32× 10−2

ϵ2(t)

OZND 2.2× 10−3 4.00× 102 1.38× 102 4.86× 102

NZND 1.36× 10−4 8.56× 100 8.44× 100 8.79× 100

VPZND 8.03× 10−5 1.23× 10−1 1.19× 10−1 1.19× 10−1

NTZND 1.98× 10−2 2.47× 100 2.54× 100 3.35× 100

DPZND Divergent Divergent Divergent Divergent

DVPEZND Divergent Divergent Divergent Divergent

AREND 3.71× 10−6 4.96× 10−2 2.32× 10−2 2.32× 10−2

Table 4. Compare the MSSREs of different models when solving the QR problem. NF, CN, PN, and RN signify 
the noises free, constant noises, period noises, and random noises, respectively. The bold font denotes the best 
result in the corresponding item

 

ϵ(t) Model ASSRE with NF ASSRE with CN ASSRE with PN ASSRE with RN

ϵ1(t)

OZND 9.46× 10−4 2.66× 102 6.4× 101 3.20× 102

NZND 8.24× 10−6 7.09× 100 6.47× 100 7.19× 100

VPZND 2.75× 10−6 7.81× 10−2 5.07× 10−2 5.07× 10−2

NTZND 2.73× 10−2 7.29× 10−1 1.26× 100 7.97× 10−1

DPZND Divergent Divergent Divergent Divergent

DVPEZND Divergent Divergent Divergent Divergent

AREND 2.62× 10−6 4.29× 10−2 4.01× 10−2 4.01× 10−2

ϵ2(t)

OZND 6.43× 10−4 3.99× 102 9.13× 101 4.83× 102

NZND 1.43× 10−5 8.26× 100 7.97× 100 8.55× 100

VPZND 2.25× 10−6 6.59× 10−2 7.39× 10−2 7.40× 10−2

NTZND 1.33× 10−2 1.75× 100 1.92× 100 2.17× 100

DPZND Divergent Divergent Divergent Divergent

DVPEZND Divergent Divergent Divergent Divergent

AREND 2.22× 10−6 3.30× 10−2 1.67× 10−2 1.67× 10−2

Table 3. Compare the ASSREs of different models when solving the QR problem. NF, CN, PN, and RN signify 
the noises free, constant noises, period noises, and random noises, respectively. The bold font denotes the best 
result in the corresponding item
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again outperforms the other models. The MSSRE results also support this observation, with AREND having 
an MSSRE of 6.30× 10−3 in the LR problem (Table 2) and values of 5.32× 10−2 and 2.32× 10−2 in the QR 
problem (Table 4). These results show that the performance of the AREND remains stable under random 
noise, demonstrating excellent noise immunity.

 (5)  Summary: From the quantitative results, it can be more scientifically seen that the AREND significantly out-
performs other models under all noise conditions, whether solving the LR problem or the QR problem. In 
particular, the AREND demonstrates excellent robustness under complex random and period noise, while 
other models, such as DPZND and DVPEZND, tend to diverge under noisy conditions. This demonstrates 
that AREND is one of the most reliable models for dealing with real noise environments and has a wide 
range of potential applications.

Application in AoA
In this subsection, we design 3-D AoA algorithm localization to validate the AREND. This localization method 
relies on the base station’s azimuth θi(t), elevation τi(t) of the base stations to locate mobile target.

The principle of AoA algorithm localization is illustrated in Fig. 9a. The position of the base station is defined 
as (ai, bi, ci)T, i = 1, 2, . . . , N , N depends on the number of base stations. And the position of the target object is 
given as 

(
a(t), b(t), c(t)

)T. After geometric derivation, the following equation is derived as

Fig. 9. Validation results of the NTZND (27) and AREND (28) applied in AoA positioning, where the 
parameters are set to γ = 90, λ = 60. (a) The schematic diagram of the 3-D AOA localization algorithm. (b) 
The comparison of the residual error by the AREND solving AoA localization with multiple noises, where the 
constant noise is [100]3×1, the period noise is [100]3×1 × sin(3t), the random bounded noise is [98, 102]3×1. 
(c) The comparison of simulated positional solving and target trajectory by the AREND and NTZND under 
the random noise. (d) The real-time position errors in 3 directions by the AREND solving under the random 
noise.
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−tanθ1(t) 1 0
... ... ...

−tanθN(t) 1 0

0 L1(t) −1
... ... ...
0 LN(t) −1






a(t)

b(t)

c(t)


 =




b1 − a1tanθ1(t)
...

bN − aNtanθN(t)
b1L1(t)− c1

...
bNLN(t)− cN



,

where LN(t) denotes tanτN(t)⊘ sinθN(t), and ⊘ stands for element-by-element division. The equation 
is reduced to R(t)P (t) = U(t). Then the error function is defined as ϵ(t) = R(t)P (t)− U(t), and using 
the evolution formula (9) and injecting the vector-type noise ρ⃗(t), the NTZND for the 3-dimensional AoA 
localization is obtained as

 
R(t)Ṗ (t) = −λ

∫ t

0

(
R(δ)P (δ)− U(δ)

)
dδ − γ

(
R(t)P (t)− U(t)

)
+ ρ⃗(t). (27)

Likewise, the AREND for the 3-dimensional AoA localization by the evolution formula (11) is designed as

 

R(t)Ṗ (t) =− λΦ

(
R(t)P (t)− U(t) + γ

∫ t

0

Θ
(
R(δ)P (δ)− U(δ)

)
dδ
)

− γΘ
(
R(t)P (t)− U(t)

)
+ ρ⃗(t).

 (28)

There are 2 base stations set up to simulate the localization process at the following locations: [−11,−15,−20]T, 
[−10,−15,−18]T, and the true trajectory of the target object is set: [5cos(5t), 5sin(5t), 10t]T. The initial position 
of the target is assumed as [5, 0, 0]T. As shown in Fig. 9b, under three larger noises, the accuracy of the AREND is 
in the order of 10−3. In practical localization, random noise is more to be accounted for, and the target trajectory 
localization solved by the models under the random noise is shown in Fig. 9c. The deviation of the NTZND 
localization is too heavy, while the solution trajectory of the AREND almost overlaps with the target trajectory. 
Meanwhile, the position errors of the three directions are shown in Fig. 9d. Previously presented evidence 
supports the effectiveness and accuracy of the AREND in target localization.

Conclusions
In this paper, an Adaptive and Robust-Enhance Neural Dynamic (AREND), based on the framework of two 
types of Zeroing Neural Dynamic (ZND), is proposed to improve the performance of solving dynamic matrix 
LR and QR factorization. And a Strategy of Integration-Coupling (SIC) is proposed for solving multiple error 
function problems. The simulation experiments firstly demonstrate that the SIC moderates the instability of 
the Integration-Enhance Type of ZNDs. According to the comparisons, the AREND equipped with the SIC 
significantly enhances the performance with various environmental disturbances. This means utilizing the 
proposed model is a more desirable alternative. Revisiting the two types of ZNDs, the AREND has more model 
superiority undoubtedly, providing valuable tools for solving dynamic problems. Since then, we believe the 
AREND and SIC can be extended to solve more complex dynamic problems in our future work.

Data availability
Code related to this article can be found at https:   //gith ub. com/Alan a2a3/ AREN D-Code-Imp lementation, an 
open-source online code repository hosted at GitHub.
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