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Abstract

Hierarchical structures and heterogeneous materials are found in many natural and engineered 

systems including additive manufacturing, alternative energy, biology and polymer science. 

Though the structure–function relationship is important for developing more advanced materials, 

structural characterization over broad length scales often requires multiple complementary 

measurements. Neutron far-field interferometry aims to enable multi-scale characterization by 

combining the best of neutron imaging with small-angle neutron scattering (SANS) via dark-

field imaging. The microstructure, nominally from 1 nm to 10 μm, is averaged over each 

volume element ~(50 μm)3 in the sample, resulting in a ‘tomographic SANS’ measurement. 

Unlike in small-angle scattering, there are few analytical models to fit dark-field imaging data 

to extract properties of the microstructure. Fortunately, the dark field and SANS are related 

through a single Hankel transform. In this work, we discuss the development of a Python-

based library, correlogram-tools, that makes use of existing small-angle scattering models and 

a numerical implementation of the Hankel transform to simulate dark-field interferometry data. 

We demonstrate how this software can be used to inform researchers of viable sample sets 

for interferometry experiments, analyze interferometry data, and simulate raw and reconstructed 

interferometry images for the training of more advanced segmentation models and analysis 

protocols.
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1. Introduction

Small-angle and ultra-small-angle neutron scattering (SANS and USANS) are used to 

characterize structure between 1 nm and 10 μm through the measurement of Fourier power 

spectra or, rather, an inverse-space representation of real-space correlation functions (Jeffries 

et al., 2021). The spectra are often fitted with empirical or theoretical models to extract 

quantitative information about the shapes, sizes, self-assembly and interactions of scatterers 

in the sample and are analyzed with a combination of a priori knowledge of the system 

and information from complementary characterization measurements. SANS provides a 

representation of the bulk microstructure ensemble-averaged over the volume of the sample 

through which the beam passes. This means that it can be difficult to deconvolute complex 

scattering signals from the study of heterogeneous materials. However, heterogeneity is 

ubiquitous in real-world materials, from additive manufacturing (Tan et al., 2021; Brooks et 
al., 2018), alternative energy (Nie et al., 2021), biology (Huang et al., 2019; Weigandt et al., 
2009), colloidal science (Han et al., 2022), construction (Allen et al., 2007; Kupwade-Patil 

et al., 2020), geology (Wang et al., 2013; Bahadur et al., 2014), medicine, polymer science 

(Xu et al., 2019; White & Calabrese, 2022) and more, thus demanding a new measurement 

methodology. Neutron imaging, on the other hand, directly probes heterogeneous materials 

down to ~10 μm to 100 μm but is unable to resolve structural information at the length scales 

measured with small-angle scattering. Grating-based neutron interferometry (Pfeiffer et al., 
2006) offers an advantage in that it captures small-angle scattering information via the dark-

field signal (Strobl et al., 2008) with a spatial resolution provided by neutron imaging. Both 

SANS and dark-field imaging probe the autocorrelation function of the density distribution 

of a material. SANS measures a Fourier transform of the autocorrelation function while the 

dark field measures a real-space projection or Abel transform of the autocorrelation function 

in spherically symmetric systems (Bakker et al., 2020; Andersson et al., 2008; Strobl, 2015).

Wolf et al. Page 2

J Appl Crystallogr. Author manuscript; available in PMC 2024 November 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



The dark field is measured by a loss in visibility of the interference pattern, or moiré 

pattern, at the detector and can be accessed through different beamline geometries. Two 

primary geometries are far-field (the focus of this work) and Talbot–Lau (Pfeiffer et al., 
2006; Kim, Kim et al., 2022) interferometers. We refer the reader to work by Strobl et 
al. (2017) for a more detailed review of these instruments, which can all benefit from 

the one-dimensional simulations discussed in this work. Referring to Fig. 1(a), two phase 

gratings of a far-field interferometer [instrumentation described by Kim et al. (2023)] impart 

an interference or moiré pattern on the detector that results in a transmission image of the 

sample convoluted with the sinusoidal moiré pattern. The reduction in visibility of the moiré 

pattern is due to small-angle scattering. In this configuration, the interferometer is sensitive 

only to scattering in the direction of modulation of the moiré pattern [x axis in Fig. 1(a)]. 

Although not currently implemented in the tool that we introduce here, the development 

of multi-directional gratings and the inclusion of polarization analysis also broaden the 

sensitivity of the technique to anisotropic structure and magnetic properties of materials 

(Valsecchi et al., 2020, 2021; Busi et al., 2023). The autocorrelation length ξ, which is the 

microstructural length scale being probed, depends on the parameters of the interferometer 

(Strobl, 2015; Wen et al., 2008):

ξ = λZ
PD

,

(1)

where λ is the source wavelength and PD is the period of the moiré pattern at the detector. 

The parameter Z is the distance from the sample to the detector. In cases of some Talbot–

Lau configurations, the definition of this distance will depend on the configuration of the 

sample and gratings (Strobl, 2015; Strobl et al., 2017; Yashiro et al., 2010). Different ranges 

of autocorrelation lengths, i.e. length scales of scattering, can be accessed by varying one or 

more of these parameters.

The moiré pattern can be approximated as a sine curve at each pixel location in the image 

[e.g. (xd, yd) in Fig. 1] if phase step scanning is performed during the measurement. A phase 

step scan, which is performed by translating one of the phase gratings through at least one 

period of the moiré pattern, allows the user to characterize this pattern, as shown in Fig. 

1(b), with and without the presence of the sample. Without a phase step scan, a larger area 

must be used to characterize the pattern, resulting in a loss in spatial resolution. Changes to 

this sinusoidal pattern of phase shift, mean and visibility are then used to reconstruct three 

sets of images collected simultaneously by grating-based neutron interferometry: differential 

phase contrast, attenuation and dark field, respectively (Strobl et al., 2008; Pfeiffer et al., 
2006). The visibility, V, of each sine curve is defined as the ratio of the amplitude to the 

mean:

V i = Ampi
Meani

,

(2)
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where i represents either the sample (s) or the open beam (o). Small-angle scattering 

imparted by the sample at the autocorrelation length of the measurement results in a loss in 

visibility of this curve, which is quantified in the dark-field intensity by

DF = − ln V s
V o

.

(3)

The dark-field image is measured in real space, but it is a projection of the autocorrelation 

function, γ(r), of the density distribution. The two-dimensional projection function of the 

autocorrelation function, G(z), is related to γ(r) through an Abel transform (Andersson et 
al., 2008). The dark-field signal, DF, from interferometry measurements is related to this 

projection function through the following equation (Strobl, 2015; Bakker et al., 2020):

DF = − ∫
path

λ2[G(ξ) − G(0)]dt ≃ − λ2t[G(ξ) − G(0)],

(4)

where λ is the wavelength of the source, ξ is the autocorrelation length and t is the sample 

thickness. If the sample is structurally homogeneous along the direction parallel to the 

beam path, the integral can be simplified with sample thickness t. Finally, we define the 

relationship between the dark field and small-angle scattering which are related via a single 

Hankel transform (Bakker et al., 2020; Andersson et al., 2008):

G(z) = 1
2π∫

0

∞
J0(qz)I(q)q dq,

(5)

where J0 is the zeroth-order Bessel function of the first kind.

A challenging aspect of modeling dark-field neutron imaging data is the limited number 

of analytical models, since many of the integrals expressing the projection of the 

autocorrelation function do not have an analytical form. However, the visibility is analogous 

to the polarization measured in spin-echo small-angle neutron scattering (SESANS) 

(Andersson et al., 2008; Strobl, 2015), so the same models developed within the SESANS 

community can be applied in the dark-field interferometry community and vice versa. Yet, 

knowledge of the appropriate autocorrelation function and use of the relevant transform to 

solve for the projection function are required. This is often an arduous task without the aid 

of mathematical software (Andersson et al., 2008). Therefore, few analytical models exist 

in either community. Existing analytical models include those for spheres, which have been 

used to fit the dark-field signal due to porosity in metal additive manufactured materials 

(Brooks et al., 2018, 2017; Bacak et al., 2020), micellar structures in milks (Kim, Valsecchi 

et al., 2022) and nanoparticles in solution (Kim et al., 2019; Strobl et al., 2016; Strobl, 

2015). Random-two-phase and fractal models have been used to fit the dark-field signal 
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from silica powders (Kim et al., 2019; Harti et al., 2018) and milk gels (Kim, Valsecchi et 
al., 2022), and an oriented period bar model was used to describe the dark-field signal from 

a silicon comb or Ronchi grating (Kim, Kim et al., 2022). For a more thorough derivation of 

these and other available analytical models, we refer the reader to the work of Andersson et 
al. (2008). Yet, there still does not exist a library of models in the dark-field community as 

large as that for small-angle scattering.

Neutron dark-field imaging enables the collection of microstructural information captured 

by small-angle scattering at each pixel location by extraction of the dark-field curves 

through a stack of images acquired at multiple autocorrelation lengths. This effectively 

provides spatially resolved SANS-like data (Bacak et al., 2020), making dark-field 

imaging useful for characterization of complex and real-world materials. Three-dimensional 

reconstructions of materials with a resolution on the order of 50 μm will enable a 

‘tomographic SANS’ measurement, but also provides a big-data challenge in the analysis 

of up to 109 correlograms depending on the sample size within the available field of 

view. Traditional analysis approaches, especially manual fitting, quickly become infeasible 

at this scale. Rather, more advanced segmentation or machine-learning models will be 

critical to ensuring efficient analysis and interpretation of this data stream. Yet the available 

experimental data are still insufficient for effective training of such models. Moreover, it is 

impractical to collect the large amounts of data necessary for model training across wide 

ranges of measurement and sample conditions for each future experiment. In response, 

we developed correlogram-tools, a Python-based package for the simulation and eventual 

analysis of dark-field interferometry data. This tool not only enables the generation of large 

training sets for machine-learning models and advanced segmentation algorithms but also 

enables us to make use of an existing library of small-angle scattering models of different 

types of materials and structures to simulate data from both small-angle scattering and 

dark-field measurements.

2. Methods

The correlogram-tools package builds on existing SESANS tools in SasView (http://

www.sasview.org/) but adds interferometry-specific parameters that enable simulation of 

realistic dark-field spectra and images. As an alternative to solving for analytical models, the 

SESANS community has implemented a numerical Hankel transform in SasView, detailed 

and previously validated by Bakker et al. (2020), which enables fitting and analysis of 

their one-dimensional datasets with the library of over 70 models included in the small-

angle scattering software (Bakker et al., 2020; Doucet et al., 2022). The same models 

and parameters used to fit SANS data are simply transformed to the real space following 

equation (5) and used to fit the SESANS data. Moreover, these SESANS spectra are 

normalized by wavelength and sample path length into standardized forms for analysis 

independent of instrumentation. However, this limits our ability to use these models to 

further understand the full scope of feasible samples and measurement conditions. The 

correlogram-tools package adds to the SESANS numerical implementation of the Hankel 

transform in two ways. First, the program uses wavelength and sample path length to scale 

the loss in visibility or dark-field spectra as shown in equation (4). The current version 

of correlogram-tools assumes a single microstructure along the beam path through the 
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material, and so the integral of equation (4) is simplified to a scaling by sample path 

length t. Similarly to the SESANS tools, dark-field spectra can be simulated with any of 

the small-angle scattering form factors and structure factors provided in SasView. However, 

correlogram-tools then makes it possible to simulate a realistic loss in visibility that is 

indicative of the signal we would observe in neutron dark-field imaging measurements.

The second added functionality is that correlogram-tools transforms these modeled dark-

field spectra, along with instrument geometry and measurement conditions specific to 

grating-based interferometers, to generate simulated raw and reconstructed dark-field 

and attenuation images from a specific instrument. The program incorporates instrument 

geometry (e.g. sample-to-detector distance, interferometer length and available grating 

periods), detector resolution and noise to introduce optical corrections (e.g. magnification 

and image blur) for generation of realistic and instrument-specific simulated images that 

inform researchers of the capabilities and limitations of their instrument. Fig. 2 shows a 

schematic of the full simulation pipeline. For an in-depth description of the required inputs, 

file formats and other usage instructions, we refer the reader to the correlogram-tools source 

code and documentation (Wolf et al., 2023). Here we provide a simplified overview of the 

simulation pipeline that captures the image-generation functionality of the program.

In step 1, the user produces a region of interest (ROI) mask that represents a desired 

sample scene where each ROI classifies a sample region with a unique microstructure. 

In this example, five sample vials are simplified to rectangular ROIs with constant path 

length. Sample vials with a circular rather than rectangular cross-section can be modeled 

by employing a second mask (not shown) that defines path length variation by pixel. In 

the following step, correlogram-tools converts the microstructural information, for each 

ROI, into the one-dimensional loss in visibility spectra. The loss in visibility of step 2 

in Fig. 2 shows data for a series of polystyrene nanoparticle dispersions in water. Next, 

the program determines the measurement conditions of the simulated image acquisitions, 

including the moiré period, sample position and wavelength, that will achieve the requested 

autocorrelation lengths as defined in equation (1). These points are denoted by the dashed 

vertical lines on the loss in visibility plot (three autocorrelation lengths chosen for this 

example). The available set or range of accepted values for the neutron source wavelength, 

sample-to-detector distance and moiré period are specified in the instrument configuration. 

The user may then place additional constraints on the simulation. For example, one 

could request a simulation that modulates only the sample-to-detector distance to scan 

the requested autocorrelation lengths. At step 3, the simulated losses in visibility and 

transmission values for each ROI are converted into the uncorrected images at every 

autocorrelation length by matching the ROI specified in each pixel to the appropriate 

intensity from the simulated loss in visibility, and rescaling each image to the appropriate 

measurement wavelength and each pixel to the appropriate path length. In this example 

shown in Fig. 2, the loss in visibility and transmission images are shown for a single 

autocorrelation length, 100 nm. The loss in visibility in each sample ROI can be related 

to the values shown in the one-dimensional spectra by following the vertical dot–dashed 

line. The effect of increasing light water in the solvent phase of this example also results 

in a reduction of transmission from left to right in the samples and is estimated using the 

periodictable (Kienzle, 2021) Python package.
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In the remaining steps of the simulation pipeline, sample and instrumental effects including 

noise, geometric magnification and geometric blur are added to the uncorrected ground truth 

images. This allows the generation of simulated images that include many of the features we 

would see from experimental data. Because the user specifies the relevant instrument details, 

this tool is applicable to a range of grating interferometer configurations and equipment 

(e.g. detector resolution). In step 4 of Fig. 2, these optical corrections are most visible in 

the blurred edges of the sample ROIs. First, the rescaling is considered with the geometric 

magnification that is given by

M = L
L − Z ,

(6)

where L is the distance from the aperture to the detector and Z is the distance from the 

sample to the detector. This is important as the apparent size of the sample objects and their 

blur will increase as the sample is translated away from the detector to measure the dark-

field signal at larger autocorrelation lengths. Then, the geometric blurring is implemented 

by convolution with the geometric blurring kernel B over the geometric magnification. The 

kernel in this case has a disk shape with a geometric radius given by

λg
M = w

2px
Z

(L − Z)
1

M = w
2px

Z
L ,

(7)

where w is the size of aperture, px is the effective pixel size of the image and λg is the blur 

radius in pixels. Fig. 2 shows these multiple optical corrections in a single step, but Fig. 3 

provides a more detailed breakdown of each operation on the images.

The Means and Amps in each ROI of the blurred images x * B are then used to generate 

the moiré patterned images at the phase step conditions as shown in step 5 of Fig. 2. 

Applying the optical corrections of geometric magnification prior to the addition of the 

moiré pattern is important to ensure that the apparent size of the sample objects and the 

size of the moiré image are correctly proportioned according to the resolution and pixel 

size of the detector. Both the attenuation and the dark-field images are used to generate the 

sample image multiplied with the moiré, and then an additional open beam image without 

the sample objects is generated. Next, the quantized noise εq and the phase step noise εp are 

added to moiré patterned images and both are assumed to follow the Gaussian distribution

y = 1
σ 2πexp − (x − μ)2

2σ2 ,

(8)

where σ is the standard deviation and μ is the mean. The phase step noise accounts for the 

variation in the phase step position and non-uniform beam profile in the simulated images. 

However, the reconstruction step of the code that generates dark-field and transmission 
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images from the simulated raw images does not yet take this into account. Setting μ = 0 

assumes that the phase steps can be exactly repeated. These pairs of open beam and sample 

images represent the raw data that would be collected during a neutron dark-field imaging 

experiment. An implementation of the reconstruction algorithm described by Marathe et al. 
(2014) is then used to generate the simulated reconstructed dark-field and attenuation images 

that now include optical and other instrumental corrections.

3. Results and discussion

In this section, we use correlogram-tools to probe the sample space and explore dark-field 

neutron imaging feasibility across a wide variety of materials and conditions that can 

be measured with neutron dark-field imaging. The inclusion of wavelength and sample 

path length with existing small-angle scattering models enables simulation of realistic 

one-dimensional dark-field spectra from a specific material to understand the expected 

signal strength. Figs. 4–6 explore the impact of instrument parameters, sample composition 

and sample configuration in one-dimensional correlogram space. Though the simulated 

spectra are important for determining sample viability, they also serve as critical input for 

the full instrument simulation that considers measurement artifacts induced by instrument 

configuration and statistical noise. In Fig. 2 of the Methods, we road-mapped the process by 

which we simulate the instrument raw data based on the one-dimensional inputs, a generated 

sample mask and the instrument configuration. Fig. 7 takes a closer look at the effects of 

moiré period and the sample-to-detector distance on the artifacts introduced in both raw and 

reconstructed attenuation and dark-field images.

In SANS, changes in wavelength impact the q measured for a given scattering angle, the 

probability of a neutron scattering at a given q and the transmission of neutrons through the 

sample. As dark-field neutron imaging is an indirect measurement of small-angle scattering, 

the wavelength has the same impact on accessible autocorrelation lengths, loss in visibility 

and transmission. In Fig. 4 we explore this for wavelengths between 2 Å and 8 Å using an 

example system of 500 nm-diameter polystyrene nanoparticles suspended in D2O in a cell 

with a 1 mm path length (see Table S1 of the supporting information for model information). 

In this example, the dark-field signal increases with wavelength until 8 Å, where a complete 

loss in visibility is reached and the particle size is not resolvable. Due to the increased 

signal strength, selecting a longer wavelength may improve the measurement sensitivity 

to inherently weak materials with smaller microstructures. However, this simultaneously 

shifts the window of accessible autocorrelation lengths to longer length scales for a given 

moiré period and sample-to-detector distance. Moreover, the open beam visibility of each 

moiré period varies with wavelength (Wen et al., 2008), and thus even in monochromatic 

measurements, there are additional constraints on the wavelength to achieve optimal 

measurement conditions. Finally, these results provide insight into the smearing effects 

of polychromatic neutron sources in neutron dark-field imaging. Like resolution smearing 

in SANS, a polychromatic beam will result in a distribution of autocorrelation lengths 

convoluted into a single image acquisition, smoothing out features in the one-dimensional 

data (Barker & Pedersen, 1995). Therefore, both wavelength effects need to be carefully 

considered and corrected for during a measurement.

Wolf et al. Page 8

J Appl Crystallogr. Author manuscript; available in PMC 2024 November 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



There are also parallels between SANS and dark-field neutron imaging data as a function of 

sample composition. This is shown in Fig. 5 for concentration, size and shape variations in 

polystyrene nanoparticle dispersions in heavy water with a source wavelength of 3 Å (see 

Tables S2 and S3 of the supporting information for model information). As the concentration 

increases from a volume fraction of 1% to 20% in Figs. 5(a) and 5(b), the scattering intensity 

and loss in visibility both increase and show the emergence of a structure factor peak 

capturing the interactions of neighboring particles. Harti et al. (2017) and Krouglov et al. 
(2003) provide detailed discussions of this transition and consistent results of the structure 

factor captured by both dark-field imaging and SESANS, respectively. The dark-field data 

have an advantage when compared with SANS as multiple scattering is easily accounted for 

in the path length term of equation (4), as described by Rekveldt et al. (2002). In SANS data, 

multiple scattering is more challenging to model (Jensen & Barker, 2018). This broadens 

the use cases for dark-field imaging to materials and concentrations previously classified 

as ‘too strong’ or infeasible for SANS or USANS (Rehm et al., 2013). In Figs. 5(c) and 

5(d) the particle size is increased from 25 to 1000 nm. In both datasets, the particle size is 

characterized by the major slope change at the transition from smaller to larger length scales. 

This appears as a shoulder in the SANS data and an inverted shoulder shape in the dark-field 

data. Finally, Figs. 5(e) and 5(f) show simulated datasets for polystyrene nanoparticles that 

vary in shape, including a sphere, cube, ellipsoid and cylinder. Across both simulated SANS 

and dark-field datasets are slope changes at length scales related to the dimensionality of 

the object. Though these features may seem subtle, these results show a sensitivity of both 

SANS and dark-field imaging to a range of microstructural shapes.

In SANS, increasing the sample cell path length increases the scattering intensity but comes 

at the cost of lower transmission and increased probability of multiple scattering. The same 

holds true for dark-field neutron imaging apart from the previously discussed advantages 

of handling multiple scattering directly with an integral over the beam path through the 

sample. We demonstrate the effects of path length on both loss in visibility and transmission 

through the sample in Fig. 6 for nanoparticle dispersions of silica [Figs. 6(a) and 6(b)] and 

polystyrene [Fig. 6(c)] in water (see Table S4 of the supporting information for all model 

parameters). Here, the largest contrast is between heavy water and polystyrene (|Δρ| = 4.93 

× 10−6 Å−2), followed by silica in water (|Δρ| = 4.43 × 10−6 Å−2) and silica in heavy water 

(|Δρ| = 2.47 × 10−6 Å−2). Though these differences may seem subtle, scattering intensity 

scales with Δρ2. Moreover, this is not the only factor as H1 has a much higher incoherent 

scattering cross-section than H2 and therefore higher concentrations of H1 lead to a strong 

decrease in neutron transmission through the sample. This is illustrated in Figs. 6(a) and 

6(b), where the modeled dark-field signal from the silica in H2O is much larger than D2O as 

a function of path length, but the transmission shown in Fig. 6(d) for silica in H2O quickly 

drops below the rule-of-thumb 1/e transmission limit at a path length of approximately 2 

mm. Meanwhile, the nanoparticle solutions in heavy water remain above this limit until path 

lengths between 10 mm and 20 mm. Note that these transmission values were estimated 

using the penetration depth calculated by the periodictable Python package, which only uses 

the elements’ nuclear properties as discussed in the package documentation (Kienzle, 2021). 

Nevertheless, they provide useful first estimates of reasonable sample configurations for 

dark-field imaging.
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The ability to determine sample feasibility extends beyond examination of the one-

dimensional loss in visibility and transmission. One must also consider noise introduced 

during the measurement, especially for weaker-scattering samples, and the optical effects 

that may limit spatial resolution. The simulated images in Fig. 7 expand on the example 

discussed in Fig. 2 and demonstrate the effects of noise and optical corrections on the two-

dimensional data. In Fig. 7(a), simulated raw open beam and sample images are generated 

at three autocorrelation lengths by varying either the moiré period (top pairs) or the sample-

to-detector distance (bottom pairs). Magnification and additional blurring are introduced as 

the sample is moved further from the detector. This limits the spatial resolution available 

in the reconstructed images, which are shown in Fig. 7(b) under these same measurement 

conditions. Significant blur is observed in both the reconstructed attenuation and the dark-

field images. Additionally, the reconstructed images show an increasingly ‘grainy’ texture 

at smaller moiré periods as it becomes increasingly difficult to accurately characterize 

the sinusoidal pattern above the noise. Beyond the question of sample feasibility, these 

simulated images can supplement training sets for advanced segmentation models that 

will be required for efficient analysis of correlograms in two-dimensional and eventually 

three-dimensional space. Simulated measurements can be designed in such a way as to 

target specific performance and limitation questions of the model, e.g. at what resolution can 

the model effectively segment different microstructures? Or how sensitive is the model to 

changes in either concentration or particle size of the sample?

4. Conclusions and outlook

The Python-based package correlogram-tools builds on small-angle scattering models and 

the numerical Hankel transform available in SasView, and adds interferometry-relevant 

measurement conditions, sample compositions and configuration, and instrumental geometry 

to model realistic neutron dark-field spectra and generate simulated neutron dark-field and 

attenuation images. The ability to simulate realistic correlograms and compare directly with 

small-angle scattering data fosters a deeper understanding of which features in different 

materials and microstructures (e.g. concentration, particle size, shape) can be captured with 

one or both of these measurement modes, and the limits to the landscape of feasible samples. 

As for SANS, increases to either concentration or size result in an enhancement of the loss 

in visibility. Multiple scattering is also accounted for directly in dark-field neutron imaging 

via an integral of the beam path through the sample, giving it an advantage over traditional 

small-angle scattering measurements of ‘strong scatterers’. This reduces the complication of 

preparing some classes of samples, including geological specimens. Our exploration has also 

demonstrated the parallels between these two measurements. For example, while the slope 

changes related to specific length scales or dimensionality of the material are subtle in the 

spectra, both methods are sensitive to these changes. The addition of wavelength and sample 

path length in these simulated spectra is important for estimating a realistic dark-field signal 

and determining whether the system is measurable. Increases to either parameter can be used 

to improve the loss in visibility, but one must balance the costs of shifting the window of 

accessible autocorrelation lengths, signal saturation (complete loss in visibility) and lower 

transmission.
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Simulated raw and reconstructed neutron dark-field and attenuation images provide an 

additional benefit to sample optimization and experimental planning. The correlogram-
tools package uses the instrument geometry, such as available gratings, sample-to-detector 

distance, interferometer length and detector resolution, to incorporate noise and optical 

corrections into the simulated images, such as magnification and blur. This information is 

helpful to understanding the sensitivity of our instrument’s configuration, i.e. is a 5% loss 

in visibility measurable above the noise? Additionally, the generation of realistic image data 

provides a helpful alternative approach to the training of AI models for segmentation and 

analysis of the large stream of dark-field data expected from these measurements. Though 

the amount of data is too large to enable efficient analysis through more traditional manual 

approaches, i.e. manual model fitting, the experimental data remain insufficient for training 

segmentation models. Ongoing work is exploring the use of physics-based synthetic data 

generation as an approach to AI model training.

Finally, we note ongoing and future improvements to correlogram-tools. These include 

integration of a fitting functionality of correlograms extracted directly from neutron 

dark-field image stacks as a function of autocorrelation length. Although fitting of 

SESANS data is already implemented in SasView, it requires prior extraction of one-

dimensional correlograms, limiting our ability to interactively explore our sample via 

images. The correlogram-tools package will also expand to include resolution functions 

for polychromatic beams that account for smearing effects on the dark-field data from the 

distribution of wavelengths. Additional systematics and instrument effects such as dark 

current, scattering from air and hydrogen, hot or dead pixels, and detector efficiency are not 

yet implemented in correlogram-tools but can be added in future work for more complete 

realistic simulated images. Up to this point, we have only discussed the simulation of 

dark-field imaging data in the context of two-dimensional or radiography measurements. 

However, dark-field imaging can be extended to three-dimensional space via tomography 

as described by Harti et al. (2020). The signal from microstructures contained per voxel 

will need to be balanced with the overall transmission through our material and the 

integration over multiple microstructures across the beam path rather than the single 

structures discussed above. Future work will expand correlogram-tools to simulations of the 

two-dimensional projections in such an experiment. This will be helpful to understanding 

this balance on a larger scale in continued sample optimization and experimental planning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Example of the detector image taken for a sample at a set autocorrelation length which 

demonstrates the convoluted transmission image of the sample and sinusoidal moiré pattern 

created by the phase gratings. (b) Neutron intensity at a single pixel location in both sample 

and open beam images as the first phase grating is translated along the x direction. PG1 

refers to the first phase grating in the instrumentation described by Kim et al. (2023).
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Figure 2. 
Flow chart of the image-simulation pipeline of correlogram-tools.
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Figure 3. 
Detailed breakdown of optical corrections during simulations. The result in step 4 is the case 

of D4 in Fig. S1. H0 represents the transmission (Means/Meano), H1/H0 represents the loss 

in visibility Vs/Vo, ATrepresents the attenuation [− ln(Means/Meano)], and DF represents the 

dark-field [− ln(Vs=Vo)] signals and/or images.
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Figure 4. 
Simulated loss in visibility for polystyrene nanoparticles in heavy water with a path length 

of 1 mm and varied neutron wavelengths.
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Figure 5. 
(a), (c), (e) Simulated SANS and (b), (d), (f) loss in visibility data for polystyrene 

nanoparticle dispersions in water. Samples vary in (a)–(b) concentration, (c)–(d) size and 

(e)–(f) shape. Polystyrene nanoparticles were modeled with a sphere form factor and hard-

sphere structure factor.
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Figure 6. 
Simulated loss in visibility for (a) and (b) silica and (c) polystyrene nanoparticle dispersions 

in water at varying sample path lengths. All particles were modeled with a sphere form 

factor and hard-sphere structure factor. Dashed lines indicate path lengths that result in a 

transmission below the recommended 1/e limit. (d) Simulated transmission for the same 

nanoparticle dispersions as a function of sample path length (dashed lines). Markers and 

their colors match specific path lengths modeled in (a)–(c). The horizontal solid line 

represents the rule-of-thumb 1/e limit for transmission.
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Figure 7. 
(a) Simulated raw open beam and sample images for five different unique measurement 

points at three autocorrelation lengths at varying sample-to-detector distances (Z) and 

moiré periods. (b) Corresponding reconstructed simulated neutron dark-field and attenuation 

images at the sample measurement conditions. Note that aliasing may cause visual distortion 

of the moiré pattern in the figure.

Wolf et al. Page 20

J Appl Crystallogr. Author manuscript; available in PMC 2024 November 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Introduction
	Methods
	Results and discussion
	Conclusions and outlook
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

