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ABSTRACT
Differences in amyloid positron emission tomography (PET) radiotracer pharmacokinetics and binding properties lead to discrep-
ancies in amyloid-β uptake estimates. Harmonization of tracer-specific biases is crucial for optimal performance of downstream 
tasks. Here, we investigated the efficacy of ComBat, a data-driven harmonization model, for reducing tracer-specific biases in 
regional amyloid PET measurements from [18F]-florbetapir (FBP) and [11C]-Pittsburgh compound-B (PiB). One hundred thirteen 
head-to-head FBP-PiB scan pairs, scanned from the same subject within 90 days, were selected from the Open Access Series of 
Imaging Studies 3 (OASIS-3) dataset. The Centiloid scale, ComBat with no covariates, ComBat with biological covariates, and 
GAM-ComBat with biological covariates were used to harmonize both global and regional amyloid standardized uptake value 
ratios (SUVR). Variants of ComBat, including longitudinal ComBat and PEACE, were also tested. Intraclass correlation coeffi-
cient (ICC) and mean absolute error (MAE) were computed to measure the absolute agreement between tracers. Additionally, 
longitudinal amyloid SUVRs from an anti-amyloid drug trial were simulated using linear mixed effects modeling. Differences in 
rates-of-change between simulated treatment and placebo groups were tested, and change in statistical power/Type-I error after 
harmonization was quantified. In the head-to-head tracer comparison, ComBat with no covariates was the best at increasing 
ICC and decreasing MAE of both global summary and regional amyloid PET SUVRs between scan pairs of the same group of 
subjects. In the clinical trial simulation, harmonization with both Centiloid and ComBat increased statistical power of detect-
ing true rate-of-change differences between groups and decreased false discovery rate in the absence of a treatment effect. The 
greatest benefit of harmonization was observed when groups exhibited differing FBP-to-PiB proportions. ComBat outperformed 
the Centiloid scale in harmonizing both global and regional amyloid estimates. Additionally, ComBat improved the detection of 
rate-of-change differences between clinical trial groups. Our findings suggest that ComBat is a viable alternative to Centiloid for 
harmonizing regional amyloid PET analyses.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the 

original work is properly cited and is not used for commercial purposes.

© 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.

Abbreviations: AD, Alzheimer's disease; APOE, apolipoprotein-ε4; CDR, Clinical Dementia Rating; CL, Centiloid; FBP, [18F]-florbetapir; GAM, generalized additive model; ICC, intraclass 
correlation coefficient; LME, linear mixed effects; MAE, mean absolute error; MRI, magnetic resonance imaging; OASIS-3, Open Access Series of Imaging Studies 3; PEACE, Probabilistic 
Estimation for Across-batch Compatibility Enhancement.; PET, positron emission tomography; PiB, [11C]-Pittsburgh compound-B; ROI, region-of-interest; SUVR, standardized uptake value 
ratio

https://doi.org/10.1002/hbm.70068
https://doi.org/10.1002/hbm.70068
mailto:
https://orcid.org/0000-0002-2558-4132
https://orcid.org/0000-0001-8671-8424
https://orcid.org/0000-0001-7213-0734
https://orcid.org/0000-0002-8114-0552
https://orcid.org/0000-0003-2109-2955
mailto:
https://orcid.org/0000-0003-0795-8820
mailto:b.y.yang@wustl.edu
mailto:aristeidis.sotiras@wustl.edu
http://creativecommons.org/licenses/by-nc/4.0/


2 of 14 Human Brain Mapping, 2024

1   |   Introduction

Positron emission tomography (PET) is widely used in clini-
cal and research settings for measuring and monitoring am-
yloid-β deposition in vivo in the brain for patients who are at 
risk of developing or who already present with Alzheimer's 
disease (AD). In clinical trials for anti-amyloid drugs, PET 
is an important tool for screening appropriate candidates 
who have undergone significant amyloidosis in the brain 
(Chapleau et al. 2022). Moreover, PET has also been used for 
monitoring the progression of global amyloid burden longi-
tudinally within these trials, which along with measures of 
cognitive function serves as a crucial secondary endpoint 
(Swanson et  al.  2021; Shcherbinin et  al.  2022). In research 
settings, PET is able to resolve the spatial distribution of am-
yloid within specific regions of the brain, enabling the design 
of multivariable statistical analyses and predictive models of 
AD using voxel-wise (Mathotaarachchi et al. 2017; Choi and 
Jin  2018) or region-of-interest (ROI)-based (Pfeil et  al.  2021; 
Pascoal et al. 2020; Ezzati et al. 2021) PET biomarkers as mul-
tidimensional features.

Several PET radiotracers for imaging brain amyloid pathology 
have been developed. The first amyloid PET tracer developed 
for human imaging studies was [11C]-Pittsburgh compound B 
(PiB) (Klunk et al. 2004), but due to its short half-life requires 
an on-site cyclotron to produce. Consequently, PiB is not acces-
sible by many sites and not appropriate for use in clinical trials. 
Alternatively, amyloid measurements obtained from 18F-based 
tracers such as [18F]-florbetapir (FBP) (Su et  al.  2019; Wolk 
et  al.  2012; Landau et  al.  2013), [18F]-florbetaben (Villemagne 
et  al.  2012), and [18F]-flutemetamol (Adamczuk et  al.  2016; 
Mountz et al. 2015) have been shown to correlate well with PiB. 
Coupled with a much longer half-life than PiB, these tracers are 
a much more suitable option for clinical trials due to their acces-
sibility and ability to be distributed off-site.

Nonetheless, previous studies that performed a head-to-head 
comparison of amyloid PET tracers have demonstrated signifi-
cant disparities in dynamic range and nonspecific binding prop-
erties between tracers (Su et  al.  2019; Villemagne et  al.  2012; 
Landau et  al.  2014). Subsequently, this makes it difficult to 

compare quantitative amyloid measurements between images 
acquired using different tracers. This may also negatively im-
pact the performance of downstream tasks such as detecting 
significant treatment effects in anti-amyloid drug trials (Chen 
et al. 2023).

To address this, Klunk et  al.  (2015) introduced the Centiloid 
scale, which linearly transforms the dynamic range of a global 
estimate of amyloid burden to a common scale and converts it 
to Centiloid (CL) units. This involves calibrating the scale to a 
preselected cohort of amyloid-negative healthy controls and 
amyloid-positive typical AD patients, where the average global 
burden of the two groups are set to 0 and 100 CL, respectively. 
However, the calibration process requires at least two PET scans 
from the same subject within a short time period in order to cal-
ibrate conversion equations. Additionally, a single equation is 
usually derived to operate on the global amyloid estimate, but 
this cannot address local disparities in amyloid PET signal be-
tween tracers. Other methods for tracer harmonization that are 
based on data-driven and/or machine learning techniques such 
as principal component analysis (Pegueroles et  al.  2021), non-
negative matrix factorization (Bourgeat et  al.  2021), and deep 
learning (Chen et al. 2024; Liu et al. 2021) have been proposed, 
but like Centiloid they focus on the global amyloid burden.

Alternatively, ComBat (Johnson, Li, and Rabinovic  2007) is a 
data-driven harmonization model which has been widely ap-
plied in magnetic resonance imaging (MRI) analyses to adjust 
for differences in scanners and acquisition protocols. It has been 
used to correct regional volume and cortical thickness measure-
ments from MRI (Richter et al. 2022; Sun et al. 2022; Pomponio 
et al. 2020; Fortin et al. 2018), and has more recently been ap-
plied to [18F]-fluorodeoxyglucose-PET (Leithner et al. 2022) and 
amyloid PET (Bilgel 2023) biomarkers. Much of the current lit-
erature on applying ComBat has focused on reducing scanner-
level and institutional-level biases. However, it remains unclear 
whether ComBat is applicable for mitigating across-tracer vari-
ance, specifically in regional amyloid PET measurements.

Here, we aimed to evaluate the efficacy of ComBat for harmoniz-
ing standardized uptake value ratios (SUVR) from amyloid PET 
across two tracers—PiB and FBP. Specifically, we addressed 
two primary inquiries. First, we investigated whether ComBat 
harmonization may increase the agreement between regional 
SUVRs obtained from the two tracers. This was accomplished 
through a head-to-head comparison of PiB and FBP. We selected 
a set of PiB-FBP scan pairs acquired from the same subject in 
a short time period and compared measures of the absolute 
agreement between regional SUVRs before and after ComBat 
harmonization. Second, we explored the utility of ComBat har-
monization in the context of clinical tasks. This was examined 
by simulating a multi-tracer anti-amyloid drug trial where two 
different amyloid tracers were used to measure brain amyloid 
deposition, under the assumption that different sites have ac-
cess to different tracers. We generated longitudinal amyloid PET 
data of hypothetical treatment and placebo groups with a known 
underlying treatment effect, and assigned each group a specific 
proportion of PiB-to-FBP scans. We then gaged whether ComBat 
harmonization improves the statistical power of detecting the 
underlying treatment effect when using two different tracers.

Summary

•	 ComBat is a data driven harmonization method 
which, unlike Centiloid, does not require a priori se-
lection and stratification of training cohorts and is 
able to harmonize regional amyloid PET estimates.

•	 ComBat with no covariates performed the best in 
increasing the absolute agreement of regional am-
yloid PET measurements made within scan pairs 
of the same group of subjects using two different 
radiotracers.

•	 ComBat increased the statistical power of detecting 
treatment effects and decreased Type-I error of falsely 
detecting effects in a simulated anti-amyloid drug 
trial.
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2   |   Materials and Methods

2.1   |   Participants and Data

Data for this study were acquired from the Open Access Series of 
Imaging Studies 3 (OASIS-3) dataset (LaMontagne et al. 2019), 
which consisted of 1098 total participants and their longitudi-
nal imaging data. Of these, we selected 997 who underwent PiB 
and/or FBP amyloid PET imaging. All available PET scans, in-
cluding the initial baseline scan and any follow-up scans, were 
utilized in this study, for a total of 678 FBP scans and 1157 PiB 
scans. Additionally, each subject's age at scan, sex, and apoli-
poprotein-ε4 (APOE) allele carriership were extracted. Subjects 
who were missing any of these variables were excluded from 
further analyses.

2.2   |   Image Acquisition and Processing

All amyloid PET imaging from OASIS-3 were acquired at 
Washington University in St. Louis using one of four Siemens 
scanner models: Biograph mMR PET/MR 3T, Biograph 40 
PET/CT, Biograph 128 Vision Edge PET/CT, and ECAT HR+ 
962 PET. For PiB PET, participants received a bolus injection 
of 6–20 mCi of PiB, and a 60-min dynamic scan was acquired. 
For FBP PET, participants received a bolus injection of 10 mCi 
of FBP, and either a 70-min dynamic scan was acquired, or a 
20-min dynamic scan was acquired at 50-min post-injection. 
Additionally, T1-weighted MRI scans were acquired and uti-
lized for PET processing. All MRI imaging from the OASIS-3 
dataset were acquired at Washington University in St. Louis 
using one of three Siemens scanner models: Vision 1.5T, TIM 
Trio 3T, and Biograph mMR PET/MR 3T.

PET images were processed using the PET Unified Pipeline 
(https://​github.​com/​ysu001/​PUP), described in Su et al. (2013). 
Briefly, raw PET images were smoothed to 8-mm spatial resolu-
tion, corrected for inter-frame motion, and coregistered to the T1 
MRI scan acquired closest in time using a vector-gradient algo-
rithm. T1 images were segmented and parcellated into cortical 
and subcortical ROIs using FreeSurfer 5.0 or 5.1 for 1.5T scans or 
FreeSurfer 5.3 for 3T scans. For each ROI, regional SUVRs were 
computed from the peak time windows of each tracer (30–60 min 
post-injection for PiB, 50–70 min post-injection for FBP). The av-
erage of the left and right cerebellar cortex was used as the refer-
ence region. Additionally, a summary estimate of global amyloid 
burden was derived by computing the SUVR of a meta-ROI com-
prised of lateral and medial orbitofrontal, middle and superior 
temporal, superior frontal, rostral middle frontal, and precuneus 
ROIs from both hemispheres. For subsequent analyses, we chose 
to focus on 68 cortical, 16 subcortical regions, and the global 
summary region. The full list of regions is given in Table S1.

2.3   |   Data Harmonization

Five harmonization methods were investigated in the cur-
rent study: Centiloid (Klunk et  al.  2015), ComBat (Johnson, 
Li, and Rabinovic  2007; Fortin et  al.  2018), GAM-ComBat 
(Pomponio et al. 2020), longitudinal ComBat (Beer et al. 2020), 

and Probabilistic Estimation for Across-batch Compatibility 
Enhancement (PEACE) (Bilgel 2023). These methods are briefly 
described below.

2.3.1   |   Centiloid

The Centiloid scale (Klunk et al. 2015) is a method of linearly 
transforming global amyloid burden estimates from SUVRs to a 
scale that is standardized across tracers. Centiloid ranges from 0 
to 100, with 0 corresponding to the average amyloid burden of a 
group of healthy controls, and 100 corresponding to the average 
amyloid burden of typical AD patients. Note that Centiloids are 
allowed to fall above 100 CL or below 0 CL.

Although Centiloid is calibrated against and primarily used 
to harmonize the global summary SUVR, it can also be ap-
plied to regional or voxel-wise SUVRs (Chen et al. 2023; Klunk 
et al. 2015). To convert regional SUVRs to Centiloid, we utilized 
the conversion equations that were previously validated for the 
OASIS-3 cohort (Su et al. 2019, 2018):

2.3.2   |   ComBat

ComBat is a data-driven method for adjusting data with batch-
specific effects (Johnson, Li, and Rabinovic  2007), where 
batches refer to any nominal variable(s) which may contribute 
confounding biases in the target measurement. It utilizes a mul-
tivariable linear regression to model measurements in terms of 
batch-specific shift and scale parameters, as well as other co-
variates, which model variance due to biologically relevant ef-
fects. For batch effect i, subject j, and feature k, ComBat models 
the measurement yijk as:

where �k is the mean measurement across all subjects and all 
batches, Xj is the vector of biological covariates associated with 
subject j, and �k is the vector of coefficients for Xj. The batch-
specific shift (additive) and scale (multiplicative) parameters are 
represented by � ik and �ik, respectively. These modify the mea-
surement from the group average to account for batch-specific 
biases. �ijk is the error term, which is assumed to be normally 
distributed with zero mean and unit variance. � ik and �ik are es-
timated using an empirical Bayesian approach, and once esti-
mated, the measurement without batch effects can be recovered 
by the following:

This adjustment ensures that only variance due to the batch effects 
is corrected for, while variance due to the covariates is preserved, 
which is a unique advantage of ComBat over other batch-adjusting 
techniques. In subsequent experiments, we selected age, sex, and 
APOE carriership as the covariates of interest to preserve.

(1)
CLPiB =111.8 SUVRPiB−119.3

CLFBP =163.6 SUVRFBP−181.0

(2)yijk = �k + Xj�k + � ik + �ik�ijk

(3)y∗
ijk

=
yijk − �k − X�k − � ik

�ik
+ �k + X�k

https://github.com/ysu001/PUP
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2.3.3   |   GAM-ComBat

A limitation of the ComBat model is that it is only able to model 
covariates as linearly related to the target variable. To address 
this, Pomponio et al. (2020) developed GAM-ComBat, a variant 
of ComBat which can model continuous covariates nonlinearly 
using generalized additive models (GAM):

where f  is the GAM. In subsequent experiments, we explored 
modeling the age covariate nonlinearly using GAMs.

2.3.4   |   Other ComBat Variants

We also tested two variants of ComBat: longitudinal ComBat 
(Beer et  al.  2020) and PEACE (Bilgel  2023). Longitudinal 
ComBat incorporates a subject-specific random intercept term 
to the original ComBat model:

where �jk is the subject-specific random intercept, which is 
preserved after harmonization. Additionally, the covariate de-
sign matrix Xj and error term �ijk are parameterized by time t , 
allowing for these terms to be varied across time. This model 
is appropriate for harmonizing data consisting of multiple re-
peated measurements of the same subjects at different time 
points.

PEACE differs from ComBat in two aspects: (1) it models target 
measurements using a bimodal Gaussian mixture model to esti-
mate two clusters of the data, then estimates the batch-specific 
parameters independently of the cluster assignments; and (2) 
rather than estimating model parameters and hyperparameters 
in an empirical Bayesian manner, it employs a fully Bayesian 
approach where these parameters are assumed to be distributed 
by fixed priors. PEACE addresses ComBat's limitation of assum-
ing that the target features, after residualizing covariate terms, 
are distributed normally. However, this is often not the case for 
amyloid imaging data, where the distribution of amyloid burden 
across subjects often exhibits a bimodal pattern of low amyloid 
(amyloid-negative) and high amyloid (amyloid-positive) clusters 
(Bilgel 2023; Properzi et al. 2019).

The PEACE model is given by the following:

where zj indicates the cluster assignment of subject j. PEACE 
is fit using Hamiltonian Monte Carlo Markov chain sampling. 
In our experiments, we ran 4 separate Markov chains where 50 
warmup iterations were sampled followed by 50 samples drawn 
from the posterior, for a total of 200 samples after warmup. We 
then averaged over these 200 samples to obtain the final harmo-
nized data.

The original implementation of PEACE only considered a sin-
gle covariate. We modified the model to allow for either no 

covariates or multiple covariates. In subsequent experiments, 
we selected age, sex, and APOE carriership as the covariates of 
interest to preserve. We further configured PEACE to train on 
one dataset and be applied on held-out data.

2.4   |   Statistical Analysis

To evaluate Centiloid and ComBat for harmonizing inter-tracer 
differences for both global and regional amyloid PET features, 
we performed two experiments: a head-to-head comparison of 
FBP and PiB to evaluate absolute agreement, and a clinical trial 
simulation to evaluate the clinical utility of harmonization. A 
summary of the pipelines for the two experiments and the data 
used for each is illustrated in Figure 1.

2.4.1   |   Tracer Head-to-Head Comparison

We performed a head-to-head comparison of FBP and PiB mea-
surements and evaluated their absolute agreement after har-
monization. We identified 113 FBP-PiB scan pairs across 99 
subjects, which were acquired within 90 days. All remaining 
scans were used to train ComBat models, which included 565 
FBP and 1044 PiB scans.

Centiloid, three different configurations of ComBat, and PEACE 
were applied to the global summary SUVR and 84 regional 
SUVRs from the head-to-head dataset to harmonize tracer dif-
ferences. We tested ComBat without any covariates, ComBat 
with age, sex, and APOE-ε4 carriership as linear covariates, 
and GAM-ComBat with sex and APOE-ε4 carriership as lin-
ear covariates and age as a nonlinear covariate. Additionally, 
we tested PEACE without any covariates and PEACE with age, 
sex, and APOE-ε4 carriership as linear covariates. Note that we 
omitted longitudinal ComBat from this analysis since the head-
to-head data was treated as cross-sectional.

To evaluate the absolute agreement between FBP and PiB mea-
surements, two metrics were computed. First, intraclass correla-
tion coefficient (ICC) using a fixed rater, single measurement 
model (i.e., ICC3) was estimated. ICC is roughly the ratio of in-
traclass variance to total variance, and values closer to 1 indicate 
better agreement between the two tracers. Second, the absolute 
error (AE) between FBP and PiB measurements was computed:

where PiBi and FBPi are the measurements made with PiB and 
FBP from scan pair i. We also computed the mean absolute error 
(MAE) across all scan pairs:

where N is the number of scan pairs. To facilitate comparisons of 
AEs between (un)harmonized SUVRs and Centiloids, we scaled 
Centiloids to a similar dynamic range as SUVRs. Utilizing the 
Centiloid conversion equations in Equation 1, we computed the 

(4)yijk = f
(
Xj
)
+ � ik + �ik�ijk

(5)yijk = �k + Xj(t)�k + � ik + �jk + �ik�ijk(t)

(6)yijk = �zjk + Xj�zjk + � ik + �ik�ijk
(7)AEi = abs

(
PiBi − FBPi

)

(8)MAE =
1

N

∑N

i=1
AEi
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SUVRFBP and SUVRPiB that result in 0 and 100 CL (denoted as 
SUVR{tracer},0 CL and SUVR{tracer},100 CL, respectively). Then, using 
the average of FBP and PiB SUVRs at these anchor points, we 
linearly mapped Centiloids back to SUVR using the following 
equation:

Substituting the respective SUVRs (SUVRFBP,100 = 1.718, 
SUVRPiB,100 = 1.961, SUVRFBP,0 = 1.106, SUVRPiB,0 = 1.067 into 
the above equation yields the following:

We will refer to this as the scaled Centiloid in the remainder of 
the text.

Paired t-tests were performed to test for significant differ-
ences in the distributions of ICC and MAE between unhar-
monized SUVRs and each of the four harmonization methods. 
Additionally, we further subdivided each FreeSurfer region into 
three groups—regions belonging to the global summary meta-
ROI, other cortical regions not part of the summary meta-ROI, 
and subcortical regions. We then performed paired t-tests for 
each group separately to compare across harmonization meth-
ods. In all statistical tests, Bonferroni correction was applied to 
correct for multiple comparisons.

2.4.2   |   Clinical Trial Simulation

We evaluated Centiloid and ComBat in the context of improv-
ing detection of treatment effects in an anti-amyloid drug trial 
setting, with the assumption that multiple amyloid PET trac-
ers were used due to pooling of data from multiple institutions. 
To accomplish this, we modeled a simulation experiment after 
those described in Chen et al. (2023) to generate data of placebo 
and treatment groups. We varied the proportion of FBP-to-PiB 
scans of each group, and then tested for group differences of am-
yloid rate-of-change.

We selected subjects who presented as PET amyloid-positive at 
least once during their participation in OASIS-3. To mark scans 
as amyloid-positive, we used a global summary SUVR thresh-
old of 1.31 for PiB and 1.24 for FBP. These thresholds were pre-
viously validated for the OASIS-3 cohort (Su et al. 2019). From 
these criteria, we identified 363 amyloid-positive subjects, from 
which 258 FBP and 322 PiB scans were selected.

For each tracer and for each ROI (including the global sum-
mary region), a linear mixed effects (LME) model was fit on 
the selected scans to predict longitudinal SUVR. Sex, APOE 
carriership, baseline age, and time-from-baseline were spec-
ified as fixed effects. A random intercept grouped by subject 
was specified as the only random effect. This resulted in two 
LME models—one fitted to FBP data and one to PiB data—
for each ROI. Fitted LME models were then used to generate 

(9)

SUVRCL = CL

⎛
⎜⎜⎝

SUVRFBP,100 + SUVRPiB,100

2
−

SUVRFBP,0 + SUVRPiB,0

2

100

⎞
⎟⎟⎠
+
SUVRFBP,0 + SUVRPiB,0

2

(10)SUVRCL = 0.007528 × CL + 1.0867

FIGURE 1    |    Flowchart of data for the tracer head-to-head comparison (left) and clinical trial simulation (right). Dotted arrows indicate where data 
was used to train ComBat or linear mixed effects models.
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new longitudinal data of placebo and treatment groups. For 
the placebo group, the models were applied as is to generate 
SUVRs that follow the natural longitudinal trajectory among 
amyloid-positive subjects in OASIS-3. For the treatment group, 
we added a negative rate-of-change term to the LME equation 
to mimic a treatment effect. We tested multiple values of the 
treatment effect from 0 to −0.03 SUVR, varying in increments 
of −0.01 SUVR. These values were chosen based off of previ-
ously reported clinical trial effect sizes (Swanson et al. 2021; 
Chen et al. 2023).

To simulate a single subject's data, we randomly sampled the 
empirical distributions of the number of longitudinal scans, 
age at baseline scan, and interval between scans among the 
OASIS-3 amyloid-positive cohort to generate longitudinal 
time points. Each simulated subject was randomly assigned 
sex and APOE carriership based on the empirical distribu-
tions of these covariates. We then allocated a tracer (either 
PiB or FBP) to each time point, with the following constraints: 
(1) the proportion of tracers across all scans from all subjects 
approximated a prespecified proportion; (2) a subject could 
only switch tracers once during their clinical trial participa-
tion, reflecting a realistic scenario where multiple tracers are 
utilized in a single study. Time points assigned to PiB or FBP 
were then input into the corresponding trained LME model to 
obtain simulated SUVR measurements. For our experiments, 
we varied the percentage of FBP scans from 0.1 to 0.9 in in-
crements of 0.2 for both clinical trial groups independently. 
We fixed the total number of subjects to 50 per group, with 
the number of scans per subject ranging from 2 to 6, the 
mean (± standard deviation) time in between scans being 
3.35 ± 1.46 years, and the mean (± standard deviation) base-
line age being 69.4 ± 9.2 years.

The simulated data was harmonized using one of four meth-
ods: Centiloid, ComBat, PEACE, or longitudinal ComBat. We 
tested ComBat, PEACE, and longitudinal ComBat both without 
covariates and with age, sex, and APOE-ε4 carriership as lin-
ear covariates. Note that we omitted GAM-ComBat from this 
analysis, since the simulated data was generated using a linear 
age term in the LME. ComBat and PEACE were trained using 
all available amyloid-positive scans. For longitudinal ComBat, 
since the random intercept terms are indexed by subjects in the 
training dataset, it is not possible to use this model to harmo-
nize data for new subjects. Therefore, we trained longitudinal 
ComBat on the simulated subjects' data, and trained models 
were applied to harmonize this data.

To test for group differences in the rate-of-change in amyloid 
SUVR between placebo and treatment groups, we first fitted 
the same LME described previously, but with three additional 
terms—clinical trial group, interaction of time-from-baseline 
with trial group, and tracer. We then tested for statistical sig-
nificance of the time-from-baseline and clinical trial group in-
teraction term, which would indicate whether the two groups 
exhibit different rates-of-change. Likelihood ratio tests were 
used to compare the fit of the full model with a nested model 
that excludes this term, and significance was determined using 
α = 0.05. A one-way test was used, meaning that we considered a 
rate-of-change difference to be statistically significant only if the 
treatment group had a lower rate-of-change than the placebo. 

Simulations were repeated 1000 times for each permutation of 
tracer mixing proportions and treatment effect. Statistical power 
was computed as the proportion of simulation iterations, which 
resulted in a significant finding. Note that for a treatment effect 
of zero (that is, the absence of a ground truth treatment effect), 
this corresponds to the Type-I error rate.

3   |   Results

3.1   |   Demographics

Descriptive statistics of each cohort are listed in Table  1. A 
two-tailed t-test was used to test for differences in age at scan, 
and Fisher's exact test was used to test for differences in sex, 
APOE-ε4, and Clinical Dementia Rating (CDR). Significant dif-
ferences in age and CDR were observed between the head-to-
head cohort and the single-tracer FBP cohort (p < 0.005). Age 
was also significantly different between the head-to-head and 
the mixed-tracer PiB cohorts (p < 0.05), and CDR was signifi-
cantly different between the head-to-head and single-tracer PiB 
cohorts (p < 0.005). For the tracer-versus-tracer comparison, age 
was significantly different in both single- and mixed-tracer co-
horts in the training dataset (p < 0.005), and for only the mixed-
tracer cohort in the simulation dataset (p < 0.005). Finally, sex 
and APOE-ε4 carriership were significantly different between 
FBP and PiB in the single-tracer simulation dataset (p < 0.01).

3.2   |   Tracer Head-to-Head Comparison

We evaluated the ability of Centiloid, ComBat, and PEACE to 
improve the absolute agreement between FBP and PiB using 
the head-to-head dataset. For the global summary region, ab-
solute agreement, as measured by ICC, increased after harmo-
nization with either Centiloid (ICC = 0.912) or ComBat with no 
covariates (ICC = 0.916), compared to the unharmonized SUVR 
(ICC = 0.882) (Table  2, Figure  2). ICC also increased slightly 
after harmonization with ComBat with covariates (ICC = 0.898) 
and GAM-ComBat (ICC = 0.897), albeit not to the same degree 
as ComBat with no covariates. Similarly, PEACE, either with 
(ICC = 0.884) or without (ICC = 0.897) covariates, did not per-
form as well as ComBat with no covariates or Centiloid in in-
creasing ICC (Table  2, Figure  S1). For ROI measurements, all 
three ComBat harmonization methods led to a statistically sig-
nificant increase in average ICC among all ROIs compared to un-
harmonized SUVR (p < 1e-4), with ComBat with no covariates 
again performing the best (ICC = 0.838) (Table  2, Figure  3a). 
Additionally, ComBat with no covariates performed the best 
within the summary cortical ROIs (ICC = 0.899) and other cor-
tical ROIs (ICC = 0.853) (Table 2, Figure 3b,c). No method was 
effective at improving across-tracer agreement for the subcorti-
cal ROIs, with mean ICC of less than 0.75 even after harmoniza-
tion (Table 2, Figure 3d). PEACE did not improve the mean ICC 
with statistical significance in any of the groups except for other 
cortical ROIs (Figure  S2), and PEACE both with and without 
covariates achieved a lower mean ICC than ComBat with no co-
variates (Table 2). When plotting region-wise ICC on the inflated 
brain surface, we observed that Centiloid resulted in a decrease 
in ICC in the bilateral occipital and sensorimotor regions, and in 
the left temporal and parietal cortices (Figure S3b). PEACE also 
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exhibited a decrease in ICC in similar regions (Figure S3f,g). In 
contrast, none of the ComBat variants led to such decrease in 
these regions (Figure S3c–e), with ComBat with no covariates 
having the highest magnitude of change in ICC across multiple 
regions.

When assessing the AE between FBP and PiB measurements 
of the global summary region (Table  2, Figures  4 and S4), 
ComBat with no covariates (MAE = 0.080) and PEACE, both 
with (MAE = 0.083) and without (MAE = 0.092) covariates, 
were the only methods that reduced the MAE with statistical 

FIGURE 2    |    Global summary measures computed from PiB and FBP scans in the tracer head-to-head dataset. The red line indicates the best 
fit line from ordinary least squares linear regression, the gray area indicates the confidence interval of the slope, and the black line represents the 
identity line. Intraclass correlation coefficient (ICC) is reported on the bottom right of each scatterplot.

FIGURE 3    |    Distribution of regional ICC across all ROIs, grouped by harmonization method and ROI subgroup. Each point represents a single 
ROI. Significance levels from paired t-tests with Bonferroni correction are indicated for each pair of harmonization methods (*p < 0.05, **p < 0.01, 
***p < 0.005, ****p < 1e-4).

FIGURE 4    |    Absolute error of the global summary measure from each PiB and FBP scan pair in the tracer head-to-head dataset. Each point 
represents a single scan pair. Significance levels from paired t-tests with Bonferroni correction are indicated for each pair of harmonization methods 
(*p < 0.05, **p < 0.01, ***p < 0.005, ****p < 1e-4).
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significance (p < 0.05) compared to unharmonized SUVRs 
(MAE = 0.101). ComBat with no covariates lowered the AE, the 
greatest between the three methods. For ROI measurements 
(Table 2, Figures 5 and S5), all methods except Centiloid signifi-
cantly reduced the average MAE among all ROIs (p < 1e-4), but 
ComBat with no covariates and PEACE with covariates resulted 
in the greatest reduction (MAE = 0.086). ComBat with no co-
variates also performed the best within the summary cortical 
ROIs (MAE = 0.089) and subcortical ROIs (MAE = 0.09), while 
PEACE with covariates performed the best within other corti-
cal ROIs (MAE = 0.083), although ComBat with no covariates 
performed comparably. When plotting region-wise MAE on the 
inflated brain surface, we observed that both ComBat with no 
covariates and PEACE with covariates led to the greatest reduc-
tion in MAEs in ROIs across the bilateral frontal, parietal, and 
occipital regions (Figure S6).

3.3   |   Clinical Trial Simulation

We performed simulations to test for group differences in am-
yloid rate-of-change between treatment and placebo groups in 
a hypothetical clinical trial, and evaluated whether harmoni-
zation improved the ability of detecting these differences. For 
the global summary SUVR, both Centiloid and ComBat with-
out covariates resulted in overall increases in statistical power 
after harmonization in the presence of a treatment effect (i.e., 
for rate-of-change ∈ { − 0.01, − 0.02, − 0.03}), primarily when 
the placebo group had high FBP composition and the treatment 
group had low FBP composition (Figure 6). A similar increase 
in power was observed when using ComBat with covariates, al-
beit at a lesser magnitude. However, PEACE led to widespread 
decreases in power, and although longitudinal ComBat led to 
increases in power in certain tracer composition configurations, 
the effect was not as consistent as either Centiloid or ComBat 
with no covariates (Figure  S7). In the absence of a treatment 
effect (i.e., rate-of-change = 0), Centiloid, ComBat, and longitu-
dinal ComBat with no covariates achieved large decreases in 
Type-I error, primarily when the placebo group had low FBP 
composition and the treatment group had high FBP composi-
tion. Slight decreases in power were also observed in the case 

of a low treatment effect (i.e., rate-of-change = −0.01). Table S2 
shows the mean power computed across all 25 configurations 
of treatment and placebo FBP compositions. Out of all meth-
ods, Centiloid achieved the largest mean power for detecting 
the treatment effect in every rate-of-change except for −0.01 
(longitudinal ComBat performed the best in this case), and 
Centiloid also achieved the lowest mean Type-I error. However, 
ComBat with no covariates was often the second-best perform-
ing method.

For regional SUVRs, similar patterns of change in power after 
harmonization were observed. Across all ROIs, mean power 
was increased/Type-I error was decreased after harmonization 
with either Centiloid or ComBat, with both methods producing 
comparable changes in power (Table  S3). Additionally, these 
same changes in regional power after harmonization were con-
sistent across all three ROI subgroups. Surface plots revealed 
that regions which exhibited relatively low power of detecting 
treatment effects (such as the frontal and medial parietal cor-
tices and putamen in the case of rate-of-change = −0.02) ex-
perienced a high increase in power after harmonization with 
either Centiloid or ComBat with no covariates (Figures S8 and 
S9). Again, harmonization with PEACE led to widespread de-
creases in statistical power across multiple regions, and longitu-
dinal ComBat showed worse performance in increasing power 
compared to Centiloid or ComBat with no covariates, with the 
exception of when rate-of-change = −0.01 (Figures  S8 and S9, 
Table S3).

4   |   Discussion

We demonstrated that ComBat may effectively harmonize am-
yloid PET measurements across FBP and PiB. Notably, ComBat 
with no covariates outperformed Centiloid in increasing abso-
lute agreement between tracers in both the global summary and 
regional measurements, and resulted in a comparable improve-
ment in detecting group differences in the simulated clinical 
trial. As more studies shift focus from using a global summary 
metric of amyloid burden to using the spatial distribution of re-
gional amyloid as features (Pfeil et al. 2021; Pascoal et al. 2020), 

FIGURE 5    |    Distribution of regional MAE across all ROIs, grouped by harmonization method and ROI subgroup. Each point represents a single 
ROI. Significance levels from paired t-tests with Bonferroni correction are indicated for each pair of harmonization methods (*p < 0.05, **p < 0.01, 
***p < 0.005, ****p < 1e-4).
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harmonization techniques like ComBat that can be applied to 
multiple regions become appealing for pooling PET data across 
multiple tracers.

ComBat poses several methodological advantages over 
Centiloid. First, calibration of Centiloid requires a priori 
selection of representative individuals from dichotomous 
groups, namely healthy control and typical AD cohorts. This 
a priori cohort selection may introduce bias into the calibra-
tion process. Especially if the selected sample is small and/or 
captures only a subset of the overall population (e.g., biased 
toward a single ethnicity group), Centiloid may not general-
ize well to heterogeneous or out-of-sample datasets. ComBat 
circumvents this requirement, which allows it to learn a 

robust harmonization on a wider spectrum of data, which 
consists of controls, AD patients, and “in-between” subjects. 
Furthermore, much like Centiloid, a trained ComBat model 
may then be used to harmonize out-of-sample data. However, 
one should still carefully consider the subject selection pro-
cess and ensure that the proportions of cohorts are not skewed 
toward a particular cohort (e.g., many more healthy controls 
than AD patients), since this may lead to a suboptimal har-
monization model (Bilgel  2023). Second, Centiloid requires 
at least two PET scans of different tracers for each subject in 
the calibration cohort, one of which should be acquired using 
PiB. In contrast, ComBat can train using just one scan per 
subject and does not require PiB to be used. Indeed, we ex-
pect ComBat to generalize well to harmonizing two (or more) 

FIGURE 6    |    Statistical power of detecting group differences in rate-of-change of the global summary SUVR between treatment and placebo 
groups, computed as the proportion of significant findings over 1000 iterations. Power is plotted for unharmonized SUVR, while the difference 
in power relative to unharmonized is plotted for all harmonization methods. The true underlying rate-of-change is varied across columns. The 
proportion of FBP scans in the placebo and treatment groups is varied across the horizontal and vertical axes of each heatmap, respectively. Note that 
for annualized rate-of-change equal to zero, the proportion of significant findings corresponds to Type-I error rate.
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[18F]-based tracers without the need for PiB, although further 
investigation using head-to-head data of these tracers should 
be conducted to verify this. Third, a region-specific harmoni-
zation is important for addressing sources of tracer bias which 
variably affect different regions, such as nonspecific binding 
(Su et al. 2015). However, as suggested by Klunk et al. (Klunk 
et al. 2015), a region-specific Centiloid calibration is not ideal, 
since it would fix different SUVRs of different regions to the 
same Centiloid value. In contrast, ComBat independently re-
moves the tracer-specific variance from the target measure-
ments without scaling the dynamic range of each region to 
fixed points, making it a more suitable technique for regional 
harmonization. A caveat to this is that ComBat effectively 
centers the harmonized measurements on the global mean 
and variance of the data. As such, these measurements can 
no longer be interpreted as belonging to the scale of a par-
ticular batch, but rather on an aggregated scale. Alternative 
approaches such as modified ComBat (Stein et al. 2015) allow 
users to choose a “gold standard” reference batch to which all 
other batches are adjusted to, which may aid in improving the 
interpretability of harmonized measurements.

Lastly, ComBat has the advantage of being able to preserve co-
variate relationships in the target measurement, which may be 
useful in downstream analyses such as in predictive models 
which take into account biologically-related variance to make 
accurate predictions. However, in the context of purely evalu-
ating the absolute agreement between tracers, we observed that 
including covariates into the ComBat model led to worse ICC 
and AEs. This may be partially due to differences in covariate 
distributions between the training and head-to-head cohorts, 
of which age and CDR differed with statistical significance. 
Although CDR was not explicitly included as a ComBat covari-
ate, it may have indirectly contributed to a biased ComBat model 
which does not generalize well to testing data with different co-
variate characteristics.

It was noted that no harmonization method investigated in 
this study performed well for the subcortical regions. Notably, 
these regions lie close to white matter regions, and thus may be 
affected by nonspecific binding more so than cortical regions. 
This may contribute to more noise in the subcortical regions, 
which batch harmonization methods such as ComBat are not 
able to mitigate. One potential area of investigation is to evaluate 
whether partial volume correction (Su et al. 2015) would have an 
effect on regional harmonization of PET SUVRs, especially for 
regions that experience high amounts of signal spillover from 
neighboring white matter regions.

Our simulation experiments revealed the importance of har-
monization in settings where multiple tracers are utilized to 
track brain amyloid deposition in clinical trial participants. 
Particularly, harmonization was the most beneficial when 
trial groups exhibited differing proportions of tracer data. 
In these “off-diagonal” cases, tracer biases contributed to a 
substantial confounding effect across clinical trial groups, 
resulting in either a reduction of power in detecting the true 
underlying treatment effect, or an increase in Type-I error in 
the case when no treatment effect exists. Harmonization ef-
fectively served to mitigate these confounding effects due to 
tracer differences. This was consistent with previous reports 

that found significant differences in amyloid rates-of-change 
across different tracers within real clinical trial groups, and 
that these differences were subsequently removed after har-
monization (Chen et al. 2023). Interestingly, we observed an 
asymmetric effect where harmonization led to changes in 
power in one off-diagonal, but not in the other. This was most 
likely because we utilized a one-sided statistical test to test for 
rate-of-change differences. In the case of low FBP% in the pla-
cebo group and high FBP% in the treatment group, and when 
there was no ground-truth treatment effect introduced, a high 
amount of Type-I error suggested that FBP contributed to a 
greater rate-of-change compared to PiB due to tracer biases 
alone. However, in the opposite off-diagonal, these biases did 
not contribute to any Type-I error. While tracer biases were 
still present in the overall data, this indicated that they did 
not interfere with the detection of one-way group differences.

It is important to note, however, that scenarios of high imbal-
ance of tracer proportions between clinical trial arms are very 
unlikely to occur in a real-world setting, assuming proper ran-
domization. In the more realistic case where trial groups ex-
hibit an equal proportion of tracer data, a much lower change 
in power was observed compared to the off-diagonal cases. This 
is likely because the same tracer bias would affect both groups 
equally, which statistically would not influence the detection of 
group differences.

We investigated PEACE and longitudinal ComBat, which 
were previously validated for scanner-wise harmonization, for 
specifically tracer harmonization in the current study. Both 
methods led to mixed results in the head-to-head comparison 
as well as in the clinical trial simulation. In the head-to-head 
comparison, PEACE with covariates performed similarly to 
ComBat with no covariates in terms of MAE, but not in terms 
of ICC. Additionally, in the clinical trial simulation, PEACE 
failed to improve statistical power of detecting the treatment 
effect. This can partly be explained by our decision to sim-
ulate SUVRs following a unimodal Gaussian distribution, 
which was motivated by the fact that a true clinical trial will 
only enroll amyloid-positive participants and exclude amyloid-
negative individuals. Longitudinal ComBat resulted in mixed 
improvements in power, but these improvements were not as 
consistent compared to Centiloid or ComBat with no covari-
ates. We speculate that increased model complexity may have 
contributed to models, which were less robust to the data at 
hand. Ultimately, we found that ComBat with no covariates, 
which is the simplest model with the fewest number of parame-
ters to estimate and the fewest assumptions made, consistently 
performed either comparably to or better than PEACE or lon-
gitudinal ComBat.

There are several limitations to the current work. First, on the 
basis of purely increasing tracer agreement, there are no clear 
recommendations on the choice of including covariates in 
ComBat. One caveat to using ComBat is that, unless explicitly 
accounted for in the covariates, it will assume that any biases 
due to real biological differences between tracer cohorts are 
batch differences, which are subsequently removed. Therefore, 
one should carefully examine the composition of the data at 
hand and consider whether it is necessary to model known bi-
ological factors via the covariate terms. Second, data from the 
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simulation experiment were generated from models trained on a 
cohort of amyloid-positive subjects from OASIS-3 instead of data 
from an actual anti-amyloid drug trial. Although simulations 
were set up to mimic data that would be collected in a successful 
trial, it remains to be seen whether our hypotheses would hold 
on real-world clinical trial data. Third, our conclusions on the 
performance of ComBat for tracer harmonization are limited to 
PiB and FBP. Although we expect ComBat to be robust to other 
18F-based amyloid tracers such as [18F]-florbetaben and [18F]-
flutemetamol, future work is required to validate this using head-
to-head data from these tracers. Finally, our simulation analysis 
only focused on early amyloid-positive individuals, which we 
assumed to exhibit temporal amyloid accumulation in a roughly 
linear fashion. However, to draw conclusions on a cohort of both 
amyloid-negative and positive individuals (and even late-stage 
individuals with plateaued amyloidosis), a sigmoidal or piece-
wise linear model should instead be used in order to model the 
nonlinearities of amyloid accumulation across the broader AD 
spectrum (Jack and Holtzman 2013; Bilgel et al. 2016).

5   |   Conclusion

Harmonization of amyloid PET radiotracers is imperative for 
removing tracer-specific biases in amyloid burden measure-
ments for optimal performance of downstream tasks, such as 
enhancing statistical power and reducing false discoveries 
in clinical trials. In the current study, we demonstrated that 
ComBat is effective for harmonizing both global and regional 
amyloid measurements in an entirely data-driven way. Our ex-
perimental results suggest that ComBat not only increases the 
absolute agreement of measurements made within scan pairs of 
the same group of subjects by different tracers, but also provides 
a significant benefit to the performance of detecting true treat-
ment effects in anti-amyloid drug trials. ComBat thus presents 
as a viable technique for harmonizing regional-based analyses 
of amyloid PET.
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