
Combinatorial Methods in Security Testing

Dimitris E. Simos1, Rick Kuhn2, Artemios G. Voyiatzis1, Raghu Kacker2

1SBA Research, Vienna, Austria

2NIST, Information Technology Laboratory, Gaithersburg, MD, USA

Introduction

Many software security vulnerabilities result from the exploitation of ordinary coding flaws, 

rather than design or configuration errors. One study found that 64% of vulnerabilities are 

the result of such common bugs as missing or incorrect parameter checking, leaving the 

application open to common vulnerabilities including buffer overflows or SQL injection [1]. 

While this statistic may be discouraging, it also means that better functionality testing can 

have the additional benefit of significantly improved security.

Testing that can reveal complex faults that occur only under rare conditions may be 

especially effective. Empirical data show that most failures are triggered by a single 

parameter value, or interactions between a small number of parameters, generally two to six, 

a relationship known as the interaction rule [2]. An example of a single-value fault might be 

a buffer overflow that occurs when the length of an input string exceeds a particular limit. 

Only a single condition must be true to trigger the fault: input length > buffer size. A 2-way 

fault is more complex, because two particular input values are needed to trigger the fault. 

One example is a search/replace function that only fails if both the search string and the 

replacement string are single characters. If one of the strings is longer than one character, 

the code does not fail, thus we refer to this as a 2-way fault. More generally, a t-way fault 

involves t such conditions.

Figure 1 shows the cumulative percentage of faults at t = 1 to 6 for various applications 

studied by NIST and others [3][4][5][6]. As shown in Figure 1, the fault detection rate 

increases rapidly with interaction strength, up to t=4, reaching 100% detection with 4 to 

6-way interactions. Thus, the impossibility of exhaustive testing of all possible inputs is 

not a barrier to high assurance testing. That is, even though we cannot test all possible 

combinations of input values, failures involving more than six variables are extremely 

unlikely because they have not been seen in practice, so testing all possible combinations 

provides very little benefit beyond testing 4 to 6-way combinations.

The effectiveness of any software testing technique depends on whether test settings 

corresponding to the actual faults are included in the test sets. When test sets do not include 

settings corresponding to actual faults, the faults will not be detected. Conversely, we can 

be confident that the software works correctly for t-way combinations contained in passing 

Author Manuscript
Accepted for publication in a peer-reviewed journal

National Institute of Standards and Technology • U.S. Department of Commerce

Published in final edited form as:
Computer (Long Beach Calif). 2016 October ; 49(10): . doi:10.1109/mc.2016.314.N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript



tests. For security evaluations, it is not enough that failures are unlikely to occur in ordinary 

usage, because attackers seek out even complex flaws. Testing only to verify requirements 

coverage is insufficient for security, or even for assurance of critical functionality.

Matrices known as covering arrays can be computed to cover all t-way combinations of 

variable values, up to a specified level of t (typically t ≤ 6), making it possible to efficiently 

test all such t-way interactions [7]. But any test set, whether constructed as a covering 

array or not, contains a large number of combinations. We can measure this combinatorial 
coverage, i.e., the coverage of t-way combinations in a test set, for a better understanding of 

test set quality. These measurements contribute quantitative input for risk analysis activities, 

towards providing answers to questions such as: how many different scenarios have been 

checked? Are the untested scenarios important? How significant is the risk if we do not 

increase the test coverage? Do the market share or other external forces (e.g., conformance 

with standards) justify increasing the test coverage?

Experience report – case studies for software security

SBA Research (https://www.sba-research.org/) and NIST (http://www.nist.gov/) have 

developed a research program introducing combinatorial testing (CT) based approaches 

to software security testing. The program aims to bridge the gap between combinatorial 

testing methods and security testing and, in the process, establish a new research field: 

combinatorial security testing. We describe in the following our case studies and experiences 

so far.

Parsing untrusted content on the web

The W3C online tidy service1 is designed to detect and correct HTML code. It accepts a 

URL through a web form, then parses its HTML source code and reports any fixes that 

should be made. It has been online for many years now, and has been exposed to multiple 

instances of malformed code.

In coordination with W3C, SBA Research received permission for an external web 

application penetration test. We performed an input parameter modeling (IPM) of the 

Document Object Model (DOM) and generated an attack grammar. The resulting IPM 

was an enhancement of our previous CT-based approaches for web security testing [11], 

[12], [13]. The NIST ACTS tool was used then to produce test cases that ensured 100% 

coverage of the two-way and three-way parameter interactions of the DOM, as recent 

studies demonstrated its effectiveness for web security testing [14]. We tested the online 

service against the generated test suite using a prototype XSS injection tool and succeeded 

in discovering a previously-unknown Remote-Cross-Site-Scripting (RXSS) vulnerability of 

this popular service.

The sophistication of the attack vector produced by the combinatorial testing technique 

might explain why the vulnerability has gone unnoticed all this time. W3C has promptly 

fixed the offending code and acknowledged SBA Research’s efforts and responsible 

1 http://services.w3.org/tidy/tidy 

Simos et al. Page 2

Computer (Long Beach Calif). Author manuscript; available in PMC 2024 November 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

https://www.sba-research.org/
http://www.nist.gov/
http://services.w3.org/tidy/tidy


disclosure2. We note that in this case the source code of the W3C online tidy service was not 

available (black-box testing) but only a web interface to interact with it.

Web application security

A second example use of automated web penetration testing was demonstrated with the 

Koha integrated library management system3. Koha is used by various organizations, 

including the UNESCO, the Spanish Ministry of Culture, and the Vienna Cultural Museum. 

In this case, the source code is available under an open source license. SBA Research 

developed an IPM towards testing the API of this web-based application. The IPM modelled 

the parameters passed back and forth encoded as URL parameters. We differentiated two 

groups of tests, one using a normal (non-privileged user) account of the system and one 

using an administrator (privileged user) account.

We successfully modelled 43 URLs accepting between 5 and 15 parameters each of various 

values. We used the NIST ACTS tool to produce test suites that fully covered all possible 2-, 

3-, 4- and 5-way parameter combinations. We carried out the testing experiments through the 

XSS injection tool we used to also test the W3C online tidy service.

We discovered more than 50 cases of XSS vulnerabilities4 and we reported these to the 

developers5 6. Two related CVEs (CVE-2015–4630, CVE-2015–4631) are now assigned and 

await final approval by the MITRE team.

System call testing

The kernel of an operating system is its central authority to enforce security features. There 

exists an extremely large user base (e.g., in 2013 more than 1.5 million Android devices 

were activated per day7). In the case of Linux kernel, some manual testing approaches 

exist, e.g., the Trinity fuzzer8 and the Linux test project9. Related work in this domain also 

includes fuzzing techniques for system call testing [15].

We generated IPMs for the Linux system call API by introducing novel combinatorial 

modelling methodologies [16]. Furthermore, we developed a highly-configurable 

combinatorial kernel testing framework, namely ERIS, which encompasses automated test 

execution and logging capabilities. The testing framework allows any test generator to 

be plugged in for generating automated tests for the Linux system calls. In this regard, 

we have used the NIST ACTS tool to produce test suites covering a variety of t-way 

combinations depending on the number of system call arguments. Our testing experiments 

revealed various erroneous cases that were flagged for further analysis.

2 https://www.w3.org/blog/2014/12/rxss-security-audit-results/ 
3 https://koha-community.org/ 
4 https://www.exploit-db.com/exploits/37389/ 
5 https://koha-community.org/security-release-koha-3-20-1/ 
6 https://koha-community.org/security-release-koha-3-16-12/ 
7 http://www.androidcentral.com/android-reaches-900-million-activations 
8 http://codemonkey.org.uk/projects/trinity/ 
9 https://github.com/linux-test-project/ltp 

Simos et al. Page 3

Computer (Long Beach Calif). Author manuscript; available in PMC 2024 November 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

https://www.w3.org/blog/2014/12/rxss-security-audit-results/
https://koha-community.org/
https://www.exploit-db.com/exploits/37389/
https://koha-community.org/security-release-koha-3-20-1/
https://koha-community.org/security-release-koha-3-16-12/
http://www.androidcentral.com/android-reaches-900-million-activations
http://codemonkey.org.uk/projects/trinity/
https://github.com/linux-test-project/ltp


Hardware Trojan detection

Contemporary hardware design shares many similarities with software development 

practice. The insertion of malicious functionality in hardware (also known as “hardware 

Trojan horse”) is a realistic threat. The assumptions are that the Trojan activation is 

controlled using a (short) input pattern out of billions possibilities and the effect of the 

Trojan’s payload can be observed in the output of the circuit. The attack can be as subtle as 

introducing a faulty operation on a cryptographic core and deriving the cryptographic key 

afterwards [8].

Established functional testing techniques from the hardware domain do not cope well with 

Trojans due to the enormous space of possible input signals used as activation patterns. 

Modelling the attack as a functional black-box testing problem, a combinatorial testing 

approach reduced the size of the test suites (and, as a consequence, the testing time) by three 

orders of magnitude compared to alternative ones and, by construction, guaranteed multiple 

activations of the Trojan (if existent in first place). This line of research resulted also in 

new, optimized CAs with interaction strengths beyond six (6) and introduced combinatorial 

testing as an efficient means not only for software but for hardware security testing as well 

[9], [10].

Protocol interaction testing

Software implementations of the Transport Layer Security (TLS) protocol specification are 

a critical component for the security of Internet communications and beyond. Software bugs 

and attacks still surface in implementations of the TLS protocol. This can be attributed to 

the complexity of the protocol and its large number of interactions. System designers and 

integrators are faced with a challenging task: they must ensure that the TLS implementation 

used in their system can handle correctly all cipher suites (the named combination of various 

cryptographic algorithms negotiated between a client and a server in TLS), and, at the same 

time, also conform to a desired level of a security.

We presented a coverage measurement for available TLS cipher suites recommendations 

[17]. The cipher suites were measured and analyzed using a combinatorial approach 

and the NIST CCM tool, after deriving the appropriate IPMs. None of the proposed 

recommendations covered all 2-way combinations of algorithms appearing in a cipher 

suite; this may be due to incompatibilities or security considerations. Implications for 

aspects of test quality were also suggested. For example, increasing the number of 

potential interactions between configuration settings may also increase the risk of bugs 

or vulnerabilities arising from feature interactions among two or more components. Thus, 

measuring the level of 2-way, 3-way, and higher strength interactions may be informative for 

testing.

Conclusions

We have introduced CT-based approaches for security testing and presented our case studies 

and experiences so far. The success of the presented research program motivates further 

intensive research on the field of combinatorial security testing. In particular, security testing 

Simos et al. Page 4

Computer (Long Beach Calif). Author manuscript; available in PMC 2024 November 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



for the Internet of Things (IoT) is an area where these approaches may prove particularly 

useful. IoT systems send and receive data from a large (often continually changing) set 

of interacting devices and the number of potential communicating pairs increases with the 

square of the number of devices. Combinatorial methods are ideally suited for the IoT 

environment, where testing can involve a very large number of nodes and combinations.

References

[1]. Heffley J, & Meunier P (2004, January). Can source code auditing software identify common 
vulnerabilities and be used to evaluate software security?. In System Sciences, 2004. Proceedings 
of the 37th Annual Hawaii International Conference on (pp. 10-pp). IEEE.

[2]. Kuhn D. Richard, Kacker Raghu N., and Lei Yu. Introduction to combinatorial testing. CRC press, 
2013.

[3]. Kuhn DR, Wallace DR and Gallo AM Jr, 2004. Software fault interactions and implications for 
software testing. IEEE Trans Soft Eng,30(6), pp. 418–421.

[4]. Bell KZ Optimizing Effectiveness and Efficiency of Software Testing, PhD thesis, North Carolina 
State University, 2006.

[5]. Cotroneo D, Pietrantuono R, Russo S, & Trivedi K (2016). How do bugs surface? A 
comprehensive study on the characteristics of software bugs manifestation. J.Systems and 
Software, 113, 27–43.

[6]. Ratliff Z, Kuhn R, Kacker R, Lei Y, Trivedi K, The Relationship Between Software Bug Type and 
Number of Factors Involved in Failures, submitted to Intl Wkshp Combinatorial Testing, 2016.

[7]. Lei Y, Kacker R, Kuhn DR, Okun V and Lawrence J, IPOG: a General Strategy for T-
way Software Testing, 14th Annual IEEE International Conference and Workshops on the 
Engineering of Computer-Based Systems (ECBS’07), Tucson, Arizona, March 26–29 2007, pp. 
549–556.

[8]. Bhasin S, Danger J-L, Guilley S, Ngo XT, and Sauvage L. Hardware Trojan horses in 
cryptographic IP cores. IEEE Workshop on Fault Diagnosis and Tolerance in Cryptography 
(FDTC 2013), pages 15–29, IEEE, 2013.

[9]. Kitsos P, Simos DE, Torres-Jimenez J, and Voyiatzis AG. Exciting FPGA Cryptographic Trojans 
using Combinatorial Testing. In 26th IEEE International Symposium on Software Reliability 
Engineering (ISSRE 2015). November 2–5, 2015.

[10]. Voyiatzis AG, Stefanidis KG, and Kitsos P. Efficient Triggering of Trojan Hardware Logic. 19th 
IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems 
(DDECS 2016).

[11]. Bozic J, Simos DE, and Wotawa F. 2014. Attack pattern-based combinatorial testing. In 
Proceedings of the 9th International Workshop on Automation of Software Test (AST 2014). 
ACM, New York, NY, USA, 1–7.

[12]. Bozic J, Garn B, Kapsalis I, Simos D, Winkler S, and Wotawa F, “Attack Pattern-Based 
Combinatorial Testing with Constraints for Web Security Testing,” Software Quality, Reliability 
and Security (QRS), 2015 IEEE International Conference on, Vancouver, BC, 2015, pp. 207–212.

[13]. Garn B, Kapsalis I, Simos DE, and Winkler S. 2014. On the applicability of combinatorial testing 
to web application security testing: a case study. In Proceedings of the 2014 Workshop on Joining 
AcadeMiA and Industry Contributions to Test Automation and Model-Based Testing (JAMAICA 
2014). ACM, New York, NY, USA, 16–21.

[14]. Bozic J, Garn B, Simos DE and Wotawa F, “Evaluation of the IPO-Family algorithms for 
test case generation in web security testing,” Software Testing, Verification and Validation 
Workshops (ICSTW), 2015 IEEE Eighth International Conference on, Graz, Austria, 2015, pp. 
1–10.

[15]. Gauthier A, Mazin C, Iguchi-Cartigny J, and Lanet J-L. 2011. Enhancing Fuzzing Technique 
for OKL4 Syscalls Testing. In Proceedings of the 2011 Sixth International Conference on 
Availability, Reliability and Security (ARES ‘11). IEEE Computer Society, Washington, DC, 
USA, 728–733.

Simos et al. Page 5

Computer (Long Beach Calif). Author manuscript; available in PMC 2024 November 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



[16]. Garn B and Simos DE, “Eris: A Tool for Combinatorial Testing of the Linux System Call 
Interface,” Software Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE 
Seventh International Conference on, Cleveland, OH, 2014, pp. 58–67.

[17]. Simos DE, Kleine K, Voyiatzis AG, Kuhn R, and Kacker R, “TLS Cipher Suites 
Recommendations: A Combinatorial Coverage Measurement Approach,” Software Quality, 
Reliability and Security (QRS), 2016 IEEE International Conference on, Vienna, Austria, 2016.

Simos et al. Page 6

Computer (Long Beach Calif). Author manuscript; available in PMC 2024 November 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 1. 
Cumulative fault distribution

Simos et al. Page 7

Computer (Long Beach Calif). Author manuscript; available in PMC 2024 November 14.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript


	Introduction
	Experience report – case studies for software security
	Parsing untrusted content on the web
	Web application security
	System call testing
	Hardware Trojan detection
	Protocol interaction testing

	Conclusions
	References
	Figure 1.

