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Abstract 

Objectives  Anteroposterior pelvic radiographs remains the most widely employed method for diagnosing develop-
mental dysplasia of the hip. This study aims to evaluate the accuracy of an artificial intelligence model in measuring 
angles in pelvic radiographs of the hip. The assessment seeks to demonstrate the efficacy of the artificial intelligence 
model in diagnosing both developmental dysplasia of the hip and borderline developmental dysplasia of the hip 
through the analysis of pelvic radiographs.

Methods  A total of 1,029 patients, including 273 men and 757 women, were retrospectively included in this study. 
The anteroposterior pelvic radiographs were randomly divided into three sets: the training set (720 cases), the vali-
dation set (103 cases), and the test set (206 cases). Key anatomical points on the anteroposterior pelvic radiographs 
were identified. The Sharp, Tönnis, and Center Edge angles were calculated automatically based on the corresponding 
criteria. The hip development status was compared between measurements obtained from the artificial intelligence 
model and those defined manually by two radiologists. The area under the receiver operating characteristic curve 
was utilized to assess the diagnostic performance of the artificial intelligence model.

Results  The results obtained from both manual measurements and the artificial intelligence model demonstrated 
no significant differences in the Sharp, Tönnis, and Center edge angles (all p > 0.05). The intra-class correlation coef-
ficients and correlation coefficient r values exceeded 0.75, indicating that both the artificial intelligence model 
and manual measurements exhibited good repeatability and a positive correlation. Notably, the artificial intelligence 
model provided measurements more faster than those conducted by radiologists (p = 0.001). The artificial intelligence 
model also demonstrated high diagnostic accuracy, sensitivity, and specificity for developmental dysplasia of the hip. 
The performance of the artificial intelligence model in diagnosing developmental dysplasia of the hip was robust. 
Additionally, the results from the artificial intelligence model and manual measurements were largely consist-
ent with clinical diagnosis results (p = 0.01). The artificial intelligence model can effectively evaluate hip conditions 
by measuring the Sharp, Tönnis, and Center edge angles, which are consistent closely with clinical diagnosis results.

Conclusions  The results of the artificial intelligence model measurements demonstrate a high degree of consist-
ency with those obtained through manual measurements. The angles of Sharp, Tönnis, and Center edge, as evaluated 
by the deep learning-based convolutional neural network model, exhibit robust diagnostic performance in iden-
tifying both developmental dysplasia of the hip and borderline developmental dysplasia of the hip. Consequently, 
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the artificial intelligence model has the potential to fully replace manual measurements of these critical hip angles, 
providing a more efficient and precise alternative for diagnosing both conditions of the hip.

Keywords  Developmental dysplasia of the hip, Artificial intelligence, Deep learning, Pelvic radiograph

Background
Developmental dysplasia of the hip (DDH) is one of 
the most prevalent bone and joint disorders in the 
field of orthopedics [1]. DDH encompasses a range of 
pathologies affecting the acetabulum and proximal 
femur, including acetabular dysplasia, hip subluxation, 
true hip dislocation, and hip instability [2]. Addition-
ally, borderline acetabular dysplasia (BDDH) refers to 
mild abnormalities in acetabular shape and coverage 
that may lead to mechanical dysfunction and instabil-
ity [3]. Due to the long treatment cycles and a relatively 
high disability rates, some patients even require life-
long follow-up and treatment. Therefore, early diagno-
sis and early treatment are the most effective methods 
to improve the survival status of patients with DDH 
[4, 5]. However, early DDH is often asymptomatic or 
presents with mild symptoms, and there are no signifi-
cant changes in medical imaging, leading to many cases 
being missed or misdiagnosed [6]. Untreated DDH can 
ultimately lead to the onset of secondary osteoarthritis 
[7]. Epidemiological studies indicate that the incidence 
of DDH ranges from 5 to 30% [8]. Radiographic exami-
nation remains the most widely employed method for 
the diagnosis of DDH and BDDH [3, 9]. The anteropos-
terior pelvic radiographs is one of the most commonly 
used techniques for hip examination in clinical prac-
tice. It plays a crucial role in disease assessment, preop-
erative planning, and postoperative efficacy evaluation 
[10, 11]. This requires the accurate measurement of the 
main parameters of the hip joint to achieve accurate 
diagnosis or classification [12–14]. Various measure-
ment methods from different angles and dimensions 
have been proposed, among which the most widely rec-
ognized imaging measurement parameters in clinical 
practice include the Sharp angle, Center Edge angle (CE 
angle), and Tönnis angle [15]. However, manual meas-
urements obtained from anteroposterior pelvic X-rays 
exhibit considerable errors and poor reproducibility. 
This is primarily due to the strong subjectivity involved 
in different observers’ identification of anatomical land-
marks, often relying on clinical experience, which leads 
to poor diagnostic consistency [16, 17]. Consequently, 
many patients miss the optimal timing for early diag-
nosis and treatment [18]. Therefore, there is an urgent 
clinical need for an intelligent tool that can measure 
anteroposterior pelvic radiographs in a large-scale, 
objective, simple, and precise methods, while efficiently 

and quickly screening for suspected DDH or BDDH 
patients. The ability to accurately measure hip joint 
angles is crucial for influencing early clinical diagnosis 
and treatment decisions.

In recent years, artificial intelligence (AI) has achieved 
remarkable advancements in image recognition, segmen-
tation, decision-making, and the quantitative analysis 
of extensive datasets [18–20]. In certain domains, it has 
even outperformed clinicians [21]. Deep learning, as a 
representative technology, has been applied to the auxil-
iary management of hip joint diseases [22]. Fengyu et al. 
[23] utilized a single-shot multi-box detector to achieve 
hip joint detection on anteroposterior pelvic radiographs. 
However, their study focused solely on the localization of 
the hip joint and did not provide any evidence to support 
the diagnosis of DDH. In another study [24], the left-right 
symmetry of 11 key points in the hip joint was utilized, 
with the interconnected edges serving as anatomical 
constraints to identify the anatomical positions of mul-
tiple key points. This approach enabled the calculation of 
indicators necessary for diagnosing various hip joint dis-
eases. However, due to the broad scope of the research 
objectives, the findings of this study do not offer targeted 
clinical guidance or facilitate decision-making for specific 
diseases.

We therefore posed the following questions: (1) How 
can we more accurately and efficiently measure the 
angles of the hip for the diagnosis of DDH and BDDH? 
(2) What is the level of consistency and repeatability 
between angles measured manually and those obtained 
through an AI model on anteroposterior pelvic radio-
graphs of the hip? (3) How effective is the AI model, 
based on anteroposterior hip pelvic X-ray radiographs, 
in assisting with the diagnosis of DDH and BDDH?

As a result, it is to improve the accuracy of early diag-
nosis of DDH, reduce errors in manual measurement of 
hip joint angles by radiologists, and enhance efficiency, 
this study employs deep learning algorithms to iden-
tify key anatomical points on anteroposterior pelvic 
radiographs. A convolutional neural network AI model 
based on deep learning algorithms is constructed for 
the automatic measurement of the Sharp angle, CE 
angle, and Tönnis angle. Additionally, the effective-
ness of the AI automatic measurement model of the key 
angle of the hip joint in assisting the diagnosis of DDH 
and BDDH is evaluated, providing support for the clini-
cal application of AI in assessing DDH.
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Methods
General and patient information
A total of 1,029 patients’ data, consisting of 273 men and 
757 women (aged 18–84 years, median age: 33 years), 
who underwent anteroposterior pelvic radiographs 
examinations at the hospital between January 2020 and 
January 2022, were retrospectively included in this study. 
The original anteroposterior pelvic radiography images 
were retrieved, and the data were processed using the 
picture archiving and communication system (PACS).

Criteria for inclusion: (1) Each anatomical key point is 
clearly delineated; (2) Patients are at least 18 years of age 
with closed epiphyses; (3) Anteroposterior pelvic radio-
graphs meet diagnostic quality standards as confirmed by 
experienced radiologists.

Exclusion criteria: (1) Presence of flat hip malformation 
or a history of pelvic surgery; (2) Hip joint abnormalities 
resulting from rheumatism, infection, or neoplastic dis-
eases; (3) Secondary dislocation of the hip joint due to 
central nervous system disorders or trauma; (4) Indistin-
guishable tear drop or excessive proliferation of the ace-
tabulum; (5) Poor X-ray positioning or insufficient image 
data.

The study employed clinical diagnostic criteria—com-
prising clinical presentation, clinical examination, radio-
graphs, and ultrasound screening—as the gold standard 
[1, 5].

Data sets
According to the results of our previous study, there was 
no statistically significant difference in the measurement 
of angles when comparing pelvic X-ray radiographs of 
patients with DDH taken in standing and supine posi-
tions [15]. Consequently, anteroposterior pelvic radio-
graphs obtained in both supine and standing positions 

were utilized to create an image database. The images 
were randomly divided into three sets: the training set 
(720 cases, accounting for 70% of the total), the validation 
set (103 cases, accounting for 10% of the total), and the 
test set (206 cases, accounting for 20% of the total). The 
random grouping of images was assigned using a random 
number table method. The training set was employed to 
develop the artificial intelligence model for identifying 
key anatomical points of the hip joint, while the valida-
tion set was used to optimize the model parameters. The 
test set served to evaluate and compare the accuracy of 
key point localization, angle measurements, and diagnos-
tic performance for DDH and BDDH (Fig. 1).

Instrument and X‑ray radiography methods
The Definium 6000 digital X-ray radiography system 
(GE Medical Imaging Systems, USA) was utilized for the 
X-ray examination of the hip. The X-ray examination was 
conducted as follows: (1) In the standard supine posi-
tion, the patient was instructed to lie on their back with 
the tips of both first toes turned inward at an angle of 15° 
and in contact with each other; the lower limbs were to 
be kept straight and shoulder-width apart. The central 
line was defined as the line passing through the midpoint 
between the upper edge of the pubic symphysis and the 
bilateral anterior superior iliac spines. (2) In the stand-
ard standing position, the patient was instructed to stand 
in front of the camera with legs straight and both feet 
slightly turned inward at an angle of 15°. The central line 
was established through a point located 2–3 cm above 
the pubic symphysis.

Measurement parameters and joint marking
The most commonly utilized and widely recognized 
hip joint measurement parameters, specifically the 

Fig. 1  Illustrates the patient grouping and flowchart
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Sharp, CE, and Tönnis angles [15], were selected for 
this study (Fig.  2). These parameters were delineated 
by radiologists with 5 years (Dr. 1) and 3 years (Dr. 2) 
of relevant experience. The labeled anteroposterior 
pelvic radiographs re-checked by a senior radiologist, 
were subsequently included in the training set.

The following anatomical points were identified: the 
center point of the left femoral head (L-fhc), the point 
on the outer edge of the left acetabulum (L-uar), the 
point on the inner edge of the left acetabulum (L-tar), 
the point on the lower edge of the left tear drop (L-lt), 
the center point of the right femoral head (R-fhc), 
the point on the outer edge of the right acetabu-
lum (R-uar), the point on the inner edge of the right 
acetabulum (R-tar), and the point on the lower edge 
of the right tear drop (R-lt) (Fig.  3). Points exhibiting 
discrepancies greater than 5 mm were re-evaluated 
and marked again by the two radiologists and a sen-
ior radiologist to ensure the objectivity of the marking 
process.

Hip angle measurement and auxiliary diagnosis of DDH 
and BDDH
The Sharp, Tönnis, and CE angles were calculated 
automatically based on the a forementioned coordi-
nates and corresponding criteria. Diagnosis of DDH or 
BDDH was established according to the following con-
ditions [25]: (1) DDH was diagnosed when the Sharp 
angle exceeded 45°; (2) DDH was also diagnosed when 
the Tönnis angle was greater than 10°; (3) BDDH was 
diagnosed when the CE angle ranged from 20° to 25° 
[26, 27], whereas DDH was diagnosed if the CE angle 
measured less than 20°.

Data preprocessing
To enhance the dataset size, we collected data from 
various acquisition devices across the training, valida-
tion, and test sets, and performed separate preprocess-
ing to mitigate discrepancies, thereby improving the 
robustness of subsequent models. The pixel dimensions 
of all radiographs were standardized to 0.2 mm × 0.2 
mm through B-spline interpolation, a data resampling 
technique. Subsequently, the pixel values were normal-
ized to a unified range using min-max normalization. 

Fig. 2  Schematic representation of the measurement of the CE, Tönnis, and Sharp angles. A CE angle measurement method, the angle 
between the perpendicular line from the center point of the femoral head and the outer edge of the acetabulum. B Tönnis angle measurement 
method, the angle between the line connecting the lowest edge of the ilium and the outermost edge of the acetabulum and the H line (the 
H line, also known as the Hilgenreiner line, is the line connecting the tear drop points). C Sharp angle measurement method, the angle formed 
by the bilateral tear drop lines and the line connecting the lower end of the tear drop to the outer upper edge of the acetabulum

Fig. 3  Schematic representation of the hip joint marking. Select 
center point of the left femoral head as L-fhc, and point on the outer 
edge of the left acetabulum as L-uar, and point on the inner edge 
of the left acetabulum as L-tar, and point on the lower edge of the left 
tear drop as L-lt, and center point of the right femoral head as R-fhc, 
and point on the outer edge of the right acetabulum as R-uar, 
and point on the inner edge of the right acetabulum as R-tar, 
and point on the lower edge of the right tear drop as R-lt
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Finally, as illustrated in Fig. 4, all included images were 
flipped along the perpendicular bisector of the cor-
responding X-ray images. The left-sided images were 
mirrored to create the input dataset for locating key 
points of the hip anatomy. This approach reduced the 
number of targets for hip key point localization from 
8 to 4, while simultaneously increasing the sample size 
and decreasing the task’s complexity. During the train-
ing phase, the input radiographs were randomly rotated 
between − 5° and 5° to further enhance the model’s 
robustness [28].

Model construction
In this study, we employed VB-Net (Visual Basic Net) as 
the foundational network for locating key points of the 
hip anatomical position [29]. Its architecture is illustrated 
in Fig. 5. The VB-Net innovatively replaces the convolu-
tional layers of the traditional U-Net architecture with a 
bottleneck structure, significantly compressing network 
parameters while preserving model performance and 
enhancing training efficiency. The bottleneck block com-
prises three convolutional layers: the first layer utilizes a 
1 × 1 × 1 convolution kernel to reduce the channel dimen-
sions of the feature maps; the second layer conducts 

Fig. 4  Schematic representation of data preprocessing

Fig. 5  A schematic representation of the automated measurement of hip key points utilizing the VB-Net model
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spatial convolution with a kernel size of 3 × 3 × 3 to effec-
tively encode the input; and the final layer again applies a 
1 × 1 × 1 convolution kernel to restore the channel dimen-
sions of the feature maps to their original size. During 
model training, we defined the ground truth as a patch 
region of 20 pixels × 20 pixels surrounding each ana-
tomical landmark for input into VB-Net. In the inference 
phase, we identified the center of the largest connected 
component in the probability maps, applying a thresh-
old of 0.5. This approach facilitated landmark detection 
through a segmentation network. By integrating spatial 
information, the coordinates of the predicted points from 
the left-sided image were mapped to the original image 
coordinate system. Subsequently, the Sharp, Tönnis, and 
CE angles of the left and right hips were calculated in the 
test set according to the aforementioned definitions.

In this study, focal loss was employed as the loss func-
tion for the network, with the learning rate set to 0.0001. 
Data preprocessing and automated parameter calcula-
tions were conducted using Python 3.8. The training and 
evaluation of the deep learning model were carried out 
utilizing the PyTorch framework on an NVIDIA GeForce 
GTX 1080Ti graphics card. A validation set of 103 cases 
was used for further optimization of the model parame-
ters in the test set, employing a cross-validation method.

Comparison between AI automatic measurement 
and manual measurement of hip joint angles
Two radiologists manually measured the Sharp angle, 
Tönnis angle, and CE angle of the test set (206 cases) 
using tools provided by PACS, taking the average value of 
each radiologist’s measurements as the statistical value. If 
there is a significant discrepancy between the measure-
ments of the key hip joint angles by the two radiologists, 
a senior radiologist will conduct a data re-checking.

Based on the above rules, an AI automatic measure-
ment of the Sharp angle, Tönnis angle, and CE angle was 
performed on a test set of 206 cases. Firstly, we compared 
the differences between the AI model automatic meas-
urement and manual measurements (MM) of key angles 
of the hip joint, which serves to evaluate the accuracy of 
the AI model measurement results. Secondly, a compari-
son was made regarding the time taken for the AI model 
to measure the key angles versus manual measurements 
of the hip joint. Furthermore, the diagnostic performance 
of the AI model in assessing DDH was evaluated, along 
with a comparison of the diagnostic efficacy of the AI 
model and radiologists for DDH and BDDH, with diag-
noses made according to the criteria [25–27]. Finally, 
using clinical diagnosis results as the “gold standard,” the 
results of the AI model and manual diagnosis of DDH 
and BDDH were compared with the clinical diagnosis 

results, and the purpose is to evaluate whether AI can be 
used in clinical practice.

Statistical analysis
Statistical analysis was performed using SPSS 25.0 soft-
ware (IBM, USA). For continuous data (Sharp angle, Tön-
nis angle, and CE angle values, AI model measurements, 
and specific names listed for the time taken for manual 
measurement of key angles), a preliminary normality test 
was conducted. Data that followed a normal distribution 
were expressed as mean ± standard deviation. The com-
parison of angle measurements between Dr.1, Dr.2, and 
the AI model was analyzed using the least significant 
difference (LSD) method. The correlation between AI 
model measurements and the manual measurements by 
radiologists (Dr.1, Dr.2) was assessed using Pearson cor-
relation analysis. The consistency of measurement results 
was evaluated using the intraclass correlation coefficient 
(ICC), with an ICC ≥ 0.75 indicating good consistency. 
The diagnostic efficacy of the AI model was assessed 
using the area under the receiver operating character-
istic curve (ROC curve, AUC). For categorical data (the 
number of cases for AI, radiologists, and the final clini-
cal diagnoses of DDH and BDDH), the consistency of AI 
and manual measurement results with the final clinical 
diagnosis was evaluated using the Kappa test. The signifi-
cance level (α) was set at two-sided 0.05.

Results
Evaluation of the accuracy of AI measurement key angles 
results
An AI automatic measurement model for hip joint key 
angles was constructed using a training dataset of 720 
cases through deep learning. The model parameters were 
optimized using a validation dataset of 103 cases. Cur-
rently, the model’s measurements of the Sharp angle, 
Tönnis angle, and CE angle are compared with MM using 
a test dataset of 206 anteroposterior pelvic radiographs 
to evaluate the accuracy of the AI model’s measurement 
results and the corresponding findings are presented in 
Table 1.

There were no statistically significant differences 
between the manually measured and AI model-measured 
results for Sharp, Tönnis, and CE angles (all p > 0.05).

The evaluation of consistency between AI model 
measurements and MM for the Sharp angle, Tönnis 
angle, and CE angle is presented in Fig. 6. The ICC val-
ues for the left side Sharp angle, Tönnis angle, and CE 
angle are 0.801, 0.757, and 0.895, respectively. For the 
right side, the ICC values for the Sharp angle, Tönnis 
angle, and CE angle are 0.943, 0.790, and 0.908, respec-
tively. All ICC values are greater than 0.75, indicating 
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that the AI model measurements and MM of the hip 
joint key angles exhibit good consistency.

The Pearson correlation analysis between AI model 
measurements and MM for the Sharp angle, Tönnis 
angle, and CE angle shows that the r values for the left 
side are 0.807, 0.774, and 0.896, respectively, while the r 
values for the right side are 0.946, 0.794, and 0.921. This 
indicates that the AI model measurements and MM of 
the hip joint key angles have a high degree of correla-
tion and a positive relationship.

It can be observed from Fig. 6 that all scatter points 
are situated within the standard deviation lines, and the 
mean line is approximately at zero. This indicates that 
the results obtained from the two measurement meth-
ods (manual measurement and AI model measurement) 
are relatively close and exhibit good consistency. Fur-
ther analysis revealed that the mean absolute errors of 
the AI model measurements for the Sharp, Tönnis, and 
CE angles were 1.33°, 2.30°, and 2.68° on the left side, 
and 1.12°, 2.35°, and 3.05° on the right side, respectively. 
The root mean square errors for the AI model meas-
urements of the Sharp, Tönnis, and CE angles were 
3.49°, 6.13°, and 4.48° on the left side, and 1.85°, 5.86°, 
and 4.36° on the right side, respectively. These results 
suggest that the AI model measurements are highly 
consistent with the manual measurements, exhibiting 
smaller errors.

Comparison of time taken for hip measurement
The AI model took an average of 1.7 ± 0.00 s to measure 
key angles in 206 test set images, while Radiologist 1 
(Dr. 1) took an average of 88.13 ± 8.41 s, and Radiologist 
2 (Dr. 2) took an average of 90.28 ± 7.40 s (Fig. 7).

Radiologists required a longer duration to perform 
hip joint key angles measurements compared to the AI 
model measurements. Consequently, the AI model’s 
measurement process was significantly faster than that 
of the radiologists (p = 0.000).

Evaluation of the diagnostic performance of DDH 
through AI model measurements
The results of the AI-based automated measurement of 
the hip joint key angles, derived from anteroposterior pel-
vic radiographs, were analyzed. Three parameters utilized 
to assess hip development were employed for the auxiliary 
diagnosis of DDH (see Table 2). The findings indicated that 
all hip joint key angles measured by the AI model demon-
strated high diagnostic accuracy, sensitivity, and specificity 
for DDH.

Comparison of the efficacy of AI measurement and manual 
measurement of hip joint angles for diagnosing DDH 
and BDDH
The receiver operating characteristic (ROC) curves for 
both the AI model and MM were utilized to evaluate the 
DDH and BDDH (Fig. 8).

The analysis presented in Fig. 8A and B indicates that the 
area under the curve (AUC) of the ROC for the AI model 
measuring the Sharp angle (left: 0.883, right: 0.924) and the 
Tönnis angle (left: 0.908, right: 0.922) closely aligns with 
that of experienced radiologists. This finding suggests that 
the AI model demonstrates high diagnostic performance 
for DDH. Furthermore, as illustrated in Fig.  8C, the CE 
angle measurements obtained by the AI model also exhibit 
significant diagnostic efficacy for DDH, with AUC values of 
0.922 for the left side and 0.871 for the right side, The AI 
model demonstrates a high diagnostic efficacy for DDH.

Additionally, the CE angle measurements by the AI 
model provide valuable diagnostic support for BDDH, as 
evidenced by the AUC values of 0.787 for the left side and 
0.676 for the right side, also depicted in Fig.  8C. Results 
indicate that AI model has a similarly high diagnostic 
efficacy.

Comparison of AI model and MM with clinical diagnosis 
results of DDH and BDDH
Using clinical diagnosis results as the gold standard, we 
compared the Sharp angle (AI model A), Tönnis angle 

Table 1  Difference analysis between manual and AI model measurements (test set, n = 206)

Dr. Doctor, AI Artificial intelligence

Manual measurement AI Model measurement F P

Dr. 1 Dr. 2

Left Sharp angle 43.4°±5.2° 43.2°±5.3° 43.2°±5.9° 0.03 0.99

Tönnis angle 12.2°±7.8° 11.9°±7.8° 12.3°±9.7° 0.08 0.97

Center edge angle (CE) 25.4°±10.1° 25.4°±10.2° 25.6°±9.6° 0.05 0.98

Right Sharp angle 43.5°±5.6° 43.1°±5.5° 43.0°±5.4° 0.36 0.78

Tönnis angle 11.6°±8.5° 11.1°±8.1° 11.8°±9.5° 0.30 0.83

Center edge angle (CE) 25.0°±10.2° 24.7°±10.4° 26.5°±9.9° 1.36 0.26



Page 8 of 14Li et al. BMC Musculoskeletal Disorders          (2024) 25:906 

Fig. 6  The Bland-Altman plot illustrates the agreement between measurements obtained from the artificial intelligence model (AI) and those 
derived from manual measurement (MM) across various angles
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(AI model B), and CE angle (AI model C) with the final 
clinical diagnosis outcomes, alongside manual measure-
ment results. Kappa tests were conducted (see Tables 3, 
4 and 5).

The results of the kappa tests indicated that the AI 
model and MM for the Sharp, Tönnis, and CE angles 
were largely consistent with the clinical diagnosis results 
(p = 0.000). This finding suggests that the AI model can 
effectively evaluate hip conditions by measuring the 
Sharp, Tönnis, and CE angles, which align closely with 
clinical diagnosis outcomes, thereby serving as a valuable 
tool for the auxiliary diagnosis of DDH and BDDH.

Discussion
The hip joint, one of the largest load-bearing joints in 
the human body, primarily functions to provide dynamic 
support for the weight of the upper body while facili-
tating the axial transmission of stress and load to the 
lower limbs [30]. Its ball-and-socket structure offers 
significant horizontal stability and permits movement 
across three planes: flexion/extension, abduction/adduc-
tion, and internal/external rotation [31, 32]. Research 

has demonstrated that persistent hip dysplasia can lead 
to alterations in body posture and gait; furthermore, 
it suggests that patients with diminished cartilage or 
other degenerative joint diseases exhibit compensatory 
changes, often manifesting as limb shortening. These 
adaptations can result in postural scoliosis, back pain, or 
even disability, significantly impacting the quality of life 
for affected individuals. The Sharp, Tönnis, and CE angles 
serve as critical indicators for the clinical assessment of 
hip joint stability, enabling the evaluation of acetabular 
development and its coverage of the femoral head [33].

The measurement of the sharp angle of the hip joint, 
Tönnis angle, and CE angle has always been a cumber-
some task for clinicians and radiologists. The determina-
tion of anatomical landmarks is often a prerequisite for 
precise angle measurement, which is highly subjective 
and leads to variations in the parameters measured man-
ually, both within and between observers. This variability 
affects the accuracy of manual measurements. Delegat-
ing these repetitive clinical tasks to intelligent tools can 
significantly alleviate the workload of physicians and 
improve work efficiency. As a basis for measuring the 
key angles of the hip joint, this study utilizes the bilat-
eral femoral head center points (flc), bilateral lower edge 
points of the teardrop (lt), bilateral inner edge points of 
the acetabulum (tar), and bilateral outer edge points of 
the acetabulum (uar) as key anatomical landmarks. The 
selection of these key points is consistent with the ana-
tomical points commonly used in clinical measurements 
of hip joint data.

Some scholars have investigated the differences in 
measurement angles of pelvic X-ray radiographs taken in 
standing and supine positions [34]. However, our previ-
ous study indicated no statistically significant differences 
in angle measurements when pelvic X-ray radiographs 
of patients with DDH were obtained in either position 
[15]. Consequently, anteroposterior pelvic radiographs 
acquired in both supine and standing positions were uti-
lized to create an image database.

Previous research has reported measurement errors 
among different observers ranging from ± 3.5° to ± 10° 
[19]. Yinjun et  al. [35] employed a deep learning algo-
rithm for the automated measurement of the Sharp angle 
of the hip, finding mean absolute errors of 1.57° and 1.73° 
for the left and right sides, respectively. In contrast, our 
results demonstrated mean absolute errors of 1.33° and 
1.12° for the left and right Sharp angles, respectively, 
which were lower than those reported by Yinjun et  al. 
[35]. Furthermore, we observed no significant differences 
between the angles measured by the AI model and those 
measured manually for the Sharp, Tennis, and CE angles. 
However, the AI model yielded smaller measurements for 
the Sharp angles on both the left and right sides.

Fig. 7  The average time taken by the artificial intelligence (AI) model 
and two radiologists to perform measurements on each image

Table 2  Diagnostic performance of DDH based on artificial 
intelligence model measurement

Hip Angle Accuracy Sensitivity Specificity

Left Sharp 89.8% 82.1% 94.5%

Tönnis 90.1% 90.3% 91.4%

Center edge (CE) 86.8% 84.8% 87.9%

Right Sharp 93.7% 88.6% 96.3%

Tönnis 92.2% 91.3% 93.2%

Center edge (CE) 80.5% 90.9% 76.4%
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The presence of osteophytes at the outer edge of the 
acetabulum can influence the magnitude of the meas-
ured hip angles. Consequently, the magnitude of the 
measured CE angle may be significantly elevated if oste-
ophytes are not clearly identified [36]. However, since 
none of the cases included in this study exhibited obvi-
ous osteophytes at the outer edge of the acetabulum, 

this factor is unlikely to have substantially impacted 
the results. Qiang et  al. [37]. developed a model for 
the automated measurement of the CE angle, and the 
results produced by this model did not significantly dif-
fer from those measured by radiologists. Holden et  al. 
[38] measured the Sharp, Tönnis, and CE angles after 
constructing a model that automatically identified key 

Fig. 8  ROC curves were generated based on the AI model and MM of the hip Sharp, Tönnis and CE angles for the diagnosis of DDH and BDDH
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points of the hip joint. They reported a good consist-
ency between the results obtained manually and those 
measured by the model. We replicated this finding and 
further used for demonstrated the feasibility of the AI 
model for diagnosing DDH and BDDH.

In the previous studies conducted by Qiang et al. [37], 
the constructed models required an average of 1.19 and 
1.22 s to automatically measure the Sharp and CE angles, 
respectively. In our study, the constructed model took 
an average of 1.7 s to simultaneously measure the Sharp, 

Table 3  Comparison of AI model A (Sharp angle) and manual measurement diagnosis results with clinical diagnosis results (n = 206)

DDH Developmental dysplasia of the hip, Dr Doctor, Normal Normal hip

Diagnosis results Diagnosis results

Left Right

Normal DDH Kappa P Normal DDH Kappa P

AI model A Normal 121 14 0.779 0.000 131 8 0.858 0.000

DDH 7 64 5 62

Dr.1 Normal 125 7 0.898 0.000 133 4 0.913 0.000

DDH 3 71 4 65

Dr.2 Normal 121 6 0.860 0.000 133 6 0.890 0.000

DDH 7 72 4 63

Table 4  Comparison of AI model B (Tönnis angle) and manual measurement diagnosis results with clinical diagnosis results (n = 206)

DDH Developmental dysplasia of the hip, Dr Doctor, Normal Normal hip

Diagnosis results Diagnosis results

Left Right

Normal DDH Kappa P Normal DDH Kappa P

AI model B Normal 85 11 0.814 0.000 96 9 0.845 0.000

DDH 8 102 7 94

Dr.1 Normal 92 1 0.951 0.000 102 5 0.942 0.000

DDH 4 109 1 98

Dr.2 Normal 87 7 0.873 0.000 98 6 0.893 0.000

DDH 6 106 5 97

Table 5  Comparison of AI model C (CE angle) and manual measurement diagnosis results with clinical diagnosis results (n = 206)

DDH Developmental dysplasia of the hip, Dr Doctor, Normal Normal hip, BDDH Borderline developmental dysplasia of the hip

Diagnosis results Diagnosis results

Left Right

Normal BDDH DDH Kappa P Normal BDDH DDH Kappa P

AI mode C Normal 51 5 1 0.778 0.000 42 2 1 0.663 0.000

BDDH 3 28 7 13 20 2

DDH 1 11 99 0 23 103

Dr.1 Normal 98 9 0 0.866 0.000 103 6 0 0.873 0.000

BDDH 5 34 2 3 34 2

DDH 0 1 57 0 5 53

Dr.2 Normal 98 9 0 0.835 0.000 103 6 1 0.840 0.000

BDDH 4 32 3 3 34 3

DDH 1 4 55 2 5 49
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Tönnis, and CE angles, while two radiologists took an 
average of 88.13 ± 8.41 s (Dr.1) and 90.28 ± 7.40 s (Dr.2) 
to measure the three angles. Therefore, the AI model sig-
nificantly enhances the efficiency of radiologists in per-
forming these measurements. Compared to Li’s model, 
our model incorporates the measurement of both Tönnis 
and CE angles, requiring a similar amount of time while 
improving diagnostic accuracy by adding testing methods 
and providing greater potential for clinical application.

Despite ongoing controversies regarding the diag-
nosis of BDDH [39], the classification of femoral head 
and acetabulum coverage can be delineated into BDDH 
and DDH based on varying degrees of morphological 
changes, which are characterized by an exceptionally 
shallow or upwardly inclined acetabulum. These altera-
tions can result in uneven stress distribution across the 
hip joint [23]. Consequently, hips with CE angles of less 
than 20° or within the range of 20°–25° (or 18°–24°) are 
classified as having DDH or BDDH [3]. In this study, 
the diagnostic efficacy, as measured by the area under 
the curve (AUC), for the left and right CE angles in the 
artificial intelligence (AI) model for DDH was 0.922 and 
0.871, respectively, while for BDDH, the AUC values 
were 0.787 and 0.676, respectively. These findings indi-
cate that measurements derived from the AI model hold 
significant value in the auxiliary diagnosis of both DDH 
and BDDH. Hips exhibiting a Sharp angle greater than 
45° and a Tönnis angle exceeding 10° were identified as 
dysplastic, with diagnostic accuracies of 93.7% and 92.2% 
for the left side, and 89.8% and 90.1% for the right side, 
respectively. Our research results indicate that the AI 
model measuring key angles of the hip joint has a high 
diagnostic efficacy in assisting the diagnosis of DDH and 
BDDH. Finally, using the clinical final diagnosis as the 
“gold standard,” we observed the consistency between the 
AI model and clinical diagnosis, and the results showed a 
high level of agreement, fully meeting clinical needs.

It has been suggested that the prevalence of DDH is 
ten times lower in East Asian populations compared to 
White populations [40]. However, another study indi-
cates that the incidence of DDH in East Asia appears to 
be comparable to that in Western countries [41]. Con-
ducting a global multicenter study would significantly 
influence clinical decision-making regarding DDH.

This study has several limitations. First, the identi-
fication of key anatomical points on anteroposterior 
pelvic radiographs was performed manually, relying 
on the subjective experience of the operators. Conse-
quently, slight deviations may occur between different 
operators. This lack of objective standard values results 
in a disparity between the diagnostic accuracy of the 
AI model and manual measurements. Second, external 
validation was not conducted; the data processing was 

limited to our hospital. Therefore, the generalizability 
of the model may be constrained. Although the model 
developed in this study can measure the Sharp, Tönnis, 
and CE angles, it can only provide a single indicator for 
evaluation, which poses significant challenges for its 
future application in clinical practice. Furthermore, to 
enhance diagnostic and treatment screening, further 
research is needed to develop measurement models for 
the femoral neck stem angle, acetabular coverage, and 
acetabular depth. Establishing CT and MRI data mod-
els and collaboratively building a multimodal intelligent 
diagnosis and treatment system for DDH will be essen-
tial to improve the detection rate of DDH.

Conclusions
In this study, a deep learning algorithm was employed 
to identify key anatomical points on anteroposterior 
pelvic radiographs and to develop a convolutional 
neural network model for the automated measure-
ment of Sharp, Tönnis, and CE angles. The efficacy of 
the AI model in assisting the diagnosis of DDH was 
also assessed. The measurement results obtained from 
the AI model demonstrated a high degree of consist-
ency with those derived from manual measurements, 
and both methods exhibited comparable repeatability. 
Notably, the AI model outperformed radiologists in 
terms of measurement accuracy. The angles of Sharp, 
CE, and Tönnis measured by the deep learning-based 
convolutional neural network model can be utilized for 
the diagnosis of DDH and BDDH with high precision. 
The AI model serves as a valuable tool to assist radi-
ologists in measuring critical hip angles and diagnosing 
DDH and BDDH more swiftly and accurately.
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