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Abstract 

Contemporary societies exhibit delayed reproductive age and increased life expectancy. While the male reproductive 
system demonstrates relatively delayed aging compared to that of females, increasing age substantially impacts its 
function. A characteristic manifestation is age-induced testosterone decline. Testosterone, a crucial male sex hormone, 
plays pivotal roles in spermatogenesis and sexual function, and contributes significantly to metabolism, psychology, 
and cardiovascular health. Aging exerts profound effects on the hypothalamic-pituitary–gonadal axis and Leydig cells, 
precipitating testosterone reduction, which adversely affects male health. Exogenous testosterone supplementa-
tion can partially ameliorate age-related testosterone deficiency; however, its long-term safety remains contentious. 
Preserving endogenous testosterone production capacity during the aging process warrants further investigation 
as a potential intervention strategy.
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Introduction
Aging exerts a profound impact on testicular function, 
and substantial clinical evidence indicates that aging is 
accompanied by a decline in serum testosterone levels 
[1–3].Studies have demonstrated that serum testosterone 
levels in men begin to decline gradually from age 35 [4]. 
Another research indicates that in men aged 40–70 years, 
total serum testosterone decreases at a rate of 0.4% annu-
ally, while free testosterone shows a more pronounced 
decline of 1.3% per year [2]. Beyond its crucial roles in 
male sexual function and reproduction, testosterone 

influences mood, cognition, metabolism, immune func-
tion, bone mineral density maintenance, and the car-
diovascular system [5–8]. Low testosterone levels can 
severely affect the health of aging males, increasing the 
risk of diabetes [9, 10], dementia [11], cardiovascular dis-
ease [12], and mortality [13]. In addition, low testoster-
one levels can adversely affect male fertility [14]. Given 
the vital role testosterone plays in the body, McBride et al. 
proposed that its decline drives the onset of overall male 
senescence [15]. With population aging, the prevalence of 
age-related conditions such as late-onset hypogonadism 
will further increase. Given testosterone’s importance 
for male reproductive health and overall well-being, this 
review investigates the primary mechanisms underlying 
age-induced testosterone decline, intervention strategies, 
and future research priorities.

Normal testosterone biosynthetic pathway
Leydig cells (LCs) are the primary source of testoster-
one synthesis in males. The hypothalamus secretes 
gonadotropin-releasing hormone (GnRH), which acts 
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on the pituitary gland to stimulate the release of lute-
inizing hormone (LH). LH binds to LH receptors on 
LCs, triggering the production of cyclic adenosine 
monophosphate (cAMP) and initiating steroidogen-
esis (Fig.  1). The rate-limiting step in steroidogenesis 
is the transport of cholesterol to the inner mitochon-
drial membrane [16, 17]. This transport occurs through 
a multiprotein complex called the transduceosome, 
formed by protein–protein interactions between cyto-
solic and outer mitochondrial membrane proteins 
[18]. The transduceosome comprises the steroidogenic 
acute regulatory protein (StAR), translocator protein 
(TSPO), voltage-dependent anion channel 1 (VDAC1) 
[19–21], and potentially the 14–3-3γ and 14–3-3ε 

adaptor proteins, which act as negative regulators[22, 
23] (Fig. 2). StAR acts on mitochondria, triggering cho-
lesterol translocation across the membrane. TSPO, an 
outer mitochondrial membrane protein with high cho-
lesterol affinity, plays a crucial role in steroidogenesis. 
The 14–3-3ε protein hinders effective TSPO-VDAC1 
interaction, thereby impacting the rate of cholesterol 
entry into mitochondria [22, 23]. Once in the mito-
chondrial inner membrane, cholesterol is metabolized 
to pregnenolone by the enzyme cytochrome P450 side-
chain cleavage enzyme (P450scc or Cyp11a1) and subse-
quently converted to testosterone by 3β-hydroxysteroid 
dehydrogenase enzymes (3β-HSD) in the mitochondria 
and smooth endoplasmic reticulum.

Fig. 1  Hypothalamic-Pituitary–Testicular Axis. The hypothalamus secretes gonadotropin-releasing hormone (GnRH), which stimulates 
the pituitary gland to release luteinizing hormone (LH). LH binds to receptors on Leydig cells (LCs), leading to the production of cyclic adenosine 
monophosphate (cAMP) and the initiation of steroidogenesis. cAMP, cyclic adenosine monophosphate; GnRH, gonadotropin-releasing hormone; 
LCs, Leydig cells; LH, luteinizing hormone; Created in BioRender.com
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Impact of aging on LCs and testosterone synthesis
Aging can impair testosterone synthesis through its 
effects on the hypothalamic-pituitary–gonadal axis and 
direct actions on LCs [2, 24]. The impacts of aging on LCs 
can be broadly categorized into intrinsic and extrinsic 
factors. Intrinsic factors include mitochondrial dysfunc-
tion, impaired autophagy, and redox imbalance. Extrin-
sic factors comprise the senescence-associated secretory 
phenotype (SASP), which includes a myriad of inflamma-
tory cytokines, chemokines, extracellular matrix remod-
eling, and growth factors released by senescent cells. The 
SASP can disrupt tissue homeostasis and remodel the 
tissue microenvironment, exerting deleterious systemic 
effects.

Changes in the hypothalamic‑pituitary–testicular axis
In males over 35 years old, aging leads to alterations in 
the hypothalamic-pituitary–testicular axis, primarily 
manifesting as decreased GnRH secretion and reduced 
LC responsiveness to LH stimulation [25]. Early bio-
mathematical models predicted a 33–50% decline in 
GnRH secretion in males from ages 20 to 80 years [26, 
27]. A clinical study in 2020 partially corroborated these 
predictions. The study evaluated 40 healthy men aged 
19–73 years using selective GnRH receptor antagonists, 
steroidogenesis inhibitors, LH secretion suppressants, 
and recombinant human LH to delineate the roles of the 

hypothalamus, pituitary gland, and testes in age-related 
testosterone decline. The study found that increasing age 
led to decreased GnRH outflow, while pituitary respon-
siveness to GnRH remained normal. Reduced GnRH out-
flow was the primary cause of decreased LH secretion 
in older individuals, accompanied by attenuated respon-
siveness of LC to LH [28]. Decreases in GnRH neuronal 
number and/or function underlie reduced GnRH out-
flow, but clinical studies elucidating age-related changes 
in human GnRH neurons are lacking due to their sparse 
distribution and low quantity[29]. However, animal stud-
ies have demonstrated a decline in hypothalamic GnRH 
neuronal numbers in aging male rats [30].

Changes in testicular microenvironment
The testicular microenvironment is primarily composed 
of peritubular myoid cells, macrophages, LCs, Ser-
toli cells, vasculature, and their secreted cytokines [31] 
(Fig. 3). A stable testicular microenvironment is a prereq-
uisite for the normal survival and function of LC. Dys-
regulation of this microenvironment during aging plays a 
crucial role in LC dysfunction [32]. Researchers obtained 
LCs from organ donors of different ages and stimulated 
them with human chorionic gonadotropin (hCG) in vitro. 
Surprisingly, the testosterone production capacity of the 
cultured LCs was unaffected by aging, suggesting that 
age-related changes in the microenvironment of LC may 
significantly impact testosterone biosynthesis [33].

Fig. 2  A Brief Schematic Diagram of Testosterone Synthesis in Leydig Cells. LH binds to receptors on LCs, triggering steroidogenesis. Cholesterol 
is transported from the OMM to the IMM via the transduceosome, a complex that includes StAR, TSPO, and VDAC1. StAR facilitates cholesterol 
translocation across the mitochondrial membrane. TSPO, with a high affinity for cholesterol, plays a central role in this process. The 14–3-3γ 
and 14–3-3ε adaptor proteins, part of the transduceosome, act as negative regulators. Specifically, 14–3-3ε impairs the interaction between TSPO 
and VDAC1, slowing cholesterol entry into mitochondria. Once inside the IMM, cholesterol is converted by Cyp11a1 into pregnenolone, which 
is then metabolized into testosterone by 3β-HSD. LCs, Leydig cells; LH, luteinizing hormone; OMM, outer mitochondrial membrane; IMM, inner 
mitochondrial membrane; StAR, steroidogenic acute regulatory protein; TSPO, translocator protein; VDAC1, voltage-dependent anion channel 1; 
Created in BioRender.com
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Macrophages
Testicular macrophages constitute the largest immune 
cell population in the mammalian testis [34] and play 
critical roles during testicular development and aging 
[35]. Under homeostatic conditions, resident mac-
rophages closely associate with LCs and modulate ster-
oidogenesis. Additionally, macrophages mediate both 
acute and chronic inflammation [36]. Upon tissue injury, 
macrophages become activated, initiating chemotaxis, 
phagocytosis, and the production of reactive oxygen 
species (ROS) and pro-inflammatory factors, thereby 
suppressing testosterone production [37]. Chronic 
inflammation is a hallmark of aging [38], and inflamma-
tory factors are elevated in aged testicular tissue [39]. 
A 2022 study employed single-cell RNA sequencing on 
testicular cells from organ donors, revealing the upregu-
lation of inflammation-induced genes as a common fea-
ture of aged testicular cells [40]. Animal studies have also 
demonstrated increased macrophage number with a pro-
inflammatory phenotype in aged mouse testes. Inflam-
mation-associated cytokine genes, such as TNF-α, IL-1β, 
IL-6, and IL-8, are significantly upregulated in these mac-
rophages with age, potentially disrupting the testicular 
microenvironment and impairing LC function [41]. Sin-
gle-cell transcriptomic atlases of aged mouse testes have 
further corroborated an increase in pro-inflammatory 

macrophage subsets [42]. Moreover, macrophages modu-
late the proliferation and differentiation of Sertoli cells, 
an effect that is enhanced with aging, and age-related 
macrophage changes can suppress Sertoli cell prolifera-
tion [41].

Sertoli cells
Sertoli cells play crucial regulatory roles in testicular dif-
ferentiation and development [43, 44], and the size of the 
Sertoli cell population determines the numbers of germ 
cells and LCs [45]. Findings from human testicular biopsy 
demonstrate a positive correlation between Sertoli cell 
and LC numbers across all ages [33]. Corroborating these 
observations, complete ablation of Sertoli cells in juvenile 
mice severely impairs the differentiation and develop-
ment of the adult LC population [46]. In adult mice, com-
plete depletion of Sertoli cells results in a 75% reduction 
in the number of LCs [43]. Sertoli cells are the most age-
sensitive cell type in the testis, and recent studies sug-
gest that age-induced downregulation of Wilms’ tumor 
1 (WT1) may be a potential underlying mechanism [47]. 
WT1 is a transcriptional regulator with multifaceted 
roles in development, tissue homeostasis, and disease 
pathogenesis [48]. Age-related changes in Sertoli cell 
number and function impact overall testicular physiol-
ogy and exacerbate the effects of aging on other cell types 

Fig. 3  Testicular Microenvironment and Age-related Changes. The testicular microenvironment consists of peritubular myoid cells, 
macrophages, Leydig cells, Sertoli cells, vasculature, and their secreted cytokines. Aging significantly impacts the testicular microenvironment. 
It is characterized by an increased population of macrophages, particularly those exhibiting a pro-inflammatory phenotype. This deterioration 
of the testicular microenvironment adversely affects other cell types. Sertoli cells show a decrease in both quantity and metabolic capabilities, 
alongside degeneration of tight junctions. Additionally, Leydig cells experience a decline in both number and function. Created in BioRender.com
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[49–51]. Multiple studies have demonstrated a marked 
age-associated decline in human Sertoli cell numbers [40, 
49, 50, 52, 53]. A recent single-cell RNA sequencing study 
on testes from patients with late-onset hypogonadism 
(LOH) identified Sertoli cells as key metabolic coordina-
tors in the testicular microenvironment, with aged Sertoli 
cells exhibiting reduced cholesterol efflux capability lead-
ing to cholesterol accumulation [54]. Additionally, aging 
induces alterations in Sertoli cell junctions; aged Sertoli 
cells display degeneration of tight junctions, compromis-
ing the integrity of the blood-testis barrier and further 
disrupting the testicular microenvironment [55–57], 
a process driven in part by WT1 downregulation [47]. 
Consequently, age-related changes in Sertoli cells create 
a cascade of effects that ultimately compromise LC func-
tion and testicular testosterone production.

Changes in LC number
Owing to the scarcity of fresh, disease-free adult testicu-
lar tissue, evidence regarding the effect of aging on LC 
number in humans primarily comes from testicular biop-
sies of organ donors. Several studies have reported an 
age-associated decline in the number of LC. Neaves et al. 
performed testicular biopsies on 30 men aged 20–76 
who died from trauma or heart disease and found a 44% 
reduction in the total number of LCs in older males [58]. 
Mularoni et  al. biopsied testicular tissue from 24 organ 
donors and observed no significant change in LC number 
between ages 19–45, but a significant decrease thereaf-
ter [33]. However, contradictory findings were reported 
by Gougeon et al., who biopsied testes from 26 men aged 
16–80 and found no significant change in LC number 
with aging [49]. While these studies provide evidence 
of age-related changes in LC number through testicular 
biopsies, their main limitations include relatively small 
sample sizes and insufficient information on potential 
confounding variables.

Given these limitations in human studies, animal mod-
els have been extensively utilized to further investigate 
age-related changes in LC number and function. The 
brown Norwegian rat (Rattus norvegicus) exhibits an 
age-related decline in testosterone levels, similar to that 
of human males, making it a widely used animal model 
for studying aging in men [59, 60]. Related studies sug-
gest that the age-related decline in testosterone levels 
is primarily driven by reduced cellular function rather 
than a decrease in the number of LCs [61, 62]. However, 
contrary findings have been reported in non-human pri-
mates (NHPs), which share genetic and physiological 
similarities with humans and represent an ideal model for 
studying testicular aging in higher primates [63]. A recent 
2023 study in male cynomolgus macaques demonstrated 
a significant age-related reduction in the number of LCs 

[47]. Additionally, stem Leydig cells (SLCs), the upstream 
progenitors of LCs, are also affected by aging, exhibiting 
decreased proliferative and differentiation capabilities 
during the aging process [41, 64], which may contribute 
to the reduced number of LCs observed in aged males.

Changes in LC function
LC aging
Aging exerts significant impacts on the morphology and 
function of LC. Morphologically, aged LCs appear nor-
mal but exhibit signs of dedifferentiation and degenera-
tion, including poorly developed endoplasmic reticulum 
and mitochondria, increased lipofuscin granules, abnor-
mal cytoplasmic lipid droplets, and multiple nuclei [56, 
65]. These structural alterations are accompanied by 
notable functional changes. Functionally, the steroido-
genic capacity of aged LCs declines [40]. Aging adversely 
affects multiple steps in the testosterone biosynthetic 
pathway, with aged human LCs showing reduced respon-
siveness to LH stimulation [28]. Aged Brown Norway rats 
also exhibit decreased cAMP production upon LH stim-
ulation [66], downregulation of cholesterol transporters 
StAR and TSPO [67, 68], and reduced expression of ster-
oidogenic enzymes [69], potentially due to increased oxi-
dative stress [24, 70, 71]. However, some studies report 
no age-related changes in human steroidogenic enzyme 
mRNA levels [33].

Insulin-like factor 3 (INSL3), exclusively secreted by 
mature LCs, serves as a reliable indicator of LCs’ num-
ber and function [72]. Studies have demonstrated a pro-
gressive age-related decline in serum insulin-like factor 
3 (INSL3) levels in adult men [73, 74], providing further 
evidence of diminished LC function with aging. Cellu-
lar senescence is a highly stable state of cell cycle arrest 
[75], characterized by a decline in cellular function. The 
accumulation of senescent cells drives age-related tissue 
dysfunction [76, 77]. A recent single-cell analysis of aged 
human testes also revealed reduced LCs’ function and 
an increased proportion of senescent LCs in aged males 
[78]. Concurrently, senescent cells exhibit a SASP [38], 
which can potentiate and propagate senescence through 
both autocrine and paracrine mechanisms, exacerbating 
damage [79].

Mitochondrial dysfunction
Mitochondria serve as the powerhouse of the cell and 
play essential roles in several key cellular processes, such 
as apoptosis [80], ROS production [81], and inflamma-
tion [82]. Mitochondria are also crucial for steroid hor-
mone biosynthesis, as the initial steps of steroidogenesis 
take place within these organelles. Cholesterol transport 
to the inner mitochondrial membrane is the rate-limiting 
and decisive step in steroidogenesis [16, 17]. With aging, 
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multiple mechanisms contribute to mitochondrial dys-
function, including the accumulation of mitochondrial 
DNA (mtDNA) mutations, instability of respiratory chain 
complexes, imbalance in mitochondrial quality control, 
dysregulation of nutrient-sensing, and calcium overload 
[38, 83, 84]. Reduced mitochondrial respiratory capac-
ity and mitochondrial membrane potential (MMP) are 
key features of aging-induced mitochondrial dysfunction 
[83]. These changes severely impact steroidogenesis [85, 
86], while also compromising energy production, increas-
ing ROS generation, and potentially inducing mitochon-
drial membrane permeability, leading to inflammation 
and cell death [38]. Indeed, mitochondrial dysfunction is 
a hallmark of aging and drives the functional decline of 
tissues and organs [38, 87].

At the ultrastructural level, aged rat LCs exhibit an 
increased number of dysfunctional mitochondria, with 
loss of mitochondrial cristae and swollen appearance 
[88]. Aged LCs demonstrate increased mitochondrial 
mass and mitochondrial DNA (mtDNA) copy number, 
reduced mitochondrial autophagy (mitophagy), and 
abnormal mitochondrial dynamics [89]. The primary 
cause of increased mitochondrial mass is the accumu-
lation of dysfunctional mitochondria due to impaired 
mitophagy [90, 91]. Mitochondrial dynamics are crucial 
for maintaining mitochondrial number, shape, and distri-
bution [83], and play an essential role in steroidogenesis 
[92–94]. In summary, age-induced mitochondrial dys-
function significantly impairs testosterone biosynthesis.

Endoplasmic reticulum stress
The endoplasmic reticulum (ER) regulates various cellu-
lar pathways, including protein synthesis and quality con-
trol, calcium storage and release, and lipid biosynthesis 
[95, 96]. It is also a crucial organelle for steroidogenesis 
[97]. ER stress occurs when misfolded and unfolded pro-
teins accumulate, disrupting protein homeostasis [98]. 
Various conditions can trigger ER stress, such as redox 
alterations, energy depletion, and calcium homeostasis 
disturbances [99]. ER stress activates the unfolded pro-
tein response (UPR), which triggers pathways to restore 
homeostasis; however, prolonged stress can induce apop-
tosis [100]. During aging, the protective UPR response 
declines while pro-apoptotic signaling increases [101, 
102]. Aging may enhance the accumulation of misfolded 
proteins, and ER stress is a hallmark of aging [103]. The 
UPR is implicated in protein folding, mitochondrial dys-
function, oxidative stress, and autophagy [104, 105]. ER 
stress regulates the maintenance of male testicular cell 
homeostasis and apoptosis [106], potentially contribut-
ing to LC depletion. Heat-induced ER stress suppresses 
3β-HSD expression and testosterone production in 
mouse LCs, which can be restored by ER stress inhibitors 

[107]. Aged mouse testes and senescent TM3 LCs exhibit 
increased ER stress, reduced testosterone secretion, 
and enhanced steroidogenesis upon ER stress inhibition 
[108].

Autophagy dysfunction
Autophagy is a major degradative pathway in eukaryotic 
cells that recycles cytoplasmic components and elimi-
nates damaged or redundant organelles and misfolded 
proteins [109]. It is a core mechanism for maintaining 
cellular and organismal homeostasis [110]. Autophagy 
can be classified into microautophagy, macroautophagy, 
and chaperone-mediated autophagy, with macroau-
tophagy (hereafter referred to as autophagy) being the 
most prevalent form [111]. Autophagy is highly active in 
LCs [112], starting in SLCs and gradually increasing dur-
ing differentiation, peaking in adult LCs, and declining 
in aged LCs [88, 113–115]. Additionally, autophagy plays 
an important role in regulating steroidogenesis [116]. 
Impaired autophagy is observed in the testicular tissues 
of azoospermic patients with low testosterone levels, 
suggesting a link between autophagy and steroidogen-
esis [114]. A 2023 study demonstrated that autophagy 
in human testes activates autophagosome formation to 
degrade lipid droplets (LDs), releasing free cholesterol as 
a substrate for testosterone synthesis [117].

Knocking out autophagy-related (Atg) genes in Dros-
ophila to inhibit autophagy resulted in significant cho-
lesterol accumulation in LDs and decreased steroid 
production [118]. Scavenger receptor class B type I (SR-
BI) is a key receptor for cholesterol uptake in LC [119]. 
Further research revealed that impaired autophagy 
affects cholesterol uptake in LCs by downregulating 
SR-BI, as autophagy degrades the SR-BI negative regu-
lator Na + /H + exchange regulatory factor 2 (NHERF2) 
[118]. Autophagy impairment is a hallmark of aging, with 
autophagic activity declining with aging [38, 111]. Ani-
mal studies have also shown reduced autophagy levels 
in aged rat LCs [88]. Therefore, age-related autophagy 
impairment may contribute to the decline in testosterone 
production.

Oxidative stress
Redox processes are ubiquitous in fundamental life activ-
ities, from bioenergetics to metabolism and life func-
tions; redox homeostasis is at the core of life [120]. An 
imbalance between ROS and antioxidants can lead to oxi-
dative stress, where excessive oxidants can damage bio-
molecules and even cause cell death. Oxidative stress is a 
hallmark of aging and a major contributor to age-related 
diseases [121]. Numerous studies have shown that oxida-
tive damage accumulates in tissues with age [122]. Sev-
eral mechanisms contribute to elevated oxidative stress 
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levels during aging, with mitochondrial dysfunction 
and depletion of endogenous antioxidants as key drivers 
[123]. LCs exhibit age-related changes, with decreased 
levels of antioxidants such as superoxide dismutase 
(SOD), glutathione peroxidase (GPx), and glutathione 
(GSH), along with an increase in ROS. Aged Brown Nor-
way rat LCs demonstrate significantly higher ROS levels 
than their younger counterparts [124–126].

Elevated ROS levels and activation of the oxidative 
damage-associated p38 MAPK signaling pathway were 
also observed in the LCs of premature aging mouse mod-
els, with partial restoration of steroidogenic capacity 
upon treatment with p38 MAPK inhibitors [39]. Exces-
sive ROS can damage LCs and even induce cell death, 
adversely impacting testosterone production. Ferropto-
sis, a recently discovered form of programmed cell death, 
is driven by lipid peroxidation resulting from excessive 
ROS, reflecting a state of dysregulated cellular metabo-
lism and redox imbalance [127, 128]. Age-induced ROS 
overload may contribute to LC death through ferroptosis 
induction. Moreover, ROS can damage key steroidogenic 
enzymes, such as the P450 enzymes [129]. Furthermore, 
oxidative stress is closely interlinked with mitochon-
drial dysfunction, inflammation, and cellular senescence, 
exerting reciprocal influences. Given these interconnec-
tions, oxidative stress likely plays a crucial role in the age-
related decline of testosterone production[130].

Treatment strategies
Various therapies have been developed to address testos-
terone decline. These include drugs targeting the gonadal 
axis, stem cell therapies, physical interventions, and tes-
tosterone replacement formulations—the latter being 
the most common clinical approach (summarized in 
Table 1).

Non‑pharmacological interventions
Lifestyle modifications
Accumulating evidence over the past decades has 
established skeletal muscle as an endocrine organ that 
produces and releases cytokines and other peptides, 
particularly during muscle contraction, thereby exert-
ing systemic anti-inflammatory effects [148, 149]. Reg-
ular physical activity significantly reduces the risk of 
age-related diseases and mortality [150]. A meta-analy-
sis involving 3,439,874 participants followed for a mean 
of 12.3 years found that 150 min of moderate-intensity 
aerobic exercise per week provides substantial health 
benefits for adults [151]. Exercise has also been shown 
to improve testosterone levels, especially in older indi-
viduals [131]. Short-term moderate exercise was found 
to transiently elevate serum testosterone levels by 39% 
and free testosterone index by 23% in seven elderly men 

(70 ± 4 years). These levels returned to baseline 4 h after 
exercise [132]. Another study demonstrated a significant 
increase in total testosterone levels with exercise in 202 
patients (mean age: 51.8 years, average BMI: 28.5 kg/m2) 
followed for approximately 15 weeks [131]. While higher-
level clinical studies are still needed, current evidence 
suggests that exercise is a relatively safe and effective 
approach for improving testosterone levels and maintain-
ing overall health.

Physical therapy
Low-intensity pulsed ultrasound (LIPUS) is a form of 
ultrasound that delivers pulsed low-intensity energy, 
with minimal thermal and acoustic effects, providing 
non-invasive physical stimulation [152]. LIPUS is cur-
rently used to treat male erectile dysfunction and has 
proven effective in improving mild to moderate ED [153]. 
Recent studies have investigated the effects of LIPUS on 
aged human LCs isolated from testicular tissues, which 
demonstrated improved aging phenotypes, increased 
expression of key steroidogenic pathways, and enhanced 
testosterone secretion upon LIPUS stimulation [133]. 
LIPUS represents a potential therapeutic approach for 
improving testosterone production, although additional 
studies are required to confirm its safety and efficacy. 
Current cell experiments suggest that LIPUS is a poten-
tial therapy for mitigating testosterone decline. However, 
reliable animal studies and clinical trials are still needed 
to confirm its safety and efficacy.

Stem cell transplantation
SLCs can proliferate and differentiate into LCs [154, 155], 
making SLC transplantation a potential method for ame-
liorating the effects of aging on LCs. In animal studies, 
when SLCs were transplanted into testes with impaired 
or aged LCs, they could engraft in the interstitial com-
partment, differentiate into LCs, and increase testoster-
one production in mice [134]. Testosterone secretion, 
regulated by the hypothalamic-pituitary gonadal (HPG) 
axis, was partially restored when murine SLCs were 
transplanted into rat testes with LCs ablated by ethyl-
ene dimethane sulfonate (EDS), as the SLCs differenti-
ated into LCs [135]. A study evaluated the effects of SLC 
transplantation in a non-human primate model. SLCs 
were isolated from aged cynomolgus monkey testes and 
autologously transplanted into the testicular interstitium, 
where the SLCs differentiated into LCs in vivo and par-
tially restored normal testosterone secretion rhythm 
[156]. Although SLC transplantation has made signifi-
cant progress in mouse and non-human primate models, 
showing promise for restoring endogenous testosterone 
levels, further detailed studies are needed to pave the way 
for clinical trials and applications.
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Pharmacological therapy
Testosterone preparations
Testosterone replacement therapy (TRT) is widely used 
for exogenous testosterone supplementation, with vari-
ous formulations available, including oral, injectable, 
transdermal, and transmucosal preparations [136, 157]. 
Several randomized controlled trial (RCT) studies have 
demonstrated that TRT is an effective treatment for tes-
tosterone decline [137]. The TTrials, an RCT focused on 
testosterone therapy in elderly men with low testoster-
one, included 788 men aged 65 and above (average age 
72) with testosterone deficiency. The 12-month inter-
vention showed that TRT effectively improved testos-
terone levels, raising median serum testosterone levels 
to the normal range [138]. However, the clinical misuse 
of testosterone preparations remains a concern, with 
testosterone prescriptions increasing 11-fold between 
2001 and 2011 [158]. Furthermore, TRT raises concerns 
regarding the suppression of endogenous testosterone 
production and unclear long-term risks, such as pros-
tate cancer, erythrocytosis, and cardiovascular diseases 
[139, 159–162]. Current research data indicate that three 
years of testosterone therapy does not increase the risk of 
cardiovascular disease [159, 163–165]. Nonetheless, the 
incidence of atrial fibrillation, acute kidney injury, and 
pulmonary embolism is slightly higher in the testosterone 
treatment group [159]. Further studies with longer obser-
vation periods are required to mitigate concerns regard-
ing its long-term usage risks. Moreover, TRT interferes 
with the feedback mechanism of endogenous testoster-
one on the HPG axis. Exogenous testosterone suppresses 
the production of GnRH, LH, and follicle-stimulating 
hormone (FSH), significantly inhibiting spermatogenesis 
[140]. Consequently, TRT is contraindicated in patients 
seeking fertility [141].

Antiestrogens
Antiestrogen agents are classified into selective estrogen 
receptor modulators (SERMs) and aromatase inhibitors 
(AIs). SERMs prevent estrogen’s negative feedback on 
the HPG axis, while AIs inhibit the aromatization of tes-
tosterone to estrogens. In an RCT, researchers evaluated 
the effect of clomiphene citrate (a SERM medication) on 
obesity-related testosterone decline. After 12 weeks, par-
ticipants receiving clomiphene citrate showed increased 
serum testosterone levels [166]. A systematic review of 
related studies indicated that both SERMs and AIs raise 
serum testosterone, with SERMs performing better and 
showing potential as a TRT alternative [167]. However, 
SERMs may increase the risk of venous thrombosis [168], 
and long-term use could reduce bone density, raising the 
risk of fractures. Although SERMs show promise as an 

alternative to TRT, there are currently no clinical stud-
ies targeting testosterone decline in middle-aged and 
older men. Additionally, the long-term risks and ben-
efits remain unclear, requiring further high-quality, long-
duration RCTs for confirmation.

Antioxidants and anti‑inflammatory agents
Melatonin exhibits significant antioxidant properties 
and can protect mitochondrial function [169–171]. Ani-
mal studies involving the overexpression of sheep mela-
tonin genes, elevating endogenous melatonin levels, have 
demonstrated an increase in testosterone levels. Further 
research indicated that melatonin targets the mitochon-
drial apoptotic pathway, inhibiting LC apoptosis and 
upregulating the expression of genes related to testos-
terone synthesis [142]. Melatonin treatment reduced the 
levels of oxidative stress in testicular tissue [143]. Addi-
tionally, melatonin exhibits anti-inflammatory effects, 
with exogenous melatonin reducing the levels of inflam-
matory markers in humans [144]. Studies have shown 
that long-term timed melatonin administration does not 
alter the secretion patterns of testosterone in healthy 
males [172]. However, convincing evidence regarding the 
elevation of testosterone levels is still lacking. Moreover, 
certain medicinal plants and extracts possess antioxi-
dant activities that may protect LCs [173]. Although such 
drugs have theoretically and in animal models shown 
the potential to increase testosterone levels, high-quality 
clinical studies remain lacking.

Other strategies
TSPO is a protein located on the outer mitochondrial 
membrane and plays a crucial role in transporting cho-
lesterol from the outer to the inner mitochondrial mem-
brane [174]. TSPO ligands enhance cholesterol uptake 
and subsequent transport to the inner mitochondrial 
membrane. Studies in aged rats have demonstrated that 
TSPO ligands significantly increase testosterone pro-
duction by LCs [67], concurrent with elevated LH levels, 
suggesting a dual mechanism: direct LC stimulation and 
enhanced LH secretion [145]. Therefore, TSPO ligands 
hold promise as a potential therapy for enhancing endog-
enous testosterone production. However, since TSPO is 
expressed in multiple tissues [175], the specific activation 
of TSPO in LCs remains a challenge. 14–3-3 proteins 
bind to VDAC1, reducing cholesterol input and limiting 
testosterone synthesis [176]. Researchers have designed 
a VDAC1 peptide that binds to 14–3-3ε, blocking the 
interaction between 14–3-3ε and VDAC1, thereby limit-
ing testosterone synthesis [146]. Subcutaneous injection 
and oral administration of the VDAC1 peptide elevated 
testosterone levels in male rats, demonstrating safety and 
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efficacy [147]. These drugs are still in the animal testing 
phase, and more research is needed to support their clin-
ical application .

Conclusion and future directions
In conclusion, aging affects testosterone synthesis 
through various pathways, including alterations in the 
HPG axis, testicular microenvironment, LC number 
and function, consequently impacting male reproduc-
tive function and quality of life. Understanding the 
mechanisms underlying age-related testosterone decline 
is fundamental for developing relevant diagnostic and 
therapeutic strategies, necessitating further research 
to elucidate its exact mechanisms. While existing treat-
ment strategies can improve testosterone levels to some 
extent, safely and effectively enhancing endogenous tes-
tosterone levels remains a focus of future research. Stem 
cell transplantation and biologics targeting specific steps 
in testosterone production hold promise as therapeutic 
approaches, but further animal and clinical studies are 
needed to support their clinical application.
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