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Abstract 
The intricate and dynamic tryptophan (Trp) metabolic pathway in both the microbiome and host 
cells highlights its profound implications for health and disease. This pathway involves complex 
interactions between host cellular and bacteria processes, producing bioactive compounds such 
as 5-hydroxytryptamine (5-HT) and kynurenine derivatives. Immune responses to Trp metabolites 
through specific receptors have been explored, highlighting the role of the aryl hydrocarbon receptor 
in inflammation modulation. Dysregulation of this pathway is implicated in various diseases, such 
as Alzheimer’s and Parkinson’s diseases, mood disorders, neuronal diseases, autoimmune diseases 
such as multiple sclerosis (MS), and cancer. In this article, we describe the impact of the 5-HT, Trp, 
indole, and Trp metabolites on health and disease. Furthermore, we review the impact of microbiome-
derived Trp metabolites that affect immune responses and contribute to maintaining homeostasis, 
especially in an experimental autoimmune encephalitis model of MS.
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Introduction

The tryptophan (Trp) metabolic pathway within the 
microbiome and host cells constitutes a complex and dy-
namic system with profound implications for health and 
disease (1–6). This pathway involves an intricate interplay 
between host cellular and bacteria processes involving Trp, 
which is an essential amino acid. In health, the Trp metabolic 
pathway plays a pivotal role in maintaining homeostasis and 
supporting physiological functions. Interactions between the 
microbiome and host cells contribute to the production of 
bioactive compounds, including 5-hydroxytryptamine (5-HT) 
and kynurenine (Kyn) derivatives, exerting far-reaching ef-
fects on both local and systemic processes (7–9).

Therefore, dysregulation of the microbiome–host cells Trp 
metabolic pathway has been implicated in the pathogenesis 
of various diseases (10–16). This review provides a compre-
hensive overview of the Kyn and 5-HT pathways and their 
functional implications in neuronal diseases, autoimmunity, 
and cancer, incorporating recent research findings. Both 
pathways commence with the utilization of Trp. Trp plays a 
pivotal role in mammalian physiology and exerts diverse ef-
fects on various aspects of human health. First, we describe 
the tryptophan metabolic pathway and discuss its role in 
homeostasis.

The roles of Trp

Trp is one of the 20 standard amino acids that are building 
blocks of proteins and are incorporated into polypeptide 
chains during protein synthesis, thereby contributing to 
protein structure and function (17–20). Trp is also a precursor 
for the synthesis of 5-HT (21, 22), a neurotransmitter that 
plays a crucial role in mood regulation, sleep–wake cycles, 
and appetite (23, 24). Trp is also a precursor for the synthesis 
of melatonin, a hormone that regulates the sleep–wake cycle 
(25, 26). In the pineal gland, Trp is converted to 5-HT, and 
then to melatonin, through a series of enzymatic reactions. 
Moreover, Trp serves as a precursor for the synthesis of niacin 
(vitamin B3) (27), which is essential for various physiological 
processes including energy metabolism (28, 29), DNA repair 
(30), and cell signaling (31–33). Trp can be metabolized to 
produce nitric oxide (34), a signaling molecule with various 
physiological functions, including regulation of blood vessel 
dilation and immune responses (11).

Trp also has antioxidant properties that contribute to host 
cells’ defense against oxidative stress (35). It participates in 
the synthesis of molecules with antioxidant activity, helping 
neutralize free radicals. Trp is involved in the synthesis of 
collagen (36), a structural protein that provides strength and 
support to tissues, such as the skin, bones, and cartilage. 
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Notably, Trp availability can be influenced by dietary factors, 
and a balanced diet that includes sufficient protein sources is 
crucial to meet the body’s Trp requirements. In addition, cer-
tain medical conditions or medications may affect Trp metab-
olism (37). The major Trp metabolic pathways are (i) the 5-HT 
pathway, (ii) the indole pathway, and (iii) the Kyn pathway. 
As well as a detailed description of these pathways, we will 
mention which pathways are dominant in various host cells 
and bacteria.

Trp pathway in the host cells and bacteria

Most tryptophan metabolites are produced by both the host 
cells and bacteria (1, 38–40). However, it remains unclear 
whether these metabolites are synthesized in vivo, as the 
data indicating their production capacity were obtained from 
gene sets with the potential to convert tryptophan metabol-
ites (41). In this study, bacterial genes were identified using 
AnnoTree (version 2.0.0) (default parameters) (42) searches 
targeting K numbers associated with tryptophan metabolism 
(map00380) in the KEGG pathway (43) (Supplementary 
Figure 1). Tryptophan metabolites, such as N-formyl 
kynurenine (NFK) and Kyn, can be digested by both the host 
cells and bacteria. Indole and indole-3-acetamide are only 
produced by the microbiome, whereas indole-3-pyruvate and 
5-HT are produced by the host cells. Based on their genes, 
the predominant metabolic pathway differs between the host 
cells and bacteria (Fig. 1).

The Trp digestive pathway differs from that of the host cells 
and bacteria. Many bacteria possess enzymes that can break 
down tryptophan to indole and indole-3-carboxaldehyde (I3A) 
in the indole pathway. On the other hand, host cells have en-
zymes involved in the Kyn pathway with continuous expression 
of indoleamine 2,3-dioxygenase (IDO) (44–46). Immune cells, 
macrophages, and dendritic cells, in which the Kyn pathway 
mainly dominates, upregulate IDO in response to stimuli (​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​47, 
48). The Kyn pathway is dominant in astrocytes and microglia in 
the brain, whereas the 5-HT pathway is dominant in serotonergic 
neurons in the central nervous system (CNS) (49–51). Other 
cells in the peripheral tissues such as hepatocytes express tryp-
tophan 2,3-dioxygenase (TDO) (52). Therefore, the Kyn pathway 
is thought to dominate in these cells.

The 5-HT pathway is primarily associated with serotonergic 
neurons in the CNS that produce and release 5-HT (51, 53). 
The 5-HT pathway is dominant in enterochromaffin (EC) cells 
in the gastrointestinal tract, resulting in the synthesis and re-
lease of 5-HT (54–57) (Fig. 2). Platelets and mast cells do not 
synthesize 5-HT but they can store and release it after they 
are activated (51, 58, 59). Platelets can enter the blood–brain 
barrier (BBB) and are a major source of 5-HT. Trp and Kyn 
can pass BBB, on the other hand, other metabolites, 5-HT, 
kynurenic acid (KYNA), and quinolinic acid (QA), cannot 
pass the BBB, which means these metabolites in the brain 
are derived from the neurons, astrocytes, and microglia or 
from the platelets that carry 5-HT (60–66).

The 5-HT pathway

The 5-HT metabolic pathway involves the conversion of Trp 
into various important molecules including 5-HT and mela-
tonin (Fig. 1). This pathway is essential for the synthesis of 

neurotransmitters and plays a crucial role in regulating mood, 
sleep–wake cycles, and other physiological functions (67–
69). 5-HT is stored in vesicles within nerve terminals (70, 71). 
Upon neuronal stimulation, 5-HT is released into the synaptic 
cleft, where it binds to receptors on the postsynaptic neurons 
and transmits signals (72–74).

The first step in the 5-HT pathway involves the enzym-
atic conversion of Trp to 5-hydroxytryptophan (5-HTP), 
catalyzed by tryptophan hydroxylase (TPH), wherein 
tetrahydrobiopterin (BH4) plays a crucial role (75). 
Subsequently, l-tryptophan decarboxylase (TDC) decarb-
oxylates 5-HTP to produce 5-HT (21). 5-HT can be metabol-
ized by monoamine oxidase to form 5-hydroxyindoleacetic 
acid (5-HIAA), which is excreted in urine. This step is crucial 
for terminating the expression of 5-HT in the synaptic cleft 
(23, 76). 5-HT can also be metabolized to form melatonin in 
the pineal gland. This pathway is important for the regula-
tion of circadian rhythms and sleep–wake cycles. The 5-HT 
pathway is not only important for the synthesis of 5-HT and 
melatonin but also contributes to the production of various 
biologically active compounds (77, 78).

As 5-HT is a key neurotransmitter involved in mood regula-
tion, disturbances in this pathway can have implications for 
mental health. Selective 5-HT reuptake inhibitors are com-
monly used to treat conditions, such as depression, by modu-
lating 5-HT levels in the brain (79). Furthermore, intestinal 
neurons sense 5-HT and regulate their movement rhythms 
(80). As previously mentioned, 5-HT in serum does not cross 
the BBB. 5-HT in the brain are mostly derived from platelets. 
EC cells produce 5-HT and release it into the serum (Fig. 2). 
In addition, serum 5-HT concentrations in germ-free (GF) 
mice were reduced when juxtaposed with specific pathogen-
free (SPF) mice, providing evidence for the impact of gut bac-
teria on 5-HT levels (81, 82).

The indole pathway

The gut microbiota converts Trp into indole and its de-
rivatives such as indoleacrylic acid, indole-3-acetic acid 
(IAA), indole-3-propionic acid (IPA), indole-3 acetalde-
hyde (3-IAld), and tryptamine (83) (Fig. 1). The fecal in-
dole level in GF mice was lower than that in SPF mice (84). 
Anerostipes, Bacteroides, Clostridium, Bifidobacterium, and 
Lactobacillus spp. catabolize Trp into its indole derivatives 
(85). Lactobacillus spp. metabolizes Trp to I3A; Clostridium 
sporogenes and Ruminococci convert Trp to tryptamine; 
and Staphylococcus, Providencia, and Pseudomonas con-
vert Trp to IAA (41, 86). Furthermore, tryptamine induces 
5-HT in EC cells (39). A recent study reported that supple-
mentation with 3-IAld elicited antidepressant effects in mice 
subjected to stress (87). The aryl hydrocarbon receptor 
(AHR) is a ligand-activated transcription factor activated by 
the indole pathway derivatives Kyn and KYNA (88–91). The 
BBB exhibits increased permeability in adult GF mice and 
monocolonization with Bacteroides thetaiotaomicron and 
Clostridium tyrobutyricum with sodium butyrate decreases 
the permeability of the BBB (92). These data suggest that 
microbiota-induced metabolites affect the permeability 
of BBB, and one of the candidate metabolites is the AHR 
ligand (93–95) (Fig. 2).

http://academic.oup.com/intimm/article-lookup/doi/10.1093/intimm/dxae035#supplementary-data
http://academic.oup.com/intimm/article-lookup/doi/10.1093/intimm/dxae035#supplementary-data
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The Kyn pathway

Trp is metabolized to Kyn via a series of enzymatic reac-
tions (Fig. 1). Kyn can be further metabolized, leading to 
the synthesis of various neuroactive compounds, including 
KYNA and QA. The initial and rate-limiting steps of the Kyn 
pathway involve the enzymatic conversion of Trp to Kyn cata-
lyzed by TDO or IDO, depending on the tissue, such as the 
brain, lung, liver, small intestine, and colon (78, 96–100). Kyn 

can be metabolized further, producing KYNA, a neuroactive 
compound (101). This conversion is catalyzed by kynurenine 
aminotransferases (97). Kyn can also be converted to QA. 
Kyn is first transformed to 3-hydroxykynurenine (3-HK), which 
is catalyzed by kynurenine 3-monooxygenase (KMO). Next, 
3-HK is transformed into 3-hydroxyanthranilic acid (3-HAA) 
catalyzed by KYNU. Finally, 3-HAA is converted to QA by 
3-hydroxyanthranilate 3,4-dioxygenase. QA is converted 
to nicotinamide adenine dinucleotide (NAD+), an important 

Figure 1.  Overview of tryptophan metabolism via the kynurenine, 5-HT, indole, and I3P pathway.
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coenzyme in energy production, cell division, and mitochon-
drial function, by QA phosphoribosyltransferase and NAD 
synthase (102).

Involvement of the Kyn and 5-HT pathways in immune 
diseases

Trp metabolites can transmit signals through cellular recep-
tors that exhibit tissue-specific expression and are regulated 
by their circumstances. These receptors include AHR, alpha 
7 nicotinic acetylcholine receptor (α7nAChR), and G-protein-
coupled receptor (GPR) 35. IDO1 and TDO, which are in-
volved in the initial steps of Trp metabolism, are constitutively 

expressed in tumors. However, the expression of these genes 
is induced in immune and epithelial cells by inflammatory sig-
nals. Local and systemic inflammation induce the initial ex-
pression of IDO1 in epithelial and myeloid cells (103, 104). 
Kyn amplifies the IDO1–Kyn–AHR loop to suppress inflamma-
tory mediators through AHR signaling in immune and epithe-
lial cells (105) (Fig. 3A).

In the initial steps of the immune response, antigen-
presenting cells and dendritic cells (DCs) play a crucial role 
in both the initiation and maintenance of immune responses. 
IDO1 expression in DCs is increased by lipopolysaccharide 
(LPS), extracellular and intracellular DNA, and type l and 
type II interferons (106). Kyn, which is initially released by 

Figure 2.  Tryptophan metabolites derived from the host cells and gut microbiota and the blood–brain barrier.
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IDO1-expressing type 1 conventional DCs (cDC1s), re-
cruits AHR-expressing cDC2s. cDC2s produce transforming 
growth factor-β (TGF-β), which induces anti-inflammatory 
forkhead box protein 3+ (Foxp3+) regulatory T cells (Tregs) 
(Fig. 3B). The TGF-β–IDO1–AHR loop is crucial for the gener-
ation of tolerogenic DCs, resulting in self-tolerance and LPS 
tolerance. However, its direct effect on tolerogenic DCs differ-
entiation remains unclear.

T helper (Th)17 cells and Tregs play a central role in im-
mune function during colitis and cancer progression (107–
113). AHR plays a role in the induction of the effector cytokine 
interleukin (IL-)17A and is expressed in both Th17 cells and 
Tregs (114). AHR expression in Tregs enhances their im-
munosuppressive function (115). TGF-β and AHR promote 
Th17 cell differentiation into IL-10-producing type 1 regula-
tory T (Tr1) cells especially in the resolution phase of intestinal 
inflammation (116) (Fig. 3C).

Tumour-associated macrophages (TAMs) play a crucial 
role in tumor progression. Tumour cells elicit AHR expres-
sion and activation in TAMs by releasing IL-1β/IL-6 and 
Kyn (117). In addition, AHR-enhanced macrophages have 
the potential to differentiate into TAMs, suppressing the 
antitumour activity of CD8+ T cells. Higher levels of IDO1 and 
TDO2 are associated with the immunosuppressive function 
of Tregs in tumors. Overexpression of IDO1/TDO2 in tumor 

cells can enhance tumor progression by suppressing the 
function of Tregs and M2-TAMs (118). Additionally, KYNA 
exerts an anti-inflammatory role in human invariant natural 
killer (iNK) cells through activation of GPR35 (119–121). 
GPR35-mediated KYNA sensing plays a crucial role in 
preserving the integrity of the intestinal barrier against 
damage in dextran sulfate sodium (DSS)-induced enteritis 
(122). Conversely, 5-HIAA released by platelets and mast 
cells recruits pathogenic neutrophils and eosinophils to in-
duce inflammation (123, 124) (Fig. 4A and B). Moreover, 
mast cells in the subepithelial dome secrete 5-HIAA to at-
tract GPR35+ cDC2s. This sequential cascade of events 
leads to the augmented synthesis of immunoglobulin A (IgA) 
by plasma cells (125) (Fig. 4C).

Furthermore, individuals with inflammatory bowel disease 
(IBD), multiple sclerosis (MS), or chronic kidney disease ex-
hibited elevated concentrations of serum KYNA (126–131). 
Meanwhile, serum metabolomic analysis in patients with cor-
onavirus disease 2019 (COVID-19) showed elevated KYNA 
levels and an increased KYNA:Kyn ratio in male patients. The 
clinical prognosis of COVID-19 is less favorable in males than 
in females, and this sex-based disparity is attributed to im-
mune responses. These metabolite alterations are positively 
associated with age, as well as with inflammatory cytokines 
and chemokines (132).

Figure 3.  The role of the Kyn pathway in immune regulation. (A) In DSS-induced colitis, kynurenine via the intestinal epithelial AHR leads to an 
increase in IL-10 receptor-1 (IL-10R1) expression. This consequently exerts an anti-inflammatory effect through IL-10 signaling. (B) The IDO1-
AHR axis in the induction of infection resistance upregulates TGF-β and induces Tregs. (C) The collaborative interaction between TGF-β and 
AHR plays a pivotal role in the transdifferentiation process of Th17 cells, leading to the generation of IL-10-producing Tr1 cells and Foxp3+ Treg 
cells.
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In summary, Trp plays a crucial role in modifying the re-
sponse of immune cells, particularly in reducing inflamma-
tion. However, the specific roles of other Trp metabolites, 
such as 5-HIAA, remain unclear.

Involvement of the Kyn and 5-HT pathways in CNS 
diseases

The Kyn and 5-HT pathways are interconnected and play cru-
cial roles in maintaining normal brain function. Dysregulation 
of these pathways has been implicated in the development 

and progression of various brain diseases, including 
neurodegenerative diseases, mood disorders, and auto-
immune conditions.

Neurodegenerative diseases
Individuals with Alzheimer’s disease had increased brain 
levels of Kyn and its metabolites, such as QA (133, 134). 
These metabolites may contribute to neuroinflammation and 
neurotoxicity. Meanwhile, an altered Trp metabolism has been 
observed in Parkinson’s disease, leading to changes in the 

Figure 4.  The 5-HIAA-GPR35 axis is implicated in the recruitment of immune cells (A) platelet- and mast cell-derived, a metabolite of sero-
tonin, 5-HIAA serves as a ligand for the chemoattractant  receptor GPR35, facilitating GPR35+ neutrophil transendothelial migration and their 
recruitment to inflammatory tissue during Listeria monocytogenes infections. (B) When Cryptococcus neoformans infects the lungs, it produces 
5-HIAA derived from platelets and mast cells through macrophage-mediated inflammation. This process promotes the recruitment of GPR35+ 
eosinophils to the infected lung, leading to the exacerbation of the disease. (C) Mast cells located in the subepithelial dome produce 5-HIAA to 
recruit GPR35+ cDC2s. This consecutive series of events results in an increased synthesis of immunoglobulin A (IgA) by plasma-cells.
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Kyn pathway (135). Imbalances in the Kyn pathway may con-
tribute to oxidative stress and brain inflammation.

Mood disorders
Dysregulation of the Kyn pathway has been implicated in the 
pathophysiology of depression. Increased levels of Kyn and 
its metabolites, along with reduced 5-HT levels, may con-
tribute to depressive symptoms (136). Furthermore, abnor-
malities in Trp metabolism are associated with schizophrenia, 
and changes in Kyn pathway metabolites may contribute to 
the cognitive and neuroinflammatory aspects of this disorder 
(137, 138).

Autoimmune conditions
The Kyn pathway has been implicated in the pathogenesis of 
MS (128, 139–141). Imbalances in Trp metabolism may con-
tribute to neuroinflammation and CNS demyelination.

Connection between KYNA/QA and neurons

KYNA also exhibits neuroprotective properties (142–145). 
High levels of KYNA competitively inhibit ionotropic glutamate 
receptors (146, 147). Moreover, it selectively decreases the 
activity of the glycine co-agonist side of the N-methyl-D-
aspartate (NMDA) receptor, which is involved in excitatory 
neurotransmission (148–150). Administration of low KYNA 
concentrations reduces glutamate levels by 30%–40% (146). 
KYNA also putatively acts as a negative allosteric modulator 
at the α7nAChR (151–154). KYNA also acts as an agonist 
at GPR35, which was thought to be an ‘orphan’ receptor, 
modulating cAMP production and inhibiting the N-type Ca2+ 
channels of sympathetic neurons and astrocytes, causing 
suppression of many inflammatory pathways (120, 155). By 
blocking this receptor, KYNA regulates the balance of neuro-
transmitters and prevents excessive excitotoxicity (156, 157).

In contrast, abnormal QA levels are implicated in 
neurodegenerative disorders. QA is an NMDA receptor agonist 
that exhibits neurotoxic effects (158–161), inhibits glutamate 
reuptake by astrocytes, and contributes to excitotoxicity when 
present in excessive amounts. QA generates reactive oxygen 
species (ROS), promotes tau phosphorylation, and disrupts 
the BBB. In addition, QA acts on astrocytes to produce in-
flammatory mediators (162). A balance between the produc-
tion of neuroprotective KYNA and neurotoxic QA is crucial in 
maintaining normal brain function.

Trp metabolites and the microbiome

The microbiome has been shown to affect the immune system. 
Intestinal bacteria are involved in the induction of specific im-
mune cells as well as activating immune cells as antigens. For 
example, Lactobacillus spp. digest dietary Trp and produce 
the AHR ligand indole-3-propionic acid (I3P) (Fig. 1), and 
these metabolite polarizations of tumor-promoting TAMs 
and other Limosilactobacillus (Lactobacillus) reuteri induce 
intraepithelial lymphocytes (IELs) in the small intestine (163, 
164). Recently, in two distinct cohorts of pancreatic ductal 
adenocarcinoma (PDAC), a noteworthy correlation was ob-
served between the therapeutic response and levels of IAA, 

a Trp metabolite derived from the microbiota that serves as 
an AHR ligand (165, 166) (Fig. 5A). Indole derivatives pro-
duced by L. reuteri have shown anticancer properties (167, 
168) (Fig. 5B).

Trp metabolites at the interface between the microbiota 
and host cells are important for maintaining body homeo-
stasis. Organs utilize Trp metabolites produced by bacteria 
under inflammatory conditions to induce AHR upregulation in 
epithelial and immune cells. Indole derivatives from intestinal 
bacteria enhance the intestinal barrier function by promoting 
the production of IL-22 through AHR expressed on innate 
lymphoid cells (ILCs) 3 (169–174) (Fig. 6).

AHR activated by indole derivatives can stimulate the ex-
pansion of Tregs and concurrently suppress experimental 
autoimmune encephalitis (EAE) (175). AHR signaling in 
microglia, which is mediated by indole derivatives, induces 
alterations in immune signaling within astrocytes, leading to a 
reduction in disease severity in EAE (176, 177). Trp-deficient 
and Trp metabolite-deficient diets induce chronic tissue in-
flammation, as IELs, Th17 cells, Tregs, and ILC3s express 
AHR, which is involved in mucosal homeostasis in the gut. 
In contrast, host cells affect the composition of the micro-
biota. Deletion of CARD9, an IBD-related gene, leads to ex-
acerbated colitis owing to a reduction in Trp metabolites in 
Lactobacillus spp (178). These results imply that intestinal 
bacteria and immune cells live in symbiosis with Trp.

Bacteria-mediated Trp metabolite, KYNA induces EAE

EAE is used as an animal model for MS in humans. Trp me-
tabolites act on AHR in astrocytes, reducing the inflamma-
tion of encephalitis (Fig. 6) (177). Moreover, these astrocytes 
are controlled by AHR in microglial cells via TGF-α expres-
sion (176). Trp-deficient diets exacerbate EAE because of 
the reduced stimulation of microglial and astrocyte AHR, 
and I3S supplementation ameliorates EAE. On the basis of 
this evidence, Trp metabolites are beneficial neuroprotective 
metabolites.

The microbiome was shown to have the potential to induce 
EAE, as GF mice did not develop EAE (179). The involve-
ment of the microbiota in EAE and MS remains unclear; how-
ever, studies on humans have implied that the composition 
of the microbiota in MS differed from that in other popula-
tions (180–183). In addition, L. reuteri enhances the disease 
score of EAE because it possesses a peptide that mimics 
myelin oligodendrocyte glycoprotein (MOG). Moreover, 
Erysipelotrichaceae bacteria (EB) act as an adjuvant to en-
hance Th17 cell responses in the small intestine (184, 185). 
Although L. reuteri and EB enhance the disease activity of 
EAE with the accumulation of the Th17 cells in the spinal cord 
(SC), the proportion of Th17 cells in the small intestine did 
not increase. Furthermore, the levels of the Th17 cell driver 
serum amyloid A were not increased in the small intestine. It 
is unclear whether T cells course through the small intestine 
and SC in EAE.

Recently, blocking the pathway that involves α4β7-integrin 
and its ligand mucosal addressin cell adhesion molecule-1 
(MAdCAM-1), which mediates T cell migration to the intes-
tine, was found to ameliorate encephalitis (186). Moreover, 
Schnell et al. and Miyamoto et al. showed that Th17 cells in 
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the small-intestinal circuit directly enter the neural circuit to 
induce encephalitis in photoconversion ‘Kaede mice’ (187, 
188). Kaede mice emit green fluorescence constitutively in 
all the cells. After irradiation with violet light to the mesenteric 

lymph nodes draining from the small intestine, green-to-red 
photoconversion occurs only in the exposure site, to enable 
us to track the cells and monitor precise cellular movement 
in vivo (189). We observed the red cells in the SC of the 

Figure 5.  Indole derivatives derived from bacteria serve as facilitators for augmenting the efficacy of chemotherapy and ICI in cancer. (A) Trp 
metabolites originating from the gut microbiome accelerate the chemotherapy response in pancreatic cancer. Intestinal bacteria generate IAA 
from absorbed dietary Trp. IAA is transported to PDAC through the bloodstream, where it may undergo oxidation to produce toxic molecules 
(IAAp) facilitated by myeloperoxidase (MPO) and cytotoxic anticancer drugs such as 5-fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) 
within intratumoural neutrophils. Subsequently, IAAp and FOLFIRINOX jointly contribute to the downregulation of GPX3/7, enzymes responsible 
for degrading ROS, leading to the accumulation of ROS within cancer cells. Ultimately, elevated ROS levels inhibit the autophagy pathway, a 
crucial process in cancer cell proliferation. (B) L. reuteri translocates to, colonizes, and persists within melanoma, where, through the release 
of its dietary tryptophan catabolite I3A, it locally enhances the generation of IFN-γ-producing CD8+ T cells, thereby augmenting the efficacy 
of ICI. Furthermore, I3A was found to be both necessary and sufficient to stimulate antitumour immunity, and the loss of AHR signaling within 
CD8+  T cells abolished antitumour effects.
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EAE mice. Taken together, these findings suggest that cer-
tain T cells originating from the small-intestinal population 
may translocate to the SC, playing a role in the induction of 
myelitis.

Intestinal Th17 cells are induced by antigen-presenting 
cells. Miyamoto et al. showed that CX3CR1+ Ly6C+ GPR35+ 
macrophages potentially induce the accumulation of Th17 
cells in the small intestine of EAE mice (188). The major 
GPR35 ligands are cGMP, lysophosphatidic acid, 5-HIAA, 
and KYNA (131, 190). The concentration of KYNA increased 
in the small intestine of EAE mice, whereas the others did 
not increase, compared with non-EAE mice. Furthermore, the 
expression levels of afmid, kat1, and kat2 (see Fig. 1) were 
higher in EAE mice than in non-EAE mice. Notably, the ex-
pression levels of Ido1 did not increase in EAE mice (Fig. 7).

Interestingly, the microbiome potentially harbors a Kyn 
pathway that digests Trp to form NFK and Kyn. Intestinal 
bacteria possess the enzyme groups EC:1.13.11.11, which 
converts Trp to NFK, and EC:3.5.1.9, which converts NFK to 
Kyn. The expression of EC:1.13.11.11, but not of EC:3.5.1.9, 
increased in fecal bacteria in both EAE mice and pa-
tients with MS (180). Previous reports have shown that EB 
are increased in EAE mice (188), but EB do not possess 

EC1.13.11.11. Sporosarcina pasteurii (SP), Staphylococcus 
lentus, Pseudoxanthomonas mexicana, and Sphingomonas 
are potential possessors of the EC:1.13.11.11 gene. Notably, 
the abundance of SP was higher in fecal samples of EAE 
mice than those of non-EAE mice. Miyamoto et al. inserted 
the EC:1.13.11.11 gene into the Escherichia coli JCM1649 
(ECWT) and generated a strain that can convert Trp into NFK 
(ECKynA) (188). Mice mono-associated with ECKynA exhibited 
significantly higher EAE scores than mice mono-associated 
with ECWT following MOG induction.

Overall, these results indicate that KYNA in the small in-
testine plays an inflammatory role in EAE, whereas KYNA 
has a neuroprotective role. In addition, the Trp metabolic 
pathway and microbiome harbor both the indole and Kyn 
pathways, especially the initial step of Trp conversion to Kyn. 
Further investigations focusing on Trp metabolites and their 
pathways are required to understand their action on neurons 
and immune cells. Inhibitors of rate-limiting enzymes that 
play crucial roles in Trp metabolism, such as IDO/TDO, 
KMO, and TPH, are candidates for modulating Trp metab-
olites in neuronal diseases or tumors. Modulation of the gut 
microbiome may also regulate Trp metabolites. The spe-
cific mechanism remains unknown; however, controlling Trp 

Figure 6.  Indole derivatives originating from the gut microbiota exert anti-inflammatory effects through the AHR. Indole derivatives, generated 
by the microbial conversion of dietary Trp, can activate AHR in Group 3 innate lymphoid cells (ILC3s), thereby promoting IL-22-mediated tissue 
protection. Indole derivatives can activate AHR in T cells, leading to the generation of Tregs and subsequent reduction in inflammation, resulting 
in improved disease outcomes in EAE. Additionally, AHR in microglia contributes to the suppression of inflammation in EAE.
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Figure 7.  The gut microbiota-induced KYNA recruits GPR35+ macrophages to promote experimental encephalitis. (Left) Inflammation 
was initiated in the small intestine prior to the manifestation of the phenotype in the EAE model of MS. Inflammation elevated antimicro-
bial peptides and modified the microbiome. The intestinal epithelium cells (IECs) and microbiome collaborated in the production of KYNA. 
GPR35+ CX3CR1+ Ly6C+ cells utilizing KYNA as a chemokine ligand were recruited to the small intestine. GPR35+ CX3CR1+ Ly6C+ cells ex-
hibit high levels of IL-6 expression and an expanded population of pathogenic myelin-responsive Th17 cells. Pathogenic myelin-responsive 
Th17 cells migrated to the SC, triggering inflammation. (Right) The administration of CB led to the suppression of inflammation in the small 
intestine. CB altered the microbiome and gene expression in the IECs, leading to the inactivation of the Kyn pathway. The diminished KYNA 
levels resulted in a reduced recruitment of GPR35+ CX3CR1+ Ly6C+ cells. The number of pathogenic myelin-responsive Th17 cells induced by 
GPR35+ CX3CR1+ Ly6C+ cells was decreased. Inflammation was attenuated due to a decrease in the number of pathogenic myelin-responsive 
Th17 cells migrating to the SC. The potential preventive effect of CB on MS was suggested.
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metabolites by modulating the composition of microbiota is 
a safe and promising method in discovering therapeutic op-
tions. Clostridium butyricum MIYAIRI 588 (CB) is known to 
reduce the disease activity of EAE following a reduction in 
Trp metabolites (Fig. 7).

Conclusion

Trp metabolites play key roles in immune function, neuronal 
excretion, and energy metabolism. An imbalance in these 
metabolites induces neuropsychiatric disorders and inflam-
mation. These pathways are complicated because (i) they 
interact with each other and are not independent; (ii) Trp 
metabolites are generated not only by vertebrates but also 
by bacteria; and (iii) Trp metabolites act differently on each 
cell. For example, KYNA has a neuroprotective role in astro-
cytes but is pathogenic to intestinal macrophages in the EAE 
model.
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