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Abstract 

Background Neoantigen-targeting therapies including personalized vaccines have shown promise in the treat-
ment of cancers, particularly when used in combination with checkpoint blockade therapy. At least 100 clinical 
trials involving these therapies have been initiated globally. Accurate identification and prioritization of neoantigens 
is crucial for designing these trials, predicting treatment response, and understanding mechanisms of resistance. 
With the advent of massively parallel DNA and RNA sequencing technologies, it is now possible to computationally 
predict neoantigens based on patient-specific variant information. However, numerous factors must be considered 
when prioritizing neoantigens for use in personalized therapies. Complexities such as alternative transcript annota-
tions, various binding, presentation and immunogenicity prediction algorithms, and variable peptide lengths/regis-
ters all potentially impact the neoantigen selection process. There has been a rapid development of computational 
tools that attempt to account for these complexities. While these tools generate numerous algorithmic predictions 
for neoantigen characterization, results from these pipelines are difficult to navigate and require extensive knowledge 
of the underlying tools for accurate interpretation. This often leads to over-simplification of pipeline outputs to make 
them tractable, for example, limiting prediction to a single RNA isoform or only summarizing the top ranked of many 
possible peptide candidates. In addition to variant detection, gene expression, and predicted peptide binding affini-
ties, recent studies have also demonstrated the importance of mutation location, allele-specific anchor locations, 
and variation of T-cell response to long versus short peptides. Due to the intricate nature and number of salient 
neoantigen features, presenting all relevant information to facilitate candidate selection for downstream applications 
is a difficult challenge that current tools fail to address.

Results We have created pVACview, the first interactive tool designed to aid in the prioritization and selection 
of neoantigen candidates for personalized neoantigen therapies including cancer vaccines. pVACview has a user-
friendly and intuitive interface where users can upload, explore, select, and export their neoantigen candidates. The 
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tool allows users to visualize candidates at multiple levels of detail including variant, transcript, peptide, and algorithm 
prediction information.

Conclusions pVACview will allow researchers to analyze and prioritize neoantigen candidates with greater efficiency 
and accuracy in basic and translational settings. The application is available as part of the pVACtools software at pvac-
tools.org and as an online server at pvacview.org.

Keywords Neoantigen, Data visualization, Vaccine design, Pipeline, Prioritization, Cancer immunotherapy

Background
Neoantigens are unique peptide sequences generated 
from somatic variants in tumors. These antigens provide 
an avenue for tumor-specific immune cell recognition 
and have been found to be important targets for can-
cer immunotherapies [1–3]. Effective neoantigens, pre-
sented by the major histocompatibility complex (MHC) 
and thus introduced to the patient’s immune system, can 
prime and activate CD8 + and CD4 + T cells for down-
stream signaling of cell death. Previous studies have 
shown that patients with relatively high tumor mutation 
burden tend to have stronger responses to neoantigen-
based immunotherapy treatments [4–6]. With the advent 
of massively parallel DNA and RNA sequencing tech-
nologies, it is now possible to computationally predict 
neoantigens for experimental studies of T cell biology in 
cancer or for design of personalized neoantigen therapies 
based on patient-specific mutations. Examples of such 
therapies include personalized neoantigen vaccines [2, 7], 
TCR mimic antibodies [8, 9], personalized adoptive T cell 

therapies [10, 11], and engineered T cell therapies [12–
14]. The process of designing bespoke neoantigen target-
ing therapies entails sequencing (WGS/WES, RNAseq) 
of matched tumor-normal samples, somatic variant call-
ing together with germline variant calling and HLA typ-
ing, neoantigen prediction, and selection of neoantigen 
candidates for manufacturing (Fig. 1).

Numerous aspects of the process of neoantigen gen-
eration and presentation must be considered for effec-
tive target selection (Fig.  2). These aspects include but 
are not limited to (1) neoantigen mutation identification 
and expression, (2) peptide processing and transport, 
(3) peptide-MHC binding, (4) peptide-MHC stability, 
and (5) recognition by cytotoxic T cells [15]. Additional 
considerations relate to manufacturability, which vary by 
therapeutic platform, and safety considerations including 
stability of the formulation and potential for off-target 
effects. There has been a rapid development of computa-
tional tools in an attempt to account for these complexi-
ties (Additional file 1). Pipelines have been developed to 

Fig. 1 Personalized neoantigen prioritization and therapy development pipeline. The process of developing personalized neoantigen therapy 
includes six main steps as depicted in this figure. The first step involves patient enrollment and collection of a tumor biopsy and matched normal 
sample. Next the samples undergo whole genome/exome and RNA sequencing, followed by variant calling to identify somatic variants unique 
to the cancer, as well as HLA typing. Information regarding the patients’ variants and HLA type are fed to an ensemble of algorithms that predict 
neoantigen candidates. The candidates are then prioritized based on a multitude of criteria such as binding affinity, presentation, immunogenicity, 
variant clonality, and variant expression. Finally, the selected candidates are sent to therapy manufacturers (e.g., peptide or nucleic acid cancer 
vaccines), subjected to safety testing, and ultimately delivered to the patient. pVACview is developed to aid the candidate prioritization 
and selection step

Fig. 2 Overall process of neoantigen generation and presentation from tumor specific mutations. Illustration demonstrates the key steps 
throughout the process of neoantigen generation, processing, binding, transportation, and presentation. This overview highlights examples 
of criteria examined by pVACview that may be considered during neoantigen prioritization including (1) founding clone versus subclonal tumor 
status of variants, (2) the impact of different RNA transcript structures on peptide sequence and their varying expression levels, (3) proteasomal 
processing generating peptides of varying length from different registers, (4) potential for peptide binding to individual patient MHC alleles 
and the predicted immunogenicity of peptide:MHC complexes, and (5) variant and anchor positions of the neoantigen when presented by MHC 
to T cells

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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allow researchers to run an ensemble of many tools for 
individual patients, generating more than 118 features, 
which include metrics such as algorithmic predictions 
of binding, allele frequency and expression, similarity 
to a reference proteome, and others [16–19]. However, 
the results from these complex pipelines are often over-
whelming in number, difficult to navigate, and require 
extensive knowledge of the underlying tools for accurate 
interpretation. Though gene expression and predicted 
peptide binding affinities are common features of most 
approaches, recent studies have also shown the impor-
tance of mutation location, allele-specific anchor loca-
tions, the potential impact of multiple class I/II short 
peptides arising from a single mutation, and the variation 
of T-cell response to long versus short peptides [20–23]. 
These additional complexities can be difficult to interro-
gate directly from computational pipeline outputs, if they 
are available at all.

With the high cost of personalized neoantigen thera-
pies and difficulties in accurate neoantigen prioritization, 
it is critical to provide multiple levels of information to 
support the most effective and efficient neoantigen target 
selection. As with most personalized treatments, choos-
ing the right approach depends on integrating clinical 
information and observations with genomic data and 
algorithmic outputs. Supporting this effectively means 
moving beyond static reports and building dynamic 
interfaces that provide layered information in an intuitive 
manner. To address these concerns, we built a compre-
hensive visualization tool, pVACview, that takes complex 
neoantigen candidate information as input, visualizes the 
output with multiple levels of detail, and exports results 
and annotations for further review and manufacturing 
for diverse downstream applications, including personal-
ized neoantigen vaccines. Our previously published can-
cer immunotherapy software, pVACtools [16], generates 
numerous features for neoantigen characterization. How-
ever, these outputs also require extensive additional anal-
ysis due to the intricate nature of neoantigen features. 
With pVACview, we now provide a complete neoantigen 
detection and design pipeline. The application is com-
patible with data from human, mouse, canine, and other 
species and has been used in the setting of several can-
cer immunotherapy clinical trials (e.g., NCT04397003, 
NCT03422094, NCT04015700). It also supports visu-
alization of candidate neoantigens from alternative pipe-
lines such as vaxrank [24] and annotation tools such as 
NeoFox [17].

Implementation
pVACview is written in R and is implemented as part of 
pVACtools, which is a computational toolkit that helps 
identify and visualize neoantigen candidates [16, 25]. 

While pVACview can be used as a stand-alone tool (see 
“Overall architecture of the software implementation”), 
we recommend using pVACtools to generate the required 
inputs in order to access the maximum functionality. 
Code changes are integrated using GitHub pull requests 
(https:// github. com/ griffi thlab/ pVACt ools/ pulls). Docu-
mentation is hosted on Read the Docs (readthedocs.org) 
and can be viewed at https:// pvact ools. readt hedocs. io/ 
en/ latest/ pvacv iew. html.

A demonstration data set is provided and consists 
of class I and class II neoantigen candidate files gener-
ated from the HCC1395 breast cancer cell line and its 
matched lymphoblastoid cell line HCC1395BL (please 
refer to data availability section). The tumor and normal 
datasets were processed using an immunogenomics pipe-
line written in WDL (immuno.wdl available at https:// 
github. com/ wustl- oncol ogy/ analy sis- wdls). This pipeline 
accepts raw tumor/normal exome and tumor RNA-seq 
data in FASTQ or unaligned BAM format and performs 
alignment, HLA typing, germline variant calling, somatic 
variant calling, variant phasing, variant annotation, 
expression analysis, RNA fusion detection, and neoanti-
gen identification. The pipeline also generates the aggre-
gated neoantigen reports and metrics files used as inputs 
to pVACview. These datasets are available at https:// 
github. com/ griffi thlab/ pVACt ools/ tree/ lates tpvac tools/ 
tools/ pvacv iew/ data.

To acquire pVACtools output (specifically, pVACseq 
output) for use with pVACview, users can run pVACseq 
from the command line using variants from their own 
pipeline (in VCF format), or start with raw sequence data 
and use an end-to-end pipeline on the cloud by launch-
ing our pre-configured workflow on Dockstore (https:// 
docks tore. org/ workf lows/ github. com/ griff ithlab/ analy 
sis- wdls/ immuno) via various platforms (e.g., DNAnexus, 
Terra, eLazi, AnVIL, NHLBI BioData Catalyst). A step-
by-step guide for employing the pre-configured immuno 
workflow to run pVACtools on Terra is available at 
https:// workfl ow- course. pvact ools. org/ index. html.

Overall architecture of the software implementation
pVACview has three modules: (1) main, (2) NeoFox, 
and (3) custom. The main module supports output from 
pVACseq while the NeoFox and custom modules support 
exploration of output from other neoantigen prediction 
tools. A detailed comparison of neoantigen features pro-
vided by pVACseq and several of these alternative predic-
tion tools is provided in Additional file 2.

pVACview main module
The pVACview main module is split into the follow-
ing components: user data upload, neoantigen feature 
visualization and exploration, and export of prioritized 

https://github.com/griffithlab/pVACtools/pulls
https://pvactools.readthedocs.io/en/latest/pvacview.html
https://pvactools.readthedocs.io/en/latest/pvacview.html
https://github.com/wustl-oncology/analysis-wdls
https://github.com/wustl-oncology/analysis-wdls
https://github.com/griffithlab/pVACtools/tree/latestpvactools/tools/pvacview/data
https://github.com/griffithlab/pVACtools/tree/latestpvactools/tools/pvacview/data
https://github.com/griffithlab/pVACtools/tree/latestpvactools/tools/pvacview/data
https://dockstore.org/workflows/github.com/griffithlab/analysis-wdls/immuno
https://dockstore.org/workflows/github.com/griffithlab/analysis-wdls/immuno
https://dockstore.org/workflows/github.com/griffithlab/analysis-wdls/immuno
https://workflow-course.pvactools.org/index.html
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Fig. 3 Overview of example workflow for prioritizing neoantigens using pVACview. pVACview can be broken down into three main sections: 
upload, visualize/explore, and export. When exploring the neoantigen candidates, users are presented with three levels of information: variant, 
transcript, and peptide. This example workflow guides the user through critical questions that may be considered when prioritizing neoantigen 
candidates. Each section is organized by the corresponding feature in the pVACview interface
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neoantigens and associated annotations for downstream 
applications (Fig. 3). Below, we step through these com-
ponents in detail. A screenshot and description of each 
visual element of pVACview can also be found in Addi-
tional file 3.

Configuration and data import
Generation of the neoantigen candidate input files 
requires preprocessing using pVACseq starting from 
patient samples’ variant information (supplied as a VCF 
file). pVACseq produces neoantigen candidates with 
numerous features to be considered during prioritization. 
Two of pVACseq’s output files, an aggregated candidate 
file (tsv format) and a metrics file (json format), serve as 
input files to pVACview (Additional file  3: Fig. S1). The 
aggregated candidate file contains a list of all variants 
with summary-level information, including the best pre-
dicted neoantigen candidate and its overall prediction 
score, DNA/RNA depth, variant allele frequencies, gene 
and allele expression, and more. The metrics json file 
contains extensive additional variant, transcript, peptide, 
and individual algorithm-level information that is needed 
for certain features of the pVACview application. For fur-
ther details, please refer to the online documentation at 
pvactools.org.

Users have the option to additionally include a tsv file 
with supplemental candidate information from a differ-
ent set or class of HLA alleles. This allows users to view 
basic median binding information of class II results while 
looking at detailed class I prediction results or vice versa. 
For users investigating a specific gene set of their own 
interest, we provide the option of uploading a tsv file 
where each line contains an individual gene name (e.g., 
names of known cancer driver genes). These genes, if 
found in the aggregate report file, will be highlighted in 
a green box with bold font in the Gene report column of 
the visualization interface.

Neoantigen visualization and exploration
Uploaded neoantigen candidates can be explored and 
analyzed in several different ways. Users are provided 
with neoantigen features that are organized into three 
levels of detail: variant-level, transcript-level, and pep-
tide-level (Fig. 3).

Variant-level information is presented in the main 
aggregate report table, showcasing the best neoantigen 
candidate for each variant as well as genomic information 
(e.g., gene identifier, amino acid change, and position of 
the variant within the core binding peptide), expression 
level, DNA/RNA variant allele frequency, median bind-
ing prediction scores, percentile ranks, and the total 
number of peptides beyond the best one that meet speci-
fied cutoffs (Additional file  3: Fig. S2). Each variant in 

the main aggregate report table is assigned to an overall 
tier based on criteria including binding affinity, expres-
sion, transcription support level, clonality, and anchor 
scenario. By default, the variants in this table are ordered 
based on their assigned tier.

Once a specific variant is selected, users are provided 
with a variant and gene info box, which provides further 
information on the exact genomic location and nucleic 
acid change (Additional file  3: Fig. S3). We have also 
included a link to the OpenCRAVAT variant report for 
the respective variant [26]. This report allows users to 
explore rich variant information including variant effect 
annotations, associated cancer types, population allele 
frequencies, clinical relevance, gene annotation, and 
pathogenicity predictions.

Additionally, users are provided with individual tran-
scripts containing the variant. The selected variant may 
occur within multiple transcripts, which may result in 
distinct neoantigen peptide sequences. Peptides that pro-
duce good binding predictions against at least one HLA 
allele are shown in the transcript table (Additional file 3: 
Fig. S4). The expression level of each transcript is pro-
vided as further guidance when selecting the best neo-
antigen candidate. In some cases, transcript sequence 
context impacts the peptide sequence surrounding a 
variant (e.g., nearby exon–intron boundaries as depicted 
in Fig. 2). Multiple transcripts that give rise to the exact 
same list of peptide candidates are grouped into a single 
transcript set and those that give rise to different pep-
tides are grouped into distinct transcript sets.

Upon selecting a specific transcript set, users are pro-
vided with a peptide table (Additional file 3: Fig. S5). The 
peptide table displays all peptide sequences from the 
selected transcript that are predicted to be good bind-
ers (for at least one HLA allele). Both mutant (MT) and 
wild type (WT) sequences are shown, along with median 
binding affinities (if the MT score passed the binding 
threshold), potential problematic positions for manu-
facturing, and whether non-specificity of the peptide 
sequence could indicate potential for autoimmunity or 
central tolerance [23].

By selecting each pair of MT/WT peptides, users can 
access (1) plots of the individual IC50 binding affin-
ity predictions of the strong binding MT peptides and 
their corresponding WT, (2) plots of the individual 
percentile binding affinity predictions, (3) a binding 
affinity table with numerical IC50 and percentile rank 
values across algorithms used, and (4) a table of predic-
tion scores from algorithms trained on mass spectrom-
etry elution data (e.g., BigMHC_EL, MHCFlurryEL, 
NetMHCPanEL) and immunogenicity data (e.g., Big-
MHC_IM, DeepImmuno) (Additional file  3: Figs. S6, 
S7, S8, S9). Note that each peptide may have up to 8 
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binding algorithm scores for class I alleles (with pVAC-
seq version 3.0 or higher) or up to 4 binding algorithm 
scores for class II alleles. These views facilitate evalua-
tion of algorithm concordance and integration of pre-
dictions pertaining to MHC binding, processing, and 
immunogenicity.

For each peptide, we also provide users with an allele-
specific anchor prediction heatmap, based on compu-
tational predictions from our previous work [23]. These 
predictions are normalized probabilities representing the 
likelihood of each position of the peptide to participate in 
anchoring to the HLA allele. The top 15 MT/WT peptide 
pairs per HLA allele from the peptide table are shown 
with anchor probabilities overlaid as a heatmap. The 
anchor probabilities shown are both allele and peptide 
length specific. In the anchor heatmap view, the mutated 
amino acids are marked in red and MT/WT pairs are 
separated using a dotted line (Additional file 3: Fig. S10). 
The probabilities used for determining allele specific 
anchors sites are provided along with the actual positions 
that are considered anchors for each allele-peptide length 
combination (Additional file 3: Fig. S11). Different anchor 
scenarios are also depicted to guide users during candi-
date evaluation (Additional file 3: Fig. S12).

To ensure that the candidate is a non-self peptide, users 
can also check if the sequence of the peptide candidate 
matches any sequence found in the reference proteome 
(Additional file 3: Fig. S13). If the user specifies potential 
problematic amino acids when running pVACseq, candi-
dates with these problematic amino acids will be flagged 
by a red box in the “Prob Pos” (Problematic Positions) 
column of the main aggregate report table (Additional 
file 3: Fig. S14). One example use of this feature is to flag 
cysteines (C) as problematic and deprioritize peptides 
containing them to avoid peptide synthesis and stability 
issues associated with this amino acid [27].

After consulting the breadth of information displayed 
in pVACview, users can assign an evaluation to each vari-
ant by clicking the appropriate evaluation button in the 
aggregate report view (Additional file  3: Fig. S15). The 
number of evaluations performed (accept, reject, review) 
are tracked in the peptide evaluation overview section. 
Users may also record a comment for each candidate 
describing, for example, any notable features, concerns, 
or special criteria considered to determine the selected 
evaluation.

If a user has uploaded a tsv file with supplemental can-
didate information, this data can be viewed in the Addi-
tional Data tab (Additional file 3: Fig. S16). This data can, 
for example, be used to prioritize candidates with poor 
class I binding affinity but otherwise good metrics. Such 
candidates may have good class II binding and can be 
rescued.

Export of neoantigen evaluations and final report
When users have either finished evaluating neoantigen 
candidates or need to pause and would like to save cur-
rent evaluations, they can export the current main aggre-
gate report using the export page (Additional file 3: Fig. 
S17). pVACview provides two download file types (tsv 
and excel). The excel format is user-friendly for down-
stream visualization and manipulation. However, if the 
user plans to continue editing the aggregate report and 
would like to load it back in pVACview with the previ-
ous evaluations preloaded, they must use the tsv format. 
The export feature thus serves as a way to save progress 
as all evaluations are cleared upon closing or refreshing 
the pVACview app.

NeoFox module
Data import
pVACview also takes the output of the neoantigen anno-
tation pipeline NeoFox [17] as input. NeoFox output is 
a tab-separated file, where each row corresponds to one 
neoantigen candidate. The NeoFox format also option-
ally supports annotation of each candidate with a patient 
identifier and gene-level information (gene name, DNA/
RNA allele frequencies). The peptide-level information 
generated by NeoFox is comprehensive and includes 
scores for ranking peptides based on 16 neoantigen fea-
tures and prediction algorithms. These features include 
several that are not otherwise supported by pVACtools 
directly such as recognition potential, generator rate, 
PRIME, and HEX [17].

Neoantigen visualization and exploration
pVACview provides three panels for NeoFox data explo-
ration. The first panel “Annotated Neoantigen Candidates 
using NeoFox” will show all neoantigen candidates and 
their corresponding information from the input. In the 
second panel “Data Visualization,” users can select up 
to 6 information categories of the neoantigens to visual-
ize in the form of violin plots. If the user selects a spe-
cific peptide in the first tab, the corresponding values of 
the peptide will be highlighted in red in the plot(s). The 
third panel “Dynamic Scatter Plot” gives an overview of 
characteristics of all candidates in the dataset. Users can 
choose the variables to plot on the x and y axis, as well 
as the variable which defines the size of the scatter plot. 
The variables can be transformed and limited in range, if 
desired. As the user hovers the cursor over any candidate, 
all information tied to the candidate will be displayed. 
With these features, users can quickly and interactively 
narrow down candidates satisfying criteria of interest. A 
curated subset of NeoFox scores that we believe are par-
ticularly useful and/or complementary to that provided 
by pVACtools are selected by default in the pVACview 
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NeoFox data exploration module. Users can display addi-
tional columns by selecting from the “Column visibility” 
dropdown.

Similar to the main module, users can select an evalu-
ation for each variant by clicking the desired evaluation 
button in the annotated neoantigen candidates table. The 
number of evaluations performed (accept, reject, review) 
are tracked in the “Peptide Evaluation Overview” section 
on the top left of the page. Users are also able to leave a 
comment for the selected variant(s) in the section on the 
top right of the page.

Export of neoantigen evaluations and final report
The NeoFox module offers the same export functionali-
ties as the pVACview main module. During export, the 
selected evaluations and comments are saved to a tsv or 
excel file alongside the original NeoFox data.

Custom module
Data import
Users can also supply pVACview with any tsv file from 
any neoantigen prediction algorithm or pipeline. The 
custom module reads each column in the tsv as a fea-
ture and further tailors the view based on user’s selected 
options in the  three following drop-down menus. (1) 
“Group peptides by” will group peptides together by a 
user-selected feature. For example, grouping by variant 
would consolidate all candidate peptides derived from 
a common variant. (2) “Sort peptides by” will order the 
candidate peptides by a user-selected feature. For exam-
ple, a user might order peptides by binding score. (3) 
"Features to display for each group of peptides" is used to 
select which features in the dataset will be included in the 
detailed data section. By default, all features, with excep-
tion of the features chosen to group and sort peptide by, 
will be included. To demonstrate the custom input mod-
ule, we provide users with example results from  other 
neoantigen prediction pipelines: vaxrank [24], NeoPred-
Pipe [28], and antigen.garnish [29].

Neoantigen visualization and exploration
The custom module of pVACview offers three panels 
for data visualization. The first panel “Overview of Neo-
antigen Features” displays groups of peptides. For each 
group, a single representative peptide will be shown. To 
see and compare the representative peptide with other 
peptides in the same group, users can click “Investigate” 
and see all peptides in the second panel—“Detailed Data.” 
In this second panel, the peptides in the group by default 
will be sorted by the user-selected feature. The third 
panel “Dynamic Scatter Plot” allows users to quickly and 
interactively narrow down candidates satisfying criteria 

of interest (as described in the “NeoFox module” section 
above).

Overall, pVACview provides a complex interactive 
interface to explore many neoantigen features and prior-
itize neoantigen candidates. A comprehensive analysis of 
the biological rationale and relative importance of indi-
vidual features is beyond the scope of this report but sev-
eral reviews and detailed guidelines have been published 
[15]. In addition, we provide a list of suggested features 
and a brief description of their use in candidate prioriti-
zation in Table 1. More extensive discussion of many of 
these features is provided in instructional videos and a 
comprehensive vignette available in the online documen-
tation (see Availability of data and materials).

Results and discussion
Multiple tools and workflows have been created for neo-
antigen characterization, both for studies of tumor T cell 
biology and the development of neoantigen-based thera-
pies. Some existing tools that address individual factors 
for prediction of neoantigens do include visualization 
components (such as netMHC for binding predictions). 
Pipelines such as pVACtools and NeoFox combine mul-
tiple algorithms for detecting, characterizing, and pri-
oritizing neoantigens from various sources. However, 
these pipelines do not facilitate visual exploration of the 
results, instead producing a static neoantigen report that 
often attempts to provide only a single “best” neoantigen 
for each variant based on simple criteria such as binding 
affinity predictions. During this process, these reports 
over-simplify the outputs to make them tractable, and 
thus the results are fraught with assumptions about what 
“best” means. This reduces the ability to effectively pri-
oritize neoantigen candidates. A more nuanced approach 
that allows consideration of multiple contextually rel-
evant features is preferable. We therefore believe that an 
interactive neoantigen visualization tool, customized to 
this specific application, is needed. Two existing tools, 
NeoPredViz [28] and LENS [31], do offer visualization 
of their results. However, pVACview remains distinct 
in its ability to present a diversity of variant, transcript, 
peptide, and algorithm data together in a simple, inte-
grated view. As a dynamic interactive visualization inter-
face, pVACview overcomes many limitations of tabular 
reports, allowing the user to consider neoantigens in the 
context of transcript expression, tumor clonality, multi-
ple registers (peptides of the same length where the vari-
ant is at different positions), peptide lengths, alternative 
transcript isoforms, an ensemble of predictive binding 
algorithms, HLA specific anchor information, and much 
more.

pVACview helps users to address many complexities 
of neoantigen interpretation and prioritization that are 
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difficult to achieve with tabular reports. While there has 
been a rapid development of sequencing technologies, 
bulk tumor tissue samples undergoing sequencing are 
often subject to purity issues. Additionally, intratumoral 
heterogeneity presents a considerable challenge to cancer 
therapies, making it critical to distinguish variants from 
the founding clone from those that are subclonal. Neoan-
tigens arise from tumor-specific genomic variations and 
each variant can have multiple transcripts encompassing 
the variant location. Thus, not only should transcript-
specific expression level be taken into account, tran-
scripts resulting from different splicing patterns may also 
have considerable impact on the exact neoantigen pep-
tide sequence. Once the correct sequence surrounding 
a variant from an expressed transcript is identified, neo-
antigen candidates can be extracted by looking at differ-
ent registers and different lengths of peptides containing 
the amino acid modification. Even for the simplest form 
of neoantigen sources, single nucleotide variants, when 
all registers, lengths (8-, 9-, 10-, 11-mer) and algorithms 
(13 for class I) in pVACtools are used, and assuming an 
individual with 6 distinct class I alleles, the result is 38 
distinct short peptides and 2964 peptide MHC predic-
tions. Neoantigens arising from frameshift variants can 
produce an even larger number of neoantigen candi-
dates that vary in sequence and variant position, with 
each peptide having a different set of prediction scores. 
Filtering by binding affinity thresholds or other criteria 

can reduce the complexity of this result to a degree but 
it often remains unwieldy. The detailed information pro-
vided by pVACview can effectively help users address this 
complexity.

Furthermore, pVACview’s drill down approach to 
information display helps researchers intuitively inte-
grate variant clonality, class I and II binding pre-
dictions, competing binding prediction algorithms, 
binding metrics, and mutation positional informa-
tion for each candidate neoantigen peptide. Expressed 
neoantigens of different lengths and registers from a 
founding clone of the tumor can potentially bind (or 
not bind) to either class I or class II HLA alleles, either 
through endogenous or exogenous pathways respec-
tively on either the tumor cell or an antigen presenting 
cell. In addition to having up to 6 different class I HLA 
alleles, each patient may have up to 12 different class II 
alleles (and dimer combinations of these). When evalu-
ating neoantigen candidates in terms of binding pre-
dictions, researchers may take into account how well 
neoantigens are potentially binding to each patient-
specific HLA allele and may also want to consider how 
many different HLA alleles it can bind robustly [32, 33]. 
pVACview provides the ability to consider the diver-
sity of peptides arising from each variant and how they 
relate to predicted binding by multiple alleles. Another 
approach to accounting for multiplicity of presenta-
tion is the Patient Harmonic-mean Best Rank (PHBR) 

Table 1 Summary of pVACview features that facilitate neoantigen prioritization

Level Feature Suggestion

Variant RNA Expr: gene expression value for the annotated gene containing the variant
RNA VAF: tumor RNA variant allele frequency (VAF) at this position
Allele Expr: RNA Expr × RNA VAF
RNA Depth: tumor RNA depth at this position
DNA VAF: tumor DNA variant allele frequency (VAF) at this position

Prioritize variant(s) with high tumor variant allele frac-
tion (VAF) and allelic expression. Interpretation of tumor 
VAF first requires estimation of tumor purity which may 
be guided by the VAF of known tumor drivers
Prioritize variants in genes known to be associated 
with cancer type of the investigated sample (for exam-
ple, genes listed in Cancer Gene Census)

Transcript TSL: transcript support level of the transcript coding for the best peptide
Biotype: biotype of the transcript coding for the best peptide

Prioritize high-confidence transcripts of level 1 (TSL = 1)
Prioritize transcripts(s) with a protein_coding biotype

Peptide IC50 MT: lowest or median IC50 binding affinity of the best-binding mutant 
epitope across all prediction algorithms used
%ile MT: lowest or median binding affinity percentile rank of the best-binding 
mutant epitope across all prediction algorithms used (those that provide per-
centile output)
Elution score: likelihood that a peptide will be bound and presented by the MHC 
molecule, generated by algorithms trained on mass spectrometry data
Immunogenicity score: prediction of whether the neoantigen candidate will 
induce an immune response
Ref Match: whether the best peptide is found in the reference proteome (true/
false)
Prob Pos: positions within the peptide sequence where the amino acid was cat-
egorized as problematic for manufacturing purposes

Prioritize peptide(s) with favorable binding affinity 
to MHC (we recommend binding affinity of 500 nM 
or less and percentile rank of 2 or less) [30]
Prioritize peptides with favorable anchor scenarios (see 
suggestion by Xia et al. [23])
Prioritize peptides with favorable elution score (elution 
score from BigMHC_EL, MHCFlurryEL, and NetMHCII-
panEL ranges from 0 to 1, with 1 being the best elution 
score), with a percentile rank of 2 or less
Prioritize peptides with favorable immunogenicity 
scores (immunogenicity score from DeepImmuno 
and BigMHC_IM ranges from 0 to 1, with 1 being 
the best elution score)
Exclude peptides with a reference match in the pro-
teome
Exclude peptides with problematic amino acids
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score [34, 35], conveniently provided by NeoFox and 
supported in pVACview. As described, for each neoan-
tigen, there are numerous prediction algorithm results 
available. How the scores are distributed across differ-
ent algorithms and whether the IC50 binding predic-
tion or percentile rank value should be utilized are all 
important aspects that require careful evaluation. If a 
neoantigen is expressed and predicted to bind well to 
an HLA allele, researchers should further consider the 
anchor and mutation locations of the peptide-MHC 
pairing. A subset of peptide positions are primarily pre-
sented to the T-cell receptor for recognition, while oth-
ers are primarily responsible for anchoring to the MHC 
(though neither role is exclusive). Whether the muta-
tion lies in an anchor region and how well the WT pep-
tide binds to the MHC create different scenarios that 
can influence whether a neoantigen remains a good 
candidate [21, 23].

Finally, in the setting of clinical trials, additional 
details influence the priority of neoantigens. Tumor 
samples are first collected from patients and put 
through a series of genomic analysis pipelines, includ-
ing DNA and RNA sequencing, variant detection, and 
expression estimation. Pipelines such as pVACtools 
then take these results and identify possible neoantigen 
candidates. Throughout this process, problems such as 
low tumor purity, contamination, and insufficient or 
excessive neoantigen candidates may arise. pVACview 
allows users to promptly adjust tiering of candidates 
based on tumor purity and expression levels. It also 
highlights the specific failing criteria, providing users 
the option to further explore criteria such as how to 
define anchor positions, with the flexibility of rescu-
ing candidates for samples with insufficient candidates 
for downstream applications such as neoantigen vac-
cines. For cases where an excessive number of neoan-
tigen candidates exist, pVACview effectively prioritizes 
candidates (based on calculated tiering, allele expres-
sion, and average mutant peptide binding affinity) while 
simultaneously allowing users to sort and annotate can-
didates based on features of their own choosing.

All the aspects described above are potentially critical 
in order to infer whether the presenting peptide sequence 
can successfully induce an immune response. pVACview 
was designed to present this complex information to 
researchers in an intuitive manner and aid in the prioriti-
zation and selection of neoantigen candidates for person-
alized cancer vaccines or other therapeutic and research 
applications. Basic and translational researchers can use 
pVACview to visualize neoantigen candidates along with 
detailed supporting information including that of the 
genomic variant, transcripts affected by the variant, and 

good-binding peptides predicted from the respective 
transcripts.

Conclusions
Accurate neoantigen prediction is critical to cancer 
immunotherapy treatments and several tools have been 
built to account for individual aspects throughout this 
process. However, these tools lack methods for inte-
gration and visualization, making it challenging for 
researchers to efficiently explore the many molecular 
and algorithmic features relevant to neoantigens, such 
as variant-, transcript-, and peptide-level information. 
pVACview integrates multiple levels of information into 
a visualization tool, allowing users to analyze each can-
didate in detail for optimal decision-making. This tool 
has been tested and used in clinical trials and research 
projects involving human, mouse, and canine model sys-
tems. We hope by using pVACview, researchers can ana-
lyze and prioritize neoantigen candidates with greater 
efficiency and accuracy. The application is available as 
part of the pVACtools pipeline and as an online web tool 
hosted on the Google Cloud Platform at www. pvacv iew. 
org.
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