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Abstract
Background  To utilize machine learning for identifying treatment response genes in diabetic foot ulcers (DFU).

Methods  Transcriptome data from patients with DFU were collected and subjected to comprehensive analysis. 
Initially, differential expression analysis was conducted to identify genes with significant changes in expression 
levels between DFU patients and healthy controls. Following this, enrichment analyses were performed to uncover 
biological pathways and processes associated with these differentially expressed genes. Machine learning algorithms, 
including feature selection and classification techniques, were then applied to the data to pinpoint key genes that 
play crucial roles in the pathogenesis of DFU. An independent transcriptome dataset was used to validate the key 
genes identified in our study. Further analysis of single-cell datasets was conducted to investigate changes in key 
genes at the single-cell level.

Results  Through this integrated approach, SCUBE1 and RNF103-CHMP3 were identified as key genes significantly 
associated with DFU. SCUBE1 was found to be involved in immune regulation, playing a role in the body’s response 
to inflammation and infection, which are common in DFU. RNF103-CHMP3 was linked to extracellular interactions, 
suggesting its involvement in cellular communication and tissue repair mechanisms essential for wound healing. The 
reliability of our analysis results was confirmed in the independent transcriptome dataset. Additionally, the expression 
of SCUBE1 and RNF103-CHMP3 was examined in single-cell transcriptome data, showing that these genes were 
significantly downregulated in the cured DFU patient group, particularly in NK cells and macrophages.

Conclusion  The identification of SCUBE1 and RNF103-CHMP3 as potential biomarkers for DFU marks a significant 
step forward in understanding the molecular basis of the disease. These genes offer new directions for both diagnosis 
and treatment, with the potential for developing targeted therapies that could enhance patient outcomes. This study 
underscores the value of integrating computational methods with biological data to uncover novel insights into 
complex diseases like DFU. Future research should focus on validating these findings in larger cohorts and exploring 
the therapeutic potential of targeting SCUBE1 and RNF103-CHMP3 in clinical settings.
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	• 1. This is the first report identifying SCUBE1 and RNF103-CHMP3 as therapeutic targets for diabetic foot ulcers 
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Introduction
Diabetic foot ulcers (DFU) are common and serious 
complications among diabetic patients, characterized 
by high incidence and disability rates, which impose a 
heavy burden on patients and their families (Cloete 2022; 
McDermott et al. 2023; Sorber and Abularrage 2021). 
The pathogenesis of DFU is complex and multifactorial, 
involving various factors such as poor blood sugar con-
trol, peripheral neuropathy, peripheral arterial disease, 
and infection. These factors interact, leading to difficul-
ties in wound healing in the patients’ feet (Bodman et al., 
2024; Guo et al. 2023). Despite continuous advancements 
in modern medical technology, the treatment of DFU 
remains a significant challenge (Holl et al. 2021; Deng et 
al. 2023; Subramaniam et al. 2021). Globally, millions of 
patients undergo lower limb amputations annually due to 
DFU, severely affecting their quality of life of patients but 
also imposing a substantial economic burden on health-
care systems (Gong et al. 2023; Enweluzo et al. 2021; 
Collins et al. 2022). With the continuous increase in the 
prevalence of diabetes, the incidence of DFU continues 
to increase, highlighting the urgent need for in-depth 
research into its pathogenesis to develop more effective 
diagnostic tools and treatment strategies (OuYang et al. 
2023; Kaka et al. 2023).

Currently, the clinical management of DFU primarily 
relies on traditional wound care, antimicrobial therapy, 
and blood sugar control (McDermott et al. 2023; Wang 
et al. 2022a; Yang et al. 2022). However, the incomplete 
understanding of the molecular mechanisms underly-
ing DFU limits the efficacy of existing diagnostic tools 
and treatments, often resulting in high recurrence rates 
(Liu et al. 2023; Deng et al. 2023; Yu et al. 2023). Con-
ventional treatment approaches often focus on infection 
control and improving local blood circulation but lack 
specificity towards addressing the fundamental mecha-
nisms of the pathology (Deng et al. 2023; Barutta et al. 
2022; Yang et al. 2023). This scenario highlights a signifi-
cant bottleneck in the field of DFU research, namely the 
lack of a profound understanding of its molecular biology 
mechanisms (Zhang et al. 2023a; Zou et al. 2022; Miron 
et al. 2023). Therefore, exploring the molecular biology 
mechanisms of DFU, especially genes and pathways asso-
ciated with its treatment response, holds crucial clinical 

significance (Zhang et al. 2023a; Zou et al. 2022; Miron 
et al. 2023). This endeavor facilitates the development of 
more personalized and precise treatment strategies, ulti-
mately improving patient outcomes (Russo et al. 2023; 
Tran and Haley 2021; Qi et al. 2023).

Transcriptomic technology, which comprehensively 
analyzes gene expression patterns, has emerged as a 
powerful tool for uncovering disease-related genes and 
molecular pathways, making it indispensable for inves-
tigating the molecular mechanisms of complex diseases 
(Benck et al. 2022; Lu and Keleş 2023). Building on this 
foundation, the integration of machine learning tech-
niques has introduced novel methods and tools for ana-
lyzing high-throughput data (Tran et al. 2021; Heumos et 
al. 2023; Ding et al. 2022). Machine learning algorithms 
excel at managing vast biological datasets, allowing for 
the identification of disease-associated genes and pre-
dicting their roles in disease diagnosis and treatment (Su 
et al. 2022; Dai et al. 2024; Song et al. 2023). By combin-
ing differential expression analysis with machine learning 
algorithms, key genes related to DFU can be identified 
from extensive transcriptome data, offering new per-
spectives for understanding its molecular mechanisms 
(Zhang et al. 2023b; Zhou et al. 2024). These genes not 
only serve as biomarkers for early diagnosis but also pres-
ent potential targets for therapeutic interventions (Li et 
al. 2022; Yao et al. 2021; Feng et al. 2022).

This study utilized transcriptome data related to DFU 
downloaded from the Gene Expression Omnibus (GEO) 
database to conduct differential expression analysis, iden-
tify candidate genes, and conduct Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG), and 
Disease Ontology (DO) enrichment analyses to unveil the 
significant pathway alterations and biological processes 
in DFU patients after treatment. LASSO regression 
model and SVM-RFE machine learning algorithms were 
subsequently employed to further identify feature genes 
associated with DFU treatment response, evaluating their 
performance in DFU diagnosis through ROC curves and 
AUC values. Additionally, regulatory networks of core 
feature genes were explored, and in combination with 
the single-sample gene set enrichment analysis (ssGSEA) 
analysis algorithm, the impact of these feature genes on 
the molecular mechanisms of DFU was elucidated. The 

	• 2. Our study found that SCUBE1 and RNF103-CHMP3 were significantly downregulated in patients who were 
cured of DFU.

	• 3. This study discovered that SCUBE1 and RNF103-CHMP3 are associated with extracellular interactions.
	• 4. Our findings indicate that SCUBE1 and RNF103-CHMP3 are related to immune cell infiltration.
	• 5. This study provides new theoretical foundations and molecular targets for the diagnosis and treatment of 

DFU.

Keywords  Diabetic Foot Ulcers, Transcriptome sequencing, Machine learning, SCUBE1, RNF103-CHMP3, Early 
diagnosis



Page 3 of 15Yu et al. Molecular Medicine          (2024) 30:215 

integration of these methods not only enhances the pre-
cision and reliability of the research but also provides 
new insights into unraveling the intricate molecular 
mechanisms underlying DFU.

This study aims to employ machine learning techniques 
to analyze transcriptome sequencing data, identifying 
genes associated with the treatment response of DFU to 
provide new molecular targets for the early diagnosis and 
treatment of DFU. By identifying feature genes related 
to the treatment response of DFU, such as SCUBE1 and 
RNF103-CHMP3, and exploring their association with 
immune cell regulation and inflammatory responses, we 
aim to offer novel strategies and directions for the pre-
vention and treatment of DFU in the future. Specifically, 
SCUBE1 and RNF103-CHMP3 exhibit significant expres-
sion changes in DFU patients and are closely linked to 
immune responses and extracellular interactions. These 
gene alterations may directly impact the regulation of 
inflammatory responses and wound-healing processes. 
Therefore, the findings of this study not only contribute 
to enhancing the accuracy of DFU diagnosis but also have 
the potential to facilitate the implementation of personal-
ized therapies to improve clinical outcomes for patients. 
These research findings provide essential molecular tar-
gets and new strategic directions for the prevention and 
treatment of DFU in the future.

Materials and methods
Data download
Transcriptome data set GSE230426 related to DFU was 
downloaded from the GEO database ​(​​​h​t​​t​p​s​​:​/​/​w​​w​w​​.​n​c​b​i​.​
n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​/​​​​​)​. Fifteen samples were selected from 
patients with DFU infection at 0 weeks after treatment 
as the control group data set, while 15 samples from 
patients who had recovered at 8 weeks after infection 
were selected as the experimental group data set for a 
series of bioinformatics analyses.

The feature genes identified through machine learn-
ing were validated using the GSE80178 dataset from the 
GEO database. For this purpose, three diabetic non-foot 
ulcer samples and six diabetic foot ulcer samples were 
selected to further evaluate the expression differences of 
these genes in different conditions. Additionally, PBMC 
samples from the GSE165816 dataset in the GEO data-
base, which included three subjects with cured DFU and 
two subjects with uncured DFU, were downloaded.

Differential analysis
Differential gene expression analysis was performed on 
the sequencing data, comparing the samples from the 
control group at the start of treatment (0 weeks) with 
those from the experimental group at 8 weeks post-treat-
ment using the “limma” package in R software. Genes 
with │logFC│>1 and P-value < 0.05 were considered 

differentially expressed. The results of the differential 
analysis were visualized using the “ggplot2” package in R 
software to plot volcano plots.

The “VennDiagram” package in R software was used 
to identify common genes and create a Venn diagram to 
visualize the intersection of relevant genes.

Enrichment analysis
For gene set functional enrichment analysis, the gene-
GO annotations from the org.Hs.eg.db package (version 
3.1.0) in R software were utilized as the background. 
The genes were mapped to the background set, and the 
enrichment analysis was carried out using the cluster-
Profiler package (version 3.14.3) in R. A minimum gene 
set size of 5 and a maximum gene set size of 5000 were 
designated for the analysis. The GO analysis comprised 
biological processes (BP), molecular functions (MF), and 
cellular components (CC) analyses to detect enriched 
pathways. The objective of this analysis was to reveal the 
cellular functions, signaling pathways mainly influenced 
by candidate target genes, and enriched pathways associ-
ated with disease-related differential genes. For the DO 
enrichment analysis, the R package org.Hs.eg.db (version 
3.1.0) was employed to access gene annotations for the 
gene set, offering crucial background information. Subse-
quently, these genes were linked to the background set of 
DO to guarantee the association of each gene with a dis-
ease classification in the DO system. In the gene set func-
tional enrichment analysis, the latest gene annotations 
from the KEGG Pathway were obtained using the KEGG 
REST API as the background. The genes were then con-
nected to the background set, and the enrichment analy-
sis was conducted utilizing the R package clusterProfiler 
(version 3.14.3) to assess the enrichment of the gene set. 
A minimum of 5 genes and a maximum of 5000 genes 
were specified, with a P-value of < 0.05 considered as a 
significant criterion for enrichment.

Least absolute shrinkage and selection operator (LASSO) 
regression algorithm
In our bioinformatics research, the LASSO regression 
was employed to identify key genes associated with dis-
eases. To ensure experiment reproducibility, a random 
seed was initially set, and the glmnet package was uti-
lized to handle datasets containing a large number of 
variables. The candidate differentially expressed genes 
(DEGs) underwent preprocessing and were subjected 
to LASSO regression using the glmnet function. The 
data was treated as a binary classification problem, with 
the response variable derived from sample names using 
regular expressions. Model evaluation was performed by 
plotting the model object and employing cross-validation 
with cv.glmnet to determine the optimal lambda value. 
Ultimately, genes corresponding to non-zero coefficients 

https://www.ncbi.nlm.nih.gov/geo/
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obtained using the optimal lambda value were regarded 
as key genes linked to disease status and were then out-
putted. This approach not only accurately selected key 
genes but also improved prediction accuracy by reduc-
ing model overfitting, thereby effectively supporting bio-
marker discovery and research into disease mechanisms.

Support vector machine - recursive feature elimination 
(SVM-RFE) method
The SVM-RFE method was applied to identify key gene 
expression features associated with disease status. The 
analysis was initiated with the environment being set 
up by loading the necessary R packages “e1071,” “kern-
lab,” and “caret,” and followed by the retrieval of DEGs. 
Feature selection was carried out using the rfe function 
based on cross-validation, with SVM utilizing a radial 
basis kernel function and varying feature subset sizes. 
The evaluation of the analysis results was conducted by 
plotting the relationship between the number of features 
and the root mean square error (RMSE) of the model. 
Once the optimal feature set was determined, the rel-
evant genes were outputted. This method effectively 
selects key gene expression features, providing a scien-
tific basis for further research on diseases.

Construction of protein-protein interaction (PPI) network
A network of regulatory interactions among genes was 
built, and their regulatory factors were predicted using 
the GeneMANIA database (http://www.string-db.org/).

Immune cell correlation analysis
ssGSEA is a computational method used to assess the 
relative enrichment level of a specific gene set in an indi-
vidual sample. This method can generate an enrichment 
score for each sample, indicating whether the expression 
activity of a specific gene set in that particular sample has 
been upregulated or downregulated relative to the back-
ground gene expression. The ssGSEA method ranks genes 
based on expression data and then calculates an enrich-
ment score for each gene set using an empirical cumula-
tive distribution function (ECDF) based on the ranking 
positions of genes within and outside the gene set. The 
score is calculated by comparing the relative positions of 
genes within the gene set to those outside the gene set in 
the ranking, thus obtaining a score that reflects the rela-
tive enrichment level of gene set expression.

The experimental procedure begins by importing 
the necessary R packages (including reshape2, ggpubr, 
limma, GSEABase, and GSVA) to set up the environ-
ment for data processing and analysis. Next, establish the 
working directory and read the preprocessed transcrip-
tome data, which contains normalized gene expression 
values. Upon data import, convert it to a matrix format 
and ensure that the row names (gene names) and column 

names (sample names) are correctly set. Subsequently, 
utilize the getGmt() function to load the information 
defining the preselected immune-related gene sets from 
a .gmt file.

The ssGSEA analysis was executed using the gsva() 
function with the parameters method=’ssgsea’ to specify 
the use of the ssGSEA method, kcdf=’Gaussian’ to define 
the kernel density estimation function as a Gaussian dis-
tribution, and abs.ranking = TRUE to indicate the use of 
absolute ranking of genes for score computation. Upon 
completing the analysis, the ssGSEA scores obtained for 
each sample were normalized in preparation for subse-
quent statistical analysis and comparisons. Finally, the 
processed normalized ssGSEA scores were saved.

Single-cell transcriptome data processing and analysis
In the single-cell RNA sequencing (scRNA-seq) analysis 
pipeline, the data were first normalized using the Log-
Normalize method with a normalization factor of 10,000 
to ensure the comparability of gene expression levels 
across different cells. Next, the FindVariableFeatures 
method was used to select highly variable genes (top 
2000), which helps better characterize cell-to-cell differ-
ences in subsequent analyses. To further remove batch 
effects, the Harmony algorithm was applied for batch 
correction, making the data from different experimental 
batches more comparable. Cell cycle scoring was then 
performed to correct for the potential influence of the 
cell cycle on the data.

Principal component analysis (PCA) was used for 
dimensionality reduction, and the JackStraw method 
was employed to select significant principal compo-
nents, providing a foundation for subsequent clustering 
and visualization. For cell clustering, t-SNE, a nonlinear 
dimensionality reduction method, was used for clus-
ter analysis, and the FindClusters function was utilized 
to group cells, with the clustering results optimized by 
adjusting different resolution parameters. The overall 
quality control workflow included steps such as normal-
ization, batch correction, dimensionality reduction, and 
cell cycle correction to ensure the accuracy and reliability 
of the data analysis.

Statistical software and data analysis methods
This research utilized R software version 4.2.1, com-
piled through the integrated development environment 
RStudio version 4.2.1. Perl language was employed for 
file processing, with Perl version 5.30.0. The network 
visualization tool Cytoscape was utilized (version 3.7.2), 
along with the statistical software SPSS (IBM SPSS Statis-
tics, Chicago, IL, USA, version 21.0). Descriptive statis-
tics were presented as means ± standard deviations, and 
between-group comparisons were conducted using inde-
pendent samples t-test. For comparisons across different 

http://www.string-db.org/
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time points within each group, repeated measures analy-
sis of variance was applied, followed by Bonferroni post-
hoc tests. A significance level of P < 0.05 was used to 
determine statistical significance.

Results
Enrichment analysis reveals significant biological changes 
in the treatment process of DFU
DFU is a common complication that affects the quality 
of life and health of millions of diabetes patients world-
wide. This chronic wound is not only difficult to heal but 
also prone to infections and, in severe cases, may result 
in amputation (Bolton 2022). Despite the availability 
of various treatments, such as pharmacotherapy, surgi-
cal interventions, and emerging biotechnological thera-
pies, the effectiveness of treatment varies significantly 
among individual patients. This variability underscores 
the pressing need to identify reliable biomarkers to pre-
dict treatment responses and tailor personalized medical 
interventions (Agidigbi et al. 2023).

With the advancement of transcriptomics technolo-
gies, we are now able to systematically analyze the gene 
expression patterns of DFU patients to identify key genes 
associated with treatment response (Wang et al. 2021). 
However, traditional biological statistical methods often 
struggle to handle the high dimensionality and com-
plexity of transcriptome data. In this context, machine 
learning techniques have shown immense potential in 
screening genes associated with treatment response due 
to their exceptional data mining capabilities and pat-
tern recognition performance. By employing machine 
learning methods, we can not only effectively identify 
potential treatment response markers from large-scale 
transcriptome data but also gain a deeper understanding 
of the molecular mechanisms underlying DFU (Wang et 
al. 2022b).

To identify key genes associated with the treatment 
response of DFU and provide a scientific basis for per-
sonalized treatment of DFU, we downloaded a DFU-
related transcriptome dataset from the GEO database 
and utilized machine learning techniques to assist in the 
analysis of the transcriptome data. By comparing the 
samples from the control group at week 0 after the start 
of treatment with the healed samples at 8 weeks post-
treatment, we conducted an in-depth exploration. The 
differential analysis revealed that 102 genes were signifi-
cantly upregulated in the experimental group, while 548 
genes were significantly downregulated (Fig.  1A). Fur-
ther, GO/KEGG enrichment analysis unveiled the bio-
logical expression differences, indicating that the DEGs 
were mainly enriched in BP such as humoral immune 
response, regulation of humoral immune response, 
and regulation of acute inflammatory response. The 
CC processes showed enrichment in the extracellular 

region, extracellular region part, and extracellular space. 
Moreover, in terms of MF, significant enrichment was 
observed in antigen binding, glycosaminoglycan bind-
ing, and heparin binding (Fig.  1B-D). Additionally, the 
KEGG enrichment analysis results suggested that the 
DEGs were mainly enriched in pathways such as Amoe-
biasis, IL-17 signaling pathway, and Cellular senes-
cence (Fig. 1E). These results indicate that the treatment 
response of DFU may involve multiple BP and MF, par-
ticularly pathways associated with interactions related to 
immune response and extracellular regions. The signifi-
cant enrichment of DEGs in immune regulation, espe-
cially in humoral immune response, regulation of acute 
inflammatory response, and extracellular region func-
tions, suggests that these BP may play a crucial role in the 
healing process of DFU. Additionally, the enrichment of 
these genes in MF such as antigen binding and heparin 
binding implies their potential involvement in patho-
gen recognition and immune response, which is vital for 
infection control and wound healing (Rong et al. 2022; 
Theocharidis et al. 2020). KEGG pathway analysis fur-
ther reveals the importance of the IL-17 signaling path-
way and cellular senescence processes, indicating that the 
modulation of these pathways may be key mechanisms in 
treatment response. The IL-17 signaling pathway plays a 
central role in regulating inflammation and host defense, 
while the involvement of cellular senescence processes 
may impact cell turnover and wound repair efficiency 
(Zhang et al. 2022). The enrichment of the Amoebiasis 
pathway may suggest that specific infectious pathogens 
or related host responses could play a role in the patho-
logical process of DFU.

Furthermore, we conducted a DO enrichment analy-
sis to uncover the disease processes associated with the 
response to DFU treatment. The results revealed a strong 
association of numerous DEGs with certain diseases such 
as “bacterial infectious disease,” “leukocyte diseases,” and 
“hypersensitivity reaction.” These diseases demonstrated 
larger point sizes and lower q-values, indicating a high 
level of statistical significance in the enrichment (Fig. 1F). 
This enrichment pattern suggests that biological path-
ways related to these diseases may play a central role in 
the treatment response of DFU. Diseases like “congestive 
heart failure” and “atherosclerosis” were also identified in 
the analysis; despite involving fewer genes, their enrich-
ment still exhibited significance, potentially reflecting a 
link between pathological changes in the cardiovascular 
system and the treatment response of DFU.

The above results indicate that DFU is closely associ-
ated with immune response, extracellular matrix interac-
tion, and cardiovascular system changes. Furthermore, 
significant correlations were observed in specific dis-
ease pathways, such as bacterial infection and leuko-
cyte diseases, providing important molecular targets 
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and biological insights for future targeted treatment 
strategies.

Machine learning for selection of DFU treatment response 
feature genes
In order to further select characteristic genes for DFU 
treatment response, we utilized the Support Vector 
Machine-Recursive Feature Elimination (SVM-RFE) 
method to identify key gene expression features associ-
ated with the disease status. Based on the expression 

data of differentially expressed genes, we employed the 
rfe function for feature selection using cross-validation, 
incorporating SVM with radial basis kernel function and 
varying feature subset sizes. The analysis results were 
evaluated by plotting the relationship between the num-
ber of features and the RMSE of the model, indicating 
that all 650 differentially expressed genes met the opti-
mal feature criteria (Fig.  2A). To further narrow down 
the number of feature genes, we conducted a regression 
analysis to fit the 650 differential genes and eliminate 

Fig. 1  Enrichment analysis reveals significant biological changes during the dfu treatment process
Note: (A) Volcano plot of DEGs in peripheral blood between pre-treatment and post-treatment healed DFU patients, with red indicating upregulated 
genes, blue indicating downregulated genes, and grey indicating genes with no significant difference; (B) Enriched BP in the GO enrichment analysis of 
DEGs; (C) Enriched CC in the GO enrichment analysis of DEGs; (D) Enriched MF in the GO enrichment analysis of DEGs; (E) Results of KEGG pathway enrich-
ment analysis of DEGs; (F) Results of DO enrichment analysis of DEGs. The sample size for each group of patients was n = 15
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Fig. 2  Machine learning algorithm for selecting feature factors in DFU treatment response
Note: (A) SVM-RFE feature curve, with the x-axis representing the number of genes and the y-axis representing the cross-validation error; (B) Distribution 
of LASSO coefficients for DEGs; (C) Selection of the optimal parameter (lambda) for the LASSO model; (D) Feature factors selected for DFU treatment by 
machine learning algorithms; (E) Network of SCUBE1, RNF103-CHMP3, and their regulatory factors, where red lines indicate physical interactions, purple 
indicates co-expression relationships, and yellow suggests potential interactions
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redundant features. The identified DFU candidate fea-
ture genes underwent Lasso regression using the “glm-
net” function to model the data as a binary classification 
problem, with categories extracted from sample names 
as response variables. The model assessment involved 
plotting the model objects and applying cross-valida-
tion using “cv.glmnet” to determine the optimal lambda 
value (Fig. 2B). Ultimately, genes corresponding to non-
zero coefficients extracted by the optimal lambda value 
were considered crucial genes related to the disease state, 
resulting in the final identification of 16 feature factors 
(Fig.  2C-D). Verification through the GeneCards online 
database eliminated long non-coding RNAs, pseudo-
genes, or other genetic elements, leading to the selection 
of feature genes SCUBE1 and RNF103-CHMP3. Further-
more, the prediction of their regulatory relationships and 
regulators was carried out using the GeneMANIA data-
base, revealing a total of 23 regulatory factors (Fig. 2E).

Subsequently, we visualized the expression levels of 
SCUBE1 and RNF103-CHMP3 in the control and experi-
mental groups, revealing significant downregulation 
post-treatment (Fig. S1A-B). Further investigation into 
their prognostic significance in DFU was conducted, 
plotting ROC curves which demonstrated that the AUC 
values of SCUBE1 and RNF103-CHMP3 were both 
greater than 0.8. This indicates their strong diagnostic 
value (Fig. S1C-D). These findings demonstrate that the 
machine learning algorithm successfully identified the 
DFU treatment response feature genes SCUBE1 and 
RNF103-CHMP3, which exhibit promising diagnostic 
potential.

To further test the diagnostic efficacy of SCUBE1 and 
RNF103-CHMP3, we validated their expression using 
the GSE80178 dataset. Our data showed that compared 
to non-foot ulcer samples (Non), the expression levels 
of SCUBE1 and RNF103-CHMP3 were elevated in dia-
betic foot ulcer (DFU) samples (Fig. S2A-B). Moreover, 
the ROC curve analysis revealed that the AUC values of 
SCUBE1 and RNF103-CHMP3 were both greater than 
0.72, indicating a good diagnostic value (Fig. S2C-D).

The immunoregulatory role of key feature factors
In previous analyses of BP, we observed that DFU is 
closely associated with immune responses, extracellu-
lar interactions, and cardiovascular changes. Moreover, 
they exhibit significant links in specific disease path-
ways, such as bacterial infections and leukocyte dis-
orders. The immune system of diabetic patients often 
experiences functional impairment due to a hyperglyce-
mic environment, affecting the functions of leukocytes, 
including chemotaxis, phagocytosis, and bactericidal 
activity, thereby rendering DFU susceptible to infec-
tions and delayed healing (Boulton et al., 2022; Ead and 
Armstrong 2023). Studies indicate that inflammatory 

cells, such as macrophages and neutrophils, play piv-
otal roles in the formation and healing of DFU, while the 
extracellular matrix provides a crucial scaffold for tis-
sue reconstruction. Glycation under diabetic conditions 
and diabetes-related inflammation may disrupt normal 
matrix composition and extracellular signaling, thereby 
affecting wound healing processes (Zeng et al. 2022; Lin 
et al. 2022; Ead and Armstrong 2023).

The protein encoded by SCUBE1 is associated with 
angiogenesis and cell signaling, potentially influencing 
the function of vascular endothelial cells, thus playing 
a role in vascular changes and wound healing in diabe-
tes (Lin et al. 2023). Proteins involved in the RNF103-
CHMP3 complex may be implicated in endocytosis 
and the regulation of cell signaling, which could affect 
the release of inflammatory mediators and the immune 
response in wound healing (Wu and Lu 2019).

To further elucidate the impact of key regulatory fac-
tors on immune cells and activities in DFU, we conducted 
ssGSEA to investigate immune differences between 
the control group (treated 0 weeks post-DFU infection) 
and the experimental group (treated 8 weeks post-DFU 
infection, healed). The results revealed that compared 
to the control group, Eosinophils, Immature dendritic 
cells, Mast cells, and Neutrophils significantly decreased 
after treatment (Fig.  3A). Subsequently, we conducted 
an analysis of the correlation between feature genes and 
immune cells. The results revealed a significant negative 
correlation between RNF103-CHMP3 and Natural killer 
T cells, Type 17 T helper cells, and Type 2 T helper cells, 
while SCUBE1 showed a significant positive correlation 
with Plasmacytoid dendritic cells, Monocytes, Immature 
dendritic cells, and Activated dendritic cells (Fig.  3B). 
This outcome indicates that during the treatment of DFU, 
there were significant changes in the activity of specific 
immune cell populations, which were associated with 
the expression levels of key feature genes. The observed 
decrease in immune cells after treatment, such as Eosin-
ophils, Immature dendritic cells, Mast cells, and Neu-
trophils, may reflect the positive impact of treatment in 
alleviating inflammation and promoting wound healing.

The gene RNF103-CHMP3 shows a significant nega-
tive correlation with Natural killer T cells, Th17 cells, 
and Th2 cells, indicating a potential inhibitory role of this 
gene in regulating the activity of these cell types. This 
may be in line with its low expression in diseased states, 
suggesting that during treatment and healing processes, 
related immune responses are weakened, contributing 
to a reduction in sustained inflammation. Additionally, 
the expression of SCUBE1 exhibits a significant positive 
correlation with Plasmacytoid dendritic cells, Mono-
cytes, Immature dendritic cells, and Activated dendritic 
cells, suggesting that SCUBE1 may play an activating 
role in immune responses mediated by these cells. The 
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Fig. 3  Immunomodulatory effects of key feature factors in the healing process of DFU
Note: (A) Violin plots showing immune changes between the control group (DFU treated at 0 weeks post-infection) and the experimental group (DFU 
treated at 8 weeks post-infection, healed); (B) Heat map showing the correlation of SCUBE1 and RNF103-CHMP3 with immune cells. *** denotes P < 0.001 
compared to the control group; ** denotes P < 0.01 compared to the control group; * denotes P < 0.05 compared to the control group
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downregulation of SCUBE1 after treatment may be asso-
ciated with the adjustment of immune responses during 
treatment, aiding in reducing immune-mediated damage 
and promoting healing.

The results above indicate the presence of a complex 
interaction network between specific immune cells and 
key feature genes during the treatment and healing pro-
cess of DFU. These genes are not only associated with 
expression changes during disease progression and spe-
cific immune cell activities, but their alterations may 
directly impact the regulation of inflammatory responses 
and the wound-healing process.

Expression levels of SCUBE1 and RNF103-CHMP3 in single-
cell transcriptome data
PBMC samples from three subjects with cured DFU 
and two subjects with uncured DFU were downloaded 
from the GSE165816 dataset in the GEO database. The 
sequencing data were processed through normalization, 
scaling, clustering, and selection of highly variable genes. 
Dimensional reduction clusters are displayed in a 2D plot 
generated after t-SNE (PCA) clustering based on these 
2000 highly variable genes (Fig.  4A). A total of 14 cell 
clusters were identified, and marker genes for each cell 
cluster are shown in Fig.  4B and Fig. S3. Further analy-
sis revealed that SCUBE1 was primarily expressed in 
NK cells, with downregulated expression in NK cells of 
cured patients (P < 0.001) (Fig. 4C). RNF103-CHMP3 was 
expressed in macrophages, with reduced expression lev-
els in macrophages of cured patients (P < 0.01) (Fig. 4D).

Discussion
This study utilized machine learning techniques to iden-
tify genes associated with the treatment response of 
DFU, revealing SCUBE1 and RNF103-CHMP3 as poten-
tial molecular targets for early diagnosis and treatment of 
DFU. The identification of these genes not only elucidates 
the molecular mechanisms of DFU but also offers poten-
tial targets for future personalized treatment strategies. 
Our findings indicate significant changes in the expres-
sion of SCUBE1 and RNF103-CHMP3 in DFU patients, 
showing close associations with immune responses, 
extracellular interactions, and inflammation regula-
tion. These discoveries are of paramount importance 
for understanding the pathogenesis of DFU and provide 
novel avenues for clinical interventions.

LASSO regression, implemented using the glmnet 
function, is widely used in biomedical research, par-
ticularly for identifying key genes associated with dis-
eases due to its ability to handle high-dimensional data 
and reduce overfitting by selecting the most predic-
tive features. The effectiveness of this approach has 
been validated in various studies. For example, one 
study employed LASSO regression to identify potential 

biomarkers in breast cancer, successfully extracting sig-
nificant genes from large datasets (Liu and Wong 2019). 
Another study on cardiovascular diseases demonstrated 
that LASSO regression could identify important genes 
related to disease mechanisms and prognosis (Rand-
hawa and Acharya 2015). Additionally, in liver disease 
research, LASSO regression was used to analyze gene 
expression profiles, identifying critical genes that serve as 
diagnostic markers (PMC8150479). Compared to previ-
ous studies, this research demonstrates significant meth-
odological innovation (Chen et al. 2023; Huang et al. 
2023; Schmidt et al. 2022). Traditional DFU studies have 
mainly relied on biomarker screening and functional vali-
dation, whereas this study uniquely integrates machine 
learning techniques with transcriptome data analysis, sig-
nificantly enhancing the accuracy and reliability of gene 
selection (Li et al. 2023). We utilized LASSO regression 
models and SVM-RFE algorithms to screen feature genes 
associated with DFU treatment response from extensive 
gene expression data (Liang et al. 2024). This approach 
not only improves research efficiency but also reduces 
the impact of human bias, offering greater reproducibil-
ity and accuracy. Our study provides new perspectives 
and methods for exploring the molecular mechanisms of 
DFU.

SCUBE1 is a protein associated with the extracellu-
lar matrix and plays significant roles in biological pro-
cesses such as angiogenesis, cell migration, and tissue 
regeneration (Lin et al. 2023). Studies have found that 
SCUBE1 levels are significantly elevated in the serum of 
diabetic patients, which may be associated with chronic 
inflammatory responses induced by diabetes. Inflamma-
tion is a crucial factor in the development of DFU, and 
SCUBE1 may contribute to DFU progression by modu-
lating inflammatory responses (Synge 2013; Robin et al. 
2017). The involvement of SCUBE1 in regulating immune 
responses suggests its critical role in DFU pathogenesis 
by influencing inflammation, which is essential for effec-
tive infection control and wound healing.

RNF103 (Ring Finger Protein 103) and CHMP3 
(Charged Multivesicular Body Protein 3) are crucial reg-
ulatory factors in intracellular signal transduction and 
protein degradation processes. RNF103 has been shown 
to participate in inflammatory responses through the 
regulation of apoptosis pathways, while CHMP3 plays 
a vital role in multivesicular body (MVB) formation 
within cells. The formation of MVBs is closely related to 
intracellular signal transduction and material transport, 
processes that are critical for cellular communication 
and immune modulation in DFU (Isaacs 2018; Mathe 
et al. 2020). These pathways highlight how RNF103 and 
CHMP3 interact in DFU pathogenesis, emphasizing their 
roles in modulating inflammation and maintaining tissue 
integrity during wound healing.
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The importance of the immune response in the patho-
genesis of DFU has been widely recognized (Rubitsc-
hung et al. 2021; Senneville et al. 2024; Awasthi et al. 
2022). The chronic inflammatory state of DFU leads to 
delayed wound healing and susceptibility to infections 

(Rodríguez-Rodríguez et al. 2021; Justynski et al. 2023). 
Our study demonstrates that SCUBE1 and RNF103-
CHMP3 are closely associated with various immune 
cell activities, particularly in regulating inflammatory 
responses. This finding aligns with previous research 

Fig. 4  Single-cell RNA sequencing data showing different cell types and differential expression of key genes
Note: (A) t-SNE clustering visualization shows the results of clustering single-cell RNA sequencing data using t-SNE, with different colors representing 
various cell types, including macrophages, NK cells, T cells, and others, totaling 14 cell types. (B) The dot plot shows the expression levels and percent-
ages of selected genes across different cell types. The size and intensity of the color indicate the proportion of cells expressing the gene and the average 
expression level in the corresponding cell type. (C-D) Expression levels of SCUBE1 and RNF103-CHMP3 in single-cell transcriptome data, with the right 
panels showing the distribution of gene expression in different treatment groups (cured vs. uncured) in t-SNE space, where darker blue represents higher 
expression levels in those cells. *** indicates P < 0.001 compared to the control group; ** indicates P < 0.01 compared to the control group
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indicating the dual role of the immune response in DFU, 
where it aids in infection resistance but may also lead to 
tissue damage due to excessive reactions (Liu et al. 2021a; 
Rubitschung et al. 2021; Senneville et al. 2024). By uncov-
ering the roles of these key genes in immune regulation, 
we provide new evidence to enhance understanding of 
the immune mechanisms underlying DFU.

The extracellular interactions play a vital role in the 
pathological process of DFU (Liu et al. 2021b; Armstrong 
et al. 2021). Wound healing relies on the interactions 
between cells and the extracellular matrix, a process that 
is often severely disrupted in DFU patients (Chang and 
Nguyen 2021; Liu et al. 2022; Subramaniam et al. 2021). 
Our study reveals the significant involvement of SCUBE1 
and RNF103-CHMP3 in extracellular interactions, align-
ing with previous research findings. Specifically, the role 
of SCUBE1 in cell migration and tissue remodeling may 
explain its importance in the wound healing of DFU. By 
elucidating the specific mechanisms of action of these 
genes, we offer a new perspective for the pathological 
research of DFU.

The potential applications of machine learning technol-
ogy in the study of DFU are vast (Das et al. 2023; Cassidy 
et al. 2021; Haque et al. 2022). This study demonstrates 
that by integrating machine learning algorithms with 
transcriptome data analysis, not only has the accuracy of 
the research been enhanced, but it has also introduced 
new methods for investigating the molecular mecha-
nisms of complex diseases. In the future, as data vol-
ume continues to increase and algorithms are further 
optimized, machine learning technology may play an 
increasingly important role in disease diagnosis, prog-
nosis assessment, and personalized treatment. It is rec-
ommended that future research continues to explore the 
application of machine learning technology in the study 
of DFU and other complex diseases to further enhance 
the efficiency of gene selection and functional validation.

This study utilized machine learning techniques to ana-
lyze transcriptome data and successfully identified sensi-
tive genes closely associated with the treatment response 
of DFU. Enrichment analysis was conducted to investi-
gate the key BP enriched by these genes. Furthermore, 
a selection process was performed utilizing SVM-RFE 
and Lasso algorithms. By integrating immune correlation 
analysis, the study revealed the impact and mechanism of 
the candidate genes on DFU (Fig. 5). The results indicated 
a close association of DFU with immune response, extra-
cellular interactions, and cardiovascular system changes. 
Moreover, significant correlations were observed in spe-
cific disease pathways, such as bacterial infections and 
leukocyte disorders. The machine learning algorithm 
identified candidate genes for DFU treatment response, 
including SCUBE1 and RNF103-CHMP3, which demon-
strated good diagnostic value. These genes were closely 

associated with specific immune cell activities, and their 
variations could directly affect the regulation of inflam-
matory responses and wound-healing processes.

Conclusion
This study employed machine learning techniques to 
identify the characteristic genes SCUBE1 and RNF103-
CHMP3 in the treatment response of DFU from exten-
sive transcriptome data. These genes play crucial roles in 
immune regulation and extracellular interactions in DFU, 
revealing the molecular mechanisms of DFU and provid-
ing novel biomarkers. The identification of SCUBE1 and 
RNF103-CHMP3 not only offers potential molecular 
targets for the early diagnosis of DFU but also lays the 
foundation for the development of personalized treat-
ment strategies. These findings are expected to enhance 
the diagnostic accuracy and treatment outcomes for DFU 
patients, thus significantly improving their clinical prog-
nosis and quality of life.

While this study has made significant progress in the 
field of DFU research, there are still some limitations that 
need to be acknowledged. Firstly, the transcriptome data 
used in the study were sourced from public databases, 
with a relatively small sample size, and technical varia-
tions and experimental conditions among different datas-
ets may impact the accuracy of gene expression. Secondly, 
the selection and parameter settings of machine learn-
ing algorithms could influence the results of gene selec-
tion, necessitating further optimization and validation. 
Additionally, this study predominantly relied on bioin-
formatics analysis and machine learning techniques for 
data processing and gene selection, lacking experimental 
validation, which somewhat restricts the applicability and 
reliability of the research findings. Future efforts should 
focus on validating these discoveries through more clini-
cal and experimental studies to ensure their effectiveness 
in practical applications.

Future research should focus on increasing sam-
ple sizes to enhance the universality and reliability of 
research results. Furthermore, optimizing machine learn-
ing algorithms and data processing methods can improve 
the accuracy and efficiency of gene selection. Combin-
ing bioinformatics analysis with experimental validation 
may aid in a more comprehensive understanding of the 
specific mechanisms of SCUBE1 and RNF103-CHMP3 
in DFU and explore their potential roles in other dis-
eases. The development of personalized treatment strat-
egies based on these targets, such as specific drugs or 
gene therapy, holds promise for significantly improving 
the clinical prognosis of DFU patients. Through inter-
disciplinary collaboration and technological innovation, 
breakthroughs and advancements in the prevention, 
diagnosis, and treatment of DFU are anticipated, ulti-
mately benefiting a larger number of patients.
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