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ABSTRACT
Background. Cancer-associated fibroblasts (CAFs) and hepatocellular carcinoma
(HCC) cells interact to promote HCC progression, but the underlying mechanisms
remain unclear. Serpin family E member 1 (SERPINE1) has conflicting roles in
HCC, and microRNAs (miRNAs) are known to regulate tumor progression through
intercellular communication. Therefore, we investigated the potential involvement of
miRNA/SERPINE1 axis in crosstalk between CAFs and HCC cells.
Methods. In this study, candidate miRNAs targeting SERPINE1 3′ UTR were predicted
using multiple miRNA databases. The miRNAs and SERPINE1 mRNA expression
in Huh7 cells was assessed after co-culture with CAFs using RT-qPCR. Huh7 cell
proliferation and invasion were detected after SERPINE1 siRNA. The functions of
the CAF-derived miR-642a-3p/SERPINE1 axis in HCC cells were examined using
CCK-8, wound healing, transwell assays, western blot, and dual-luciferase reporter
assays.Moreover, a orthotopic xenograftmodel was used to investigate the contribution
of miR-642a-3p knockdown in HCC.
Results. SERPINE1 mRNA expression decreased, while miR-642a-3p expression
increased in Huh7 cells co-cultured with CAFs. SERPINE1 knockdown enhanced Huh7
cell proliferation and invasion as well as miR-642a-3p expression. miR-642a-3p overex-
pression promoted migration, invasion, and epithelial-mesenchymal transition (EMT)
in Huh7 cells by targeting SERPINE1, while miR-642a-3p knockdown yielded the
opposite effect. Rescue experiments confirmed that SERPINE1 knockdown attenuated
the inhibitory effects of miR-642a-3p knockdown on migration, invasion, and EMT
in Huh7 cells. Importantly, miR-642a-3p knockdown suppressed growth and EMT in
orthotopic liver tumors.
Conclusion. CAF-derivedmiR-642a-3p/SERPINE1 axis facilitatedmigration, invasion,
and EMT in the HCC cells, suggesting miR-642a-3p/SERPINE1 axis can be a potential
therapeutic target for HCC.
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INTRODUCTION
Liver cancer is a prevalentmalignant neoplasm ranking as the fourth leading cause of cancer-
related mortality (Ghafouri-Fard et al., 2021). Globally, in 2020, the incidence of new liver
cancer cases and associated deaths was 9.5 and 8.7 per 100,000 individuals, respectively,
with both rates exhibiting annual increases (Rumgay et al., 2022). Hepatocellular carcinoma
(HCC) is the most common primary liver malignancy and constitutes approximately 80–
90% of primary liver cancer (Ladd et al., 2024; Phoolchund & Khakoo, 2024; Sankar et al.,
2024). The primary cause of HCC is chronic liver disease, including cirrhosis and chronic
hepatitis (Sankar et al., 2024). Alcohol usage, non-alcoholic steatohepatitis (NASH),
hepatitis B virus (HBV), and hepatitis C virus (HCV) can all result in chronic hepatitis
(Phoolchund & Khakoo, 2024; Sankar et al., 2024). Despite significant advancements in
HCC treatment over recent decades, early detection remains challenging. Consequently,
more than 70% of patients are diagnosed at advanced disease stages, resulting in a markedly
low five-year survival rate following surgical intervention (Hou et al., 2022; Vogel et al.,
2022; Zhou & Song, 2021). Furthermore, chemotherapy resistance and recurrent disease
are major contributors to the poor prognosis of HCC patients (Ganesan & Kulik, 2023;Hou
et al., 2022). Consequently, the identification of biomarkers associated with HCC initiation
and progression is crucial for enhancing prevention, diagnostic accuracy, therapeutic
efficacy, and prognostication (Lv & Sun, 2024).

During tumorigenesis, a heterogeneous population of cells congregates around cancer
tissues, forming a distinctive microenvironment known as the tumor microenvironment
(TME) (Basak et al., 2023; Hoekstra et al., 2024; Yu, Huang & Guo, 2024). These cells are
recruited to fulfill pro-tumorigenic functions, enabling cancer cells to evade immune
surveillance and establish a tumor niche (Hoekstra et al., 2024; Yasuda & Wang, 2024; Yu,
Huang & Guo, 2024). Cancer-associated fibroblasts (CAFs), a predominant component of
the TME, exert a multitude of oncogenic effects within tumor tissues, including alterations
in tumor metabolism and immune reprogramming, facilitation of immune evasion,
enhancement of drug resistance, and modulation of the TME (Arpinati, Carradori &
Scherz-Shouval, 2024; Jing et al., 2024; Ye et al., 2024). Through the secretion of growth
factors, immunomodulatory molecules, and extracellular matrix proteins, CAFs remodel
the extracellular matrix and TME, thereby promoting metastasis, immune escape, and
therapeutic resistance in tumors (Arpinati, Carradori & Scherz-Shouval, 2024; Biffi &
Tuveson, 2021; Helms, Onate & Sherman, 2020; Miyai et al., 2020). Consequently, CAFs
have emerged as a focal point for clinical and preclinical investigations (Caligiuri &
Tuveson, 2023). In HCC, activated CAFs interact with HCC cells, expressing various pro-
proliferative and pro-invasive factors, thereby creating a permissive microenvironment
for HCC cell proliferation, growth, invasion, and migration (Schneider et al., 2024; Shang
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et al., 2024). Moreover, characterizing distinct CAF clusters has demonstrated prognostic
value in HCC, offering a novel therapeutic approach (Yu et al., 2022).

In HCC, CAFs stimulate serpin family E member 1 (SERPINE1) expression in tumor-
associated macrophages (TAMs), thereby promoting the malignant progression of HCC
cells through epithelial-mesenchymal transition (EMT) (Chen et al., 2021). As a member of
the serine protease inhibitor family, SERPINE1 is a critical regulator of extracellular
matrix remodelling (Higgins et al., 2019; Kong et al., 2021). This protein participates
in diverse physiological processes, including metabolism, inflammation, angiogenesis,
cancer, and aging (Sillen & Declerck, 2021; Wang et al., 2023a). SERPINE1 interacts with
biological ligands, such as vitronectin and cell surface receptors, to engage in pericellular
proteolysis, tissue remodeling, and cell migration (Sillen & Declerck, 2021). SERPINE1
has been implicated in multiple facets of cancer progression, including proliferation,
migration, invasion, EMT, angiogenesis, and drug resistance (Nagy, Munkácsy & Győrffy,
2021; Su et al., 2024a; Teng et al., 2021). Overexpressed in various cancers, including gastric
(Chen et al., 2022; Tutunchi et al., 2021), lung (Hong et al., 2022; Setiawan et al., 2024), and
colon (Wang et al., 2023b) cancers, SERPINE1 is classified as a pan-oncogene and is
associated with poor prognosis (Ju et al., 2024). However, the functional role of SERPINE1
in HCC remains controversial (Jin et al., 2020). While some studies report high SERPINE1
expression in HCC, promoting tumor progression (Zhang et al., 2021), others suggest a
tumor-suppressive role for SERPINE1, with overexpression inhibiting HCC cell invasion
(Wang et al., 2016). This complexity underscores the need for further investigation into
the multifaceted functions of SERPINE1 in HCC.

Non-coding RNAs (ncRNAs) play a pivotal role in controlling cell communication
within TME (Szymanowska et al., 2023). They regulate tumor cell proliferation, apoptosis,
metastasis, and drug resistance, and are therefore considered as potential cancer markers
(Chakrabortty et al., 2023; Iaccarino & Klapper, 2021). As a subset of ncRNAs, microRNAs
(miRNAs) are single strandmolecules with 20–24 nucleotides that bind tomRNA to control
the expression of post-transcriptional genes (Chakrabortty et al., 2023). Dysregulation of
miRNA expression is associated with cancer progression (Chakrabortty et al., 2023; Parsa-
Kondelaji et al., 2023). While aberrant expression of many miRNAs, including miR-22 (Hu
et al., 2023) and miR-17-5p (Zhou et al., 2024), has been linked to HCC progression, the
involvement of miRNAs in CAFs-HCC communication remains relatively unexplored (Su
et al., 2024b).

The purpose of this study was to investigate the role of CAF-derived miRNA on HCC
cells through regulating SERPINE1. First, we screen candidatemiRNAs targeting SERPINE1
through multiple miRNA databases (StarBase, miRwalk, TargetScan, and miRDB).
Subsequently, we analyzed whether CAFS-derived miR-642a-3p targeted SERPINE1
via co-culture of CAFs and HCC cells, real-time quantitative PCR (RT-qPCR), and dual-
luciferase reporter assays. Finally, the functional significance of miR-642a-3p/SERPINE1
axis in HCC cells was explored in vitro and in vivo to identify novel therapeutic targets for
HCC.
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MATERIALS AND METHODS
Cell culture
Huh7 cells (a human hepatoma cell line) and human hepatocellular CAFs were obtained
from Jiangsu KeyGEN Biotechnology Co., Ltd. (KeyGEN BioTECH, Nanjing, China)
and Shanghai Fusheng Industrial Co., Ltd. (Shanghai, China), respectively. The cells
were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (KeyGEN BioTECH)
supplemented with 10% fetal bovine serum (FBS) (Gibco, USA) and 1% penicillin-
streptomycin (P/S) (KeyGEN BioTECH) in a humidified incubator at 37 ◦C with 5%
CO2.

Huh7 cells and CAFs were co-cultured in a transwell system. CAFs were seeded in the
upper chamber of the transwell, while Huh7 cells were seeded in the lower chamber. A
transwell without CAFs served as the control. Co-culture was maintained for 48 h.

MiRNAs bioinformatics prediction
The miRNAs binding to SERPINE1 3′ untranslated region (UTR) were predicted using the
starBase (https://rnasysu.com/encori/), miRwalk (http://mirwalk.umm.uni-heidelberg.de/),
TargetScan (https://www.targetscan.org/vert_80/), and miRDB (https://mirdb.org/)
databases. The predicted miRNAs were intersected by Venn diagram.

Cell transfection
Huh7 cells were transfected with miR-642a-3p mimics, miR-642a-3p inhibitor,
or SERPINE1 siRNA (si-SERPINE1) (General Biology, Anhui, China) for 48 h
using Lipofectamine™ 3000 transfection reagent (Invitrogen, USA) according to the
manufacturer’s protocol. Briefly, 125 µL Opti-MEM medium containing 100 pmol
SERPINE1 siRNA (20 µM) or miR-642a-3p mimics/inhibitor (20 µM) and 5 µL
P3000™ reagent was gently mixed. Similarly, 125 µL Opti-MEM medium and 3.75 µL
Lipofectamine™ 3000 reagent were combined. The diluted Lipofectamine™ 3000 reagent
was then added to the diluted siRNA mixture, gently mixed, and incubated at room
temperature for 10-15 min. Once the cell confluence reached 70–80% in the 6-well plate,
250 µL of the transfection mixture was added, and the cells were cultured at 37 ◦C for
48 h. Negative control groups included cells transfected with miR-642a-3p mimics negative
control (mimics NC), miR-642a-3p negative inhibitor (inhibitor NC), or siRNA negative
control (si-NC). Each experimental group was performed in triplicate. The sequences of
the miR-381-3p mimics, inhibitor, SERPINE1 siRNA, and respective negative controls are
provided in Table 1.

CCK-8 assay
Huh7 cell proliferation was quantified using the CCK-8 Cell Proliferation Detection Kit
(KeyGEN BioTECH). Briefly, Huh7 cells transfected with either si-NC or si-SERPINE1
were cultured in 96-well plates for 48 h. Subsequently, 10 µL of CCK-8 reagent was added
to each well, followed by incubation at 37 ◦C for 2 h. Absorbance values were measured at
450 nm using an ELx800 Microplate Reader (BioTek, Winooski, VT, USA).
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Table 1 The sequences of the miR-642a-3p mimics, inhibitor, SERPINE1 siRNA, and respective NCs.

Name Sequence (5′ → 3′)

F: AGACACAUUUGGAGAGGGAACC
miR-642a-3p mimics

R: GGUUCCCUCUCCAAAUGUGUCU
F: UCACAACCUCCUAGAAAGAGUAGA

mimics NC
R: UCUACUCUUUCUAGGAGGUUGUGA

miR-642a-3p inhibitor GGUUCCCUCUCCAAAUGUGUCU
Inhibitor NC UCUACUCUUUCUAGGAGGUUGUGA

F: GGAAAGGAGCCGUGGACCATT
SERPINE1 siRNA#1

R: UGGUCCACGGCUCCUUUCCTT
F: CGACAUGUUCAGACAGUUUTT

SERPINE1 siRNA#2
R: AAACUGUCUGAACAUGUCGTT
F: GGCCAUGGAACAAGGAUGATT

SERPINE1 siRNA#3
R: UCAUCCUUGUUCCAUGGCCTT
F: UUCUCCGAACGUGUCACGUTT

siRNA NC
R: ACGUGACACGUUCGGAGAATT

Wound healing assay
Huh7 cells were seeded into six-well cell culture plates at a density of 1× 105 cells/mL and
incubated overnight. A sterile pipette tip was employed to create a scratch wound in each
well. Unattached cells were removed by washing with 1× PBS, followed by the replacement
of the culture medium with fresh medium. The cells were then concurrently transfected.
After a 48-hour incubation period, images were captured at 100× magnification using an
IX51 microscope (Olympus, Tokyo, Japan). Wound width was measured at 0 h (a) and 48
h (b), and the wound healing ratio [(a−b)/a×100%] was calculated to assess migratory
capacity.

Transwell assay
To assess Huh7 cell invasion, a 24-well transwell chamber (Corning Incorporated, USA)
coated with Matrigel (BD, Franklin Lakes, NJ, USA) was employed. The cells were seeded
at a density of 1 × 105 cells/mL within the transwell chamber. The lower chamber was
filled with 500 µL of DMEM supplemented with 10% FBS. Following a 48-hour incubation
period, the cells on the upper surface of the membrane were removed using cotton swabs.
The cells on the lower surface of the membrane were stained with 0.1% crystal violet
(Sigma) for 30 min at 37 ◦C, washed twice with 1× PBS, imaged using an IX51 microscope
(Olympus, Japan), and quantified.

Total RNA extraction and RT-qPCR
Total RNA was isolated using TRIzol Reagent (Invitrogen, USA) according to the
manufacturer’s protocol. RNA integrity was assessed via agarose gel electrophoresis, and
concentration and purity were determined using aNano100 spectrophotometer (Hangzhou
Allsheng Instruments Co., Ltd., Hangzhou, China). First-strand cDNA synthesis was
performed using the PrimeScript™ RT reagent Kit (Takara, Shiga, Japan) with total RNA
as a template. For miRNA expression analysis, reverse transcription was conducted with
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Table 2 The primer sequences of the genes.

Name Sequence (5′ → 3′)

F:ACACTCCAGCTGGGAGGCAGTGTATTGTTA
miR-449b-5p

R:TGGTGTCGTGGAGTCG
F: ACACTCCAGCTGGGACCTGAGGTTGTGCAT

miR-544b
R: TGGTGTCGTGGAGTCG
F: ACACTCCAGCTGGGAGACACATTTGGAGAG

miR-642a-3p
R: TGGTGTCGTGGAGTCG
F: ACACTCCAGCTGGGCCTCCCATGCCAAGA

miR-2116-3p
R: TGGTGTCGTGGAGTCG
F: ACACTCCAGCTGGGTGCCTAGGCTGAGACT

miR-3135a
R: TGGTGTCGTGGAGTCG
F: GGTGCTGGTGAATGCCCTCTAC

SERPINE1
R: TGCTGCCGTCTGATTTGTGGAA
F: AGATCATCAGCAATGCCTCCT

GAPDH
R: TGAGTCCTTCCACGATACCAA
F: CTCGCTTCGGCAGCACA

U6
R: AACGCTTCACGAATTTGCGT

a Bulge-Loop™ miRNA RT-PCR Starter Kit (RiboBio). GAPDH or U6 served as the
endogenous control gene. Quantitative PCR was performed using SYBR Green PCR Mix
(Takara) on a StepOnePlus Real-Time PCR System (ABI, USA). Relative gene mRNA and
miRNAexpression levelswere calculated using the 2−11Ct methodbased on three biological
replicates with three technical replicates each. The primers sequences for miR-642a-3p,
miR-3135a, miR-449b-5p, miR-642a-3p, miR-3135a, SERPINE1, GAPDH, and U6 were
synthesized by General Biosystems (Anhui) Co., Ltd. (Anhui, China) and are listed in
Table 2.

Western blotting
Total protein extraction and quantification were performed using a total protein extraction
kit (KeyGEN BioTECH) and a BCA protein content detection kit (KeyGEN BioTECH),
respectively, according to the manufacturer’s protocols. As described by previous
study (Chehade et al., 2021), the protein samples were separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently transferred
to polyvinylidene fluoride (PVDF) membranes. Immunoblotting was conducted using
primary antibodies against SERPINE1 (ab222754, Abcam), E-cadherin (ab76055, Abcam),
N-cadherin (66219-1-Ig, Proteintech), vimentin (bsm-33170m, Bioss), and GAPDH
(ab9485, Abcam) at dilutions of 1:1000, 1:1000, 1:2000, 1:1000, and 1:2000, respectively. A
secondary anti-rabbit IgG H&L antibody (ab6721, Abcam) was used at a dilution of 1:5000.
Protein bands were visualized using an enhanced chemiluminescence (ECL) detection kit
(KeyGEN BioTECH) and a ChemiDoc Touch 1708370 imaging system (Bio-Rad, USA).
Densitometric analysis was performed using ImageJ software.
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Dual-luciferase reporter assay
The 293T cells were seeded into 12-well plates. Upon reaching approximately 50%
confluency, pmirGLO-SERPINE1-WT or pmirGLO-SERPINE1-MUT recombinant
plasmid was co-transfected with miR-642a-3p mimics or negative control into 293T
cells using Lipofectamine™ 3000 transfection reagent (Invitrogen, USA). After a 48-hour
transfection period, 50 µL of cell lysate was transferred to each well of a 96-well black plate.
Subsequently, Dual-Glo® Luciferase Reagent (Promega, USA) was added, and firefly
luciferase luminescence was quantified using a Tecan Spark microplate reader (Tecan,
Männedorf, Switzerland). Finally, 100 µL of Dual-Glo® Stop & Glo® Reagent (Promega,
Madison, WI, USA) was added to each well to measure Renilla luciferase luminescence.
Relative luciferase activity was normalized to Renilla luciferase activity.

Animal model
Four- to six-week-old male BALB/c nude mice obtained from Shanghai Lingchang
Biotechnology Co., Ltd. were housed in single cages. The study protocol was approved
by the Institutional Animal Care and Use Committee of Nanjing Ramda Pharmaceutical
Co., Ltd. (IACUC-20230505) and carried out in accordance with the guidelines of the
Animal Care Committee. Mice were acclimatized for one week under standard specific
pathogen-free (SPF) conditions with a temperature of 20–26 ◦C, relative humidity of
40–70%, and a 12-hour light/12-hour dark cycle. Ten mice were randomly assigned to two
groups: NC and shmiR-642a-3p (n= 5). Under abdominal anesthesia, nude mice were
positioned supine, and the surgical site was disinfected. A midline abdominal incision was
made to expose the liver, and the liver lobe exterior to the incision was gently removed
with a cotton swab. Tumor cells were injected into the liver parenchyma approximately
three mm deep using a needle, delivering 100 µL of Huh7-luc cells (Shanghai Zhong Qiao
Xin Zhou Biotechnology Co., Ltd., China) at a density of 2 × 108 cells/mL. The liver was
repositioned, and the abdomen was closed layer by layer. One week post-inoculation, mice
in the NC and shmiR-642a-3p groups received intraperitoneal injections of 2 × 1011 vg
of AAV-vector or AAV-shmiR-642a-3p, respectively. The animals (n= 5 per group) were
monitored twice weekly for behavioral changes, food consumption, and weight. At eight
weeks, one mouse from each group was anesthetized with carbon dioxide and subjected
to liver tumor nodule examination (Fig. S1). The remaining mice were euthanized with
carbon dioxide, and their livers were excised and photographed. Liver tissues were divided:
one half was fixed in 4% paraformaldehyde, while the other half was snap-frozen in liquid
nitrogen and stored at −80 ◦C.

Hematoxylin-eosin (H & E) staining
Liver tissues were fixed in a 4% paraformaldehyde solution and subsequently embedded
in paraffin. Tissue sections with a thickness of 4 µm were prepared and stained with H&E.
Histomorphological analysis of each liver was conducted using a SLIDEVIEW VS200
research slide scanner (Olympus).
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Immunohistochemistry (IHC) assay
Livers were immediately immersed in 4% paraformaldehyde solution and fixed overnight.
Tissue blocks were embedded in paraffin and sectioned to a thickness of 4 µm.
Immunohistochemical staining for Ki67 expression in liver tissue was performed using
the EnVision two-step method. Rabbit anti-Ki67 (ab16667; Abcam) at a dilution of
1:50 served as the primary antibody. Subsequently, sections were incubated with a
specified HRP-conjugated secondary antibody (MXB Biotechnologies, Fuzhou, China).
Diaminobenzidine (DAB) solution (MXB Biotechnologies) and hematoxylin (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) were used for color development.
Ki67 expression in liver tissue was visualized using a SLIDEVIEW VS200 research slide
scanner (Olympus).

Statistical analysis
Data were analyzed using SPSS version 21.0 and presented as mean ± standard error
(SE) with at least three times. Independent-sample t -tests were employed to compare
differences between two groups, while one-way analysis of variance (ANOVA) was used to
assess differences among multiple groups. Post hoc comparisons were conducted using the
Tukey method. All experiments were repeated at least three times. A P-value less than 0.05
was considered statistically significant.

RESULTS
CAF-induced SERPINE1 underexpression promoted proliferation and
invasion of Huh7 cells
CAFs are pivotal contributors to tumor progression, exhibiting a diverse range of functions
encompassing collagen deposition and immunosuppression. Our prior investigation
revealed that CAFs stimulated the proliferation and migration of Huh7 cells. To elucidate
whether CAFs regulate Huh7 cells via SERPINE1, we initially quantified SERPINE1mRNA
expression in Huh7 cells co-cultured with CAFs. The results indicated a significant decrease
in SERPINE1 mRNA expression within the co-culture group relative to the control group
(Fig. 1A). Subsequently, SERPINE1 gene knockdown markedly enhanced Huh7 cell
proliferation and invasion (P < 0.001) (Figs. 1B–1D), suggesting that CAFs may promote
Huh7 cell proliferation and invasion through the suppression of SERPINE1 expression.

CAFs inhibited SERPINE1 expression in Huh7 cells by secreting
miR-642a-3p
MicroRNAs function as intercellular messengers, transmitting information between
cells, tissues, and organs. Within the TME, miRNAs contribute to tumor initiation
and progression by regulating aberrant gene expression. To investigate whether CAFs
influence SERPINE1 expression in Huh7 cells through miRNA secretion, we identified
18 potential miRNAs targeting the SERPINE1 3′ UTR through multiple miRNA online
databases (Fig. 2A). Subsequent screening revealed five miRNAs of interest, among which
miR-642a-3p, miR-3135a, and miR-449b-5p exhibited significantly elevated expression in
the co-culture group (P < 0.05) (Figs. 2B–2F). Moreover, miR-642a-3p and miR-3135a
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Figure 1 CAF-induced SERPINE1 knockdown promoted Huh7 cell proliferation and invasion. (A)
SERPINE1mRNA expression in Huh7 cells was measured by RT-qPCR. (B) RT-qPCR was used to detect
the expression of SERPINE1mRNA following 48 h of SERPINE1 siRNA transfection. (C) The prolifera-
tion of Huh7 cells was detected by CCK-8 assay. (D) The invasion of Huh7 cells was detected by the tran-
swell chamber. Magnification: 20×. Data are presented as the mean± standard error (n = 3). *P < 0.05,
**P < 0.01, and ***P < 0.001.

Full-size DOI: 10.7717/peerj.18428/fig-1

expression was markedly increased in Huh7 cells with SERPINE1 knockdown (P < 0.01),
with miR-642a-3p demonstrating a more pronounced difference between groups (Fig. 2G).
These findings collectively suggest that CAFs suppress SERPINE1 expression in Huh7 cells
by secreting miR-642a-3p.

CAFs-derived miR-642a-3p promoted migration, invasion, and EMT
of Huh7 cells by inhibiting SERPINE1
To investigate whether CAF-derivedmiR-642a-3p promotes Huh7 cell migration, invasion,
and EMT by regulating SERPINE1, miR-642a-3p mimics or inhibitors were transfected
into Huh7 cells. Results demonstrated that miR-642a-3p mimics significantly upregulated
miR-642a-3p expression while downregulating SERPINE1mRNA expression (P < 0.001),
whereas the miR-642a-3p inhibitor exhibited the opposite effect (Figs. 3A and 3B).
Moreover, miR-642a-3p mimics significantly enhanced Huh7 cell migration and invasion,
while the miR-642a-3p inhibitor significantly suppressed these processes (Figs. 3C and
3D). Notably, miR-642a-3p mimics markedly increased N-cadherin and vimentin protein
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Figure 2 MiR-642a-3p might bind to SERPINE1. (A) Putative miRNAs binding to SERPINE1 3′ UTR
using multiple miRNA databases, including StarBase, miRwalk, TargetScan, and miRDB. (B–F) Huh7 cells
and CAFs were co-cultured in the transwell system for 48 hours, and the miRNA expression levels were
measured by RT-qPCR. (G) MiR-642a-3p and miR-3135a expression in Huh7 cells following 48 h of SER-
PINE1 siRNA transfection. Data are presented as the mean± standard error (n = 3). *P < 0.05, **P <
0.01, and ***P < 0.001.

Full-size DOI: 10.7717/peerj.18428/fig-2
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expression and decreased E-cadherin protein expression in Huh7 cells (P < 0.001)
(Fig. 3E). Conversely, the miR-642a-3p inhibitor significantly upregulated E-cadherin
protein expression and downregulated N-cadherin and vimentin protein expression (P <
0.001) (Fig. 3E), suggesting that CAF-derived miR-642a-3p promotes EMT in Huh7 cells.

To investigate the binding interaction between miR-642a-3p and the 3′ UTR of
SERPINE1, recombinant plasmids pmirGLO-SERPINE1-WT and -MUT were constructed
based on predicted binding sites from a miRNA database. A dual-luciferase reporter
assay demonstrated a significant decrease in fluorescence activity in the WT group upon
miR-642a-3p mimic overexpression (P < 0.05), whereas no effect was observed in the
MUT group (P > 0.05) (Fig. 4A). Rescue experiments revealed that SERPINE1 knockdown
attenuated the inhibitory effects of miR-642a-3p knockdown on cell migration, invasion,
and EMT in Huh7 cells (Figs. 4B–4D), suggesting that miR-642a-3p promotes migration,
invasion, and EMT in Huh7 cells by targeting SERPINE1.

miR-642a-3p knockdown inhibited tumor growth and EMT in vivo
To assess the in vivo impact of miR-642a-3p on tumor infiltration, an orthotopic tumor
model was established by injecting Huh7 cells into the livers of nude mice. As depicted in
Fig. 5A, tumors were observed in the NC group but absent in the shmiR-642a-3p group.
While no significant weight difference was observed between groups, a slight increase in
weight was noted for the shmiR-642a-3p group (Fig. 5B). Histopathological examination
of the NC group revealed visible tumor lesions invading the hepatic parenchyma with
a larger invasion area compared to the reduced invasion area observed in the shmiR-
642a-3p group (Figs. 5C and 5D). Moreover, miR-642a-3p knockdown significantly
suppressed miR-642a-3p expression while enhancing SERPINE1 expression (Fig. 5E).
Notably, miR-642a-3p knockdown upregulated SERPINE1 and E-cadherin protein levels
while downregulating N-cadherin and vimentin protein levels (Fig. 5F), indicating an
inhibitory effect on tumor infiltration and dissemination.

DISCUSSION
The TME is a critical determinant of cancer initiation and progression (Ye et al., 2024; Yu,
Huang & Guo, 2024). In the TME, a large number of CAFs are recruited and activated,
thus affecting cancer progression (Jing et al., 2024; Wang et al., 2024). It has been reported
that CAFs are activated, proliferate, and accumulate in over 80% of HCC cases (Affo,
Yu & Schwabe, 2017). These activated CAFs exert carcinogenic effects through multiple
mechanisms, including the secretion of soluble factors and exosomes, as well as extracellular
matrix (ECM) remodeling (Yin et al., 2019; Ying, Chan & Lee, 2023). Our findings revealed
a significant decrease in SERPINE1 mRNA expression in Huh7 cells co-cultured with
CAFs. Subsequent investigations demonstrated that SERPINE1 knockdown markedly
enhanced Huh7 cell proliferation and invasion. This suggests that CAFs may accelerate the
development of HCC by causing SERPINE1 gene to express poorly in HCC cells.

The role of SERPINE1 in cancer remains controversial (Jin et al., 2020; Nam, Seong
& Hahn, 2021; Zhu et al., 2020). In gastric cancer, SERPINE1 knockdown significantly
inhibited cell proliferation, migration, invasion, and xenograft tumor growth (Chen
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Figure 3 MiR-642a-3p promoted migration, invasion, and EMT of Huh7 cells. (A–B) After 48 h of
miR-642a-3p mimics or inhibitor transfection, miR-642a-3p and SERPINE1mRNA expression in Huh7
cells were detected using RT-qPCR. (C) Cell migration ratio was measured by wound healing assay. Mag-
nification: 10×. (D) Huh7 cell invasion was detected by transwell assay. Magnification: 20×. (E) Protein
expression was examined by western blot. Data are presented as the mean± standard error (n= 3). ns: P
> 0.05, *P < 0.05, **P < 0.01, and ***P < 0.001.

Full-size DOI: 10.7717/peerj.18428/fig-3

et al., 2022). SERPINE1 has been directly linked to EMT, tumor cell stemness, and
chemoresistance in head and neck squamous cell carcinoma, with its overexpression
correlating with increased metastasis risk (Pavón et al., 2016). Interestingly, SERPINE1
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Figure 4 MiR-642a-3p knockdown inhibited migration, invasion, and EMT of Huh7 cells by targeting
SERPINE1. (A) The binding of miR-642a-3p with SERPINE1 3′ UTR was detected by dual-Luciferase re-
porter assay. (B) After miR-642a-3p inhibitor or miR-642a-3p inhibitor combined with SERPINE1 siRNA
was transfected into Huh7 cells for 48 h, the cell migration ratio was measured by wound healing assay.
Magnification: 10×. (C) Huh7 cell invasion was detected by transwell assay. Magnification: 20×. (D) Pro-
tein expression was examined by western blot. Data are presented as the mean± standard error (n = 3).
ns: P > 0.05, *P < 0.05, **P < 0.01, and ***P < 0.001.

Full-size DOI: 10.7717/peerj.18428/fig-4
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Figure 5 MiR-642a-3p knockdown suppressed growth of orthotopic liver tumors. (A) Nude mice and
liver tissues in the NC and shmiR-642a-3p groups. Four animals were shown in each group (n = 5). (B)
Growth curve of the nude mice. (C) The structures of the liver tissues were observed by HE staining (n =
3). Magnification: 2× and 10×. (D) Ki67 expressions were analyzed using immunohistochemistry (n= 3).
Magnification: 10×. (E) Expression levels of miR-642a-3p and SERPINE1 gene were detected by RT-qPCR
(n= 3). (F) Protein expression was analyzed using western blot (n= 5). *P < 0.05, **P < 0.01, and ***P
< 0.001.

Full-size DOI: 10.7717/peerj.18428/fig-5

has been shown to promote senescence in lung cancer cells (A549 and H1299), thereby
inhibiting tumor progression (Wang et al., 2023a). However, conflicting findings indicate
that SERPINE1 upregulation promotes lung cancer cell invasion (Kong et al., 2021). Within
the context of HCC, SERPINE1 is predominantly considered an oncogene, although some
studies suggest an anti-cancer role. Jin et al., (2020) reported significantly higher SERPINE1
expression in HCC tissues compared to adjacent non-cancerous tissues, with a negative
correlation between SERPINE1 expression and overall survival, suggesting its prognostic
value (Jin et al., 2020). SERPINE1 has been shown to promote proliferation, migration
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and invasion in HepG2 cells (Li et al., 2021b). Conversely, our findings demonstrate that
SERPINE1 knockdown enhances proliferation and invasion in Huh7 cells, indicating the
heterogeneous nature of SERPINE1 expression and function within HCC cells. Notably,
CAF-derived SERPINE1 exhibits tumor-suppressor activity in Huh7 cells.

MiRNAs are single-stranded, non-coding RNAs. They regulate gene expression by
binding to the 3′UTRof targetmessengerRNAs (mRNAs), leading tomRNAdegradation or
translational inhibition (Ali Syeda et al., 2020; Diener, Keller & Meese, 2024). Each miRNA
can regulate multiple target genes, influencing a diverse array of biological processes,
including differentiation, development, proliferation, migration, and apoptosis (Ali Syeda
et al., 2020; Nemeth et al., 2024). In recent years, miRNAs have emerged as promising
biomarkers for tumor diagnosis (Calis, Mogulkoc & Baltaci, 2020; He et al., 2020; Li et al.,
2021a). Dysregulation of miRNAs, such as miR-155 (Vo et al., 2012), miR-541 (Xu et
al., 2020), miR-126 (Zailaie & Sergi, 2022), and miR-17-5p (Zhou et al., 2024), has been
implicated in the malignant progression and poor prognosis of HCC. These miRNAs
influence critical HCC processes, including proliferation, apoptosis, metastasis, and
drug resistance (Mallela et al., 2024). Moreover, miRNAs function as signaling molecules
facilitating intercellular communication, enabling information exchange and gene
regulation between tumor cells and other cell types, including CAFs and immune cells,
ultimately contributing to tumor progression (Barrera et al., 2023; Qi et al., 2022; Salah et
al., 2022). For instance, CAF-derived exosomal miR-20a-5p promotes HCC progression
through the LIMA1-mediated β-catenin pathway (Qi et al., 2022), while CAF-derived
exosomal miR-1228-3p enhances the resistance of liver cancer cells to sorafenib (Zhang,
Pan & Shao, 2023).

Our study revealed that miR-642a-3p expression increased concurrently with a decrease
in SERPINE1 expression in Huh7 cells co-cultured with CAFs, suggesting a potential
inhibitory effect of CAFs on SERPINE1 expression in Huh7 cells via secreting miR-642a-
3p. While limited research has explored miR-642a-3p in cancer, existing studies indicate its
role in promoting tumor invasion, metastasis (Cao et al., 2022), and drug resistance (Qin et
al., 2017; Yu et al., 2019). To investigate the involvement of CAF-derived miR-642a-3p in
HCC progression through targeting SERPINE1, we confirmed the binding of miR-642a-3p
to the SERPINE1 3′ UTR using a dual-luciferase reporter assay. Subsequent in vitro studies
demonstrated that CAF-derived miR-642a-3p promotes HCC cell migration, invasion, and
EMT by targeting SERPINE1. Moreover, in vivo experiments revealed that miR-642a-3p
knockdown significantly suppressed tumor proliferation and dissemination in the liver,
highlighting its critical role in HCC progression. Given the established role of exosomes
in miRNA-mediated intercellular communication (Sheng et al., 2024; Zhang et al., 2024),
future investigations will focus on determining whether CAF-derived miR-642a-3p is
encapsulated in CAF-secreted exosomes and elucidating the functional implications of
exosomal miR-642a-3p in CAF-HCC crosstalk.

At present, our research still has some limitations. While our study confirms that
SERPINE1 knockdown promotes proliferation of the HCC cells, we did not explore the
effect of CAF-derived miR-642a-3p/SERPINE1 axis on the cell proliferation, necrosis, or
apoptosis, which is the most direct demonstration of the effect on tumors. Next, we will
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Figure 6 Molecular pattern of CAFs-drived miR-642a-3p supporting the migration, invasion, and
EMT of hepatocellular carcinoma by targeting SERPINE1. Created with Figdraw.

Full-size DOI: 10.7717/peerj.18428/fig-6

evaluate the role of miR-642a-3p/SERPINE1 axis in HCC cell proliferation, necrosis, and
apoptosis using CCK-8, LDH cytotoxicity, and Annexin V/PI apoptosis assays. In addition,
we will examine the expression of miR-642a-3p and SERPINE1 to assess their clinical
implications for HCC staging and prognosis, using HCC tissue microarray technology.
More significantly, using transcriptome, proteome, and metabolome sequencings, we will
investigate the molecular mechanism of miR-642a-3p/SERPINE1 axis in multiple HCC
cell lines to provide new insights for diagnosis and treatment of HCC.

In conclusion, CAF-derived miR-642a-3p promotes hepatocellular carcinoma cell
migration, invasion, and EMT by targeting SERPINE1 (Fig. 6), suggesting its potential
as a molecular marker for HCC treatment. Additionally, our study enriches the intricate
functions of SERPINE1 in HCC.

Abbreviations

CAFs cancer-associated fibroblasts
HCC hepatocellular carcinoma
SERPINE1 serpin family E member 1

Zhang et al. (2024), PeerJ, DOI 10.7717/peerj.18428 16/24

https://peerj.com
https://doi.org/10.7717/peerj.18428/fig-6
http://dx.doi.org/10.7717/peerj.18428


ncRNAs non-coding RNAs
miRNAs microRNAs
CCK-8 Cell Counting Kit-8
RT-qPCR real-time quantitative polymerase chain reaction
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HCV hepatitis C virus
TME tumor microenvironment
TAMs tumor-associated macrophages
PVDF polyvinylidene fluoride
ANOVA one-way analysis of variance
SE standard error
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