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ABSTRACT 

Crystalline solids exhibiting inherently low lattice thermal conductivity ( κL ) are of great importance in 
applications such as thermoelectrics and thermal barrier coatings. However, κL cannot be arbitrarily low and 
is limited by the minimum thermal conductivity related to phonon dispersions. In this work, we report the 
liquid-like thermal transport in a well-ordered crystalline CsAg5 Te3 , which exhibits an extremely low κL 
value of ∼0.18 Wm−1 K−1 . On the basis of first-principles calculations and inelastic neutron scattering 
measurements, we find that there are lots of low-lying optical phonon modes at ∼3.1 meV hosting the 
avoided-crossing behav ior w ith acoustic phonons. These strongly localized modes are accompanied by 
weakly bound rattling Ag atoms with thermally induced large amplitudes of vibrations. Using the 
two-channel model, we demonstrate that coupling of the particle-like phonon modes and the heat-carrying 
wave-like phonons is essential for understanding the low κL , which is heavily deviated from the 1/ T 

temperature dependence of the standard Peierls theory. In addition, our analysis indicates that the soft 
structural framework with liquid-like motions of the fluctuating Ag atoms is the underlying cause that leads 
to the suppression of the heat conduction in CsAg5 Te3 . These factors synergistically account for the ultralow 

κL value. Our results demonstrate that the liquid-like heat transfer could indeed exist in a well-ordered 
crystal. 

Keywords: thermal conductivity, thermoelectric, phonon dynamic, inelastic neutron scattering 
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thermoelectrics, both the lattice and the electronic 
components contribute to thermal conductivity. 
Controlling the lattice portion is crucial for high 
thermoelectric performance, especially in low- and 
medium-temperature zones. 

In crystalline materials, both the transverse and 
longitudinal acoustic phonons contribute to the 
κL [12 ,13 ]. In liquids, if we do not consider the 
convection, the thermal transport is mainly gov- 
erned through longitudinal vibrations [14 ]. There- 
fore, solids are usually more conductive than non- 
convective liquids. Liquids can also exhibit a lower 
heat capacity than solids due to the absence of stable 
transverse modes, reducing their thermal conduc- 
tiv ity. A s a result, solids that have liquid-like vibra- 
tional spectra wi l l exhibit low thermal conductivity, 
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NTRODUCTION 

he exploration of solid materials with ultralow
attice thermal conductivity ( κL ) is of great inter-
st due to their important applications as thermal
nsulators [1 ], thermal barrier coatings [2 ] and
hermoelectric materials [3 ,4 ]. Strategies for sup-
ressing phonon propagation and reducing thermal
onductivity include the introduction of multi-
imensional defects into the material matrix [5 ],
tomic ordering [6 ], high-entropy engineering [7 ]
nd others [8 ]. However, many strategies require the
roperty of low thermal conductiv ity. A s a result,
creening low κL materials has become an important
tep [9 –11 ]. In insulators, the thermal conductivity
an be controlled mainly by the lattice compo-

ent, κL , while, in doped semiconductors used as 
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ue to both reductions in specific heat and propagat-
ng transverse modes [15 –17 ]. This has guided the
esign and experimental demonstration of ultralow-
L crystalline compounds [18 ], such as Cu2 Se
19 ,20 ], AgCrSe2 [21 ], Cu4 TiSe4 [22 ], Cu7 PSe6 
23 ], Ag8 SnSe6 [24 ,25 ] and Ag9 GaSe6 [26 ]. Some
f these crystals have liquid-li ke mobi le ions, which
ignificantly reduce the thermal conductivity. Gener-
l ly, the so-cal led phonon-liquid electron-crystal ma-
erials have large unit cells, with highly disordered
toms and complex structures [8 ,10 ,27 ]. These ma-
erials commonly exhibit low κL . Although many
ltralow- κL crystalline compounds have been ex-
lored, the liquid-li ke κL in wel l-ordered crystals is
arely explored both in theoretical predictions and
xperiments. 
CsAg5 Te3 [28 ], a well-ordered single-phase
aterial, was recently reported to achieve a high
gure of merit (ZT) of about 1.5 at 727 K, without
ny extrinsic doping [29 ], making it a promising
id-temperature thermoelectric single-phase bulk
aterial [30 ,31 ]. This is especially important
onsidering that the optimization of the carrier con-
entration could yield an even higher ZT. The key
eature of CsAg5 Te3 was found to be its exceedingly
ow κL of ∼0.18 W m−1 K−1 at 300 K [29 ]. This
alue is even lower than those of the phonon-liquid
lectron–crystal materials [13 ,18 ] and is within a
actor of only seven times the thermal conductivity
f air ( ∼0.025 W m−1 K−1 at 300 K). Meanwhile,
ith increasing temperature, the κL of CsAg5 Te3 
hows nearly temperature-independent behavior,
hich is different from the expectations of a semi-
onductor with propagating phonons governed by
he Peierls–Boltzmann equation [31 –33 ]. 
In this work, we used inelastic neutron scattering

INS) and first-principles calculations, supple-
ented with transport measurements, to elucidate
he relationship between the phonon picture of
tomic vibrations and the extremely low- κL behav-
or of a well-ordered crystalline CsAg5 Te3 . Our INS
xperiments show that there exist strongly local-
zed low-lying phonon bands at ∼3.1 meV. When
ombined with calculations, we found that they are
ainly dominated by the rattling Ag atoms with
he avoided-crossing feature of acoustic and optical
honon branches. These Ag atoms have liquid-like
otions as melted sublattices in CsAg5 Te3 , which

s connected with the ultralow κL . Based on the
wo-channel thermal conductivity calculations, we
orroborated the predominant role of the wave-like
honons, as well as the important role of the cou-
ling between the coherent wave-like modes and the
ocalized particle-like modes. Our study provided
n overall understanding of the liquid-like heat
Page 2 of 10
transport in a well-ordered crystal, which would 
facilitate the designing of low- κL materials. 

RESULTS 

Experimental and theoretical phonons 
CsAg5 Te3 crystallizes in the tetragonal space group, 
P 42 / mnm , and its Zintl-type structure has two 
open tunnels and two infinite parallel [Ag5 Te3 ]−1 

chains along the c -axis [29 ] (see Fig. S1). In the
chains, the Ag atoms are tetrahedrally or triangularly 
coordinated with the Te atoms to form a structural 
framework with weak chemical bonds [34 ]. The 
large-radius Cs+ ions (1.74 Å) have a large atomic 
mass fil l in the tunnels at the center (0.5, 0.5, 0.5)
and the origin (0, 0, 0) of the unit cell, stabilizing 
the structure. The pure polycrystalline sample is 
verified by the neutron diffraction data at 300 K, 
which are analysed by using the method of Rietveld 
refinement with the two strongest peaks of (550) 
and (552) marked in Fig. S2. 

We first plot in Fig. 1 a and Fig. S3 the dynamic 
structure factor S( Q , E) at different temperatures 
with INS on the powder samples to analyse the 
lattice dynamics. As shown on the left side of Fig. 1 a,
our INS measurements of the orientation averaged 
S( Q , E) at 295 K reveal a striking mushroom-like
scattering pattern, near the quasi-Bri l louin-zone cen- 
ter at Q = 2.7 Å−1 and around a phonon frequency 
of 3.1 meV. The computed S( Q , E) at 300 K based on
first-principles methods is plotted on the right side 
of Fig. 1 a, which shows excellent agreement with the 
INS data in both phonon energies and intensities. 
To rationally understand these mushroom-like low- 
energy modes, we calculate the S( Q , E)-weighted 
phonon dispersion in the first Bri l louin zone along 
the high-symmetry lines in Fig. 1 b and Fig. S4 at 
300 K using the same parameters as shown in Fig. 1 a.
This could serve as a powerful method to probe the 
single-crystal S( Q , E) based on the polycrystalline 
samples. As shown in Fig. 1 b and Fig. S4, only the
longitudinal vibrations of the acoustic phonons 
propagate along �–X–M–�–Z and are cut off
starting at ∼2 meV by numerous optical branches 
and typically accompanied by the rattling modes 
[35 ]. One low-energy optical mode is observed 
along X–M. In the case of the other directions, there 
are only a few optical modes evident at < 10 meV,
with one flat mode at 15 meV along Z–R–A–Z. 
More specifically, most modes do not appear visibly 
in the spectrum while the longitudinal acoustic 
v ibrations surv ive. Usually, phonon dispersions 
should be measured by INS using different regions 
of reciprocal space for a single crystal [36 ]. The 
simulations only in the first Bri l louin zone cannot 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
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Figure 1. Experimental and calculated phonons of CsAg5 Te3 . (a) The contour plots 
of the dynamic structure factor S ( Q , E) obtained by INS with an incident neutron 
energy of Ei = 15.15 meV at 295 K from the AMATERAS measurements (left) and 
the corresponding powder-averaged coherent S ( Q , E) at 300 K generated by the 
temperature-dependent force constants from MD via first-principles calculations 
(right). These results clearly show that there were low-lying phonon modes at 
∼3.1 meV. (b) Corresponding S ( Q , E) weighted phonon dispersion relationship in the 
first Brillouin zone at 300 K calculated by Euphonic. To facilitate comparison between 
experiments and theory, we have normalized S ( Q , E) in these figures. 
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apture the whole picture of the phonons. Since the
igh-resolution neutron diffraction data show that
here are two strong peaks at (550) and (552) (see
ig. S2), we calculate the S( Q , E)-weighted spectra
or the Bri l louin zones centered at the (550) and
552) zones and present them in Fig. S5. It clearly
hows that all the acoustic phonons participate in the
ropagation. This is different from the superionic
onductors [20 ], in which the structurally dynamic
isorder damages the transverse acoustic phonons.
ost notably, the powder INS data presented here
rovide an average density of states for all directions
nd regions of reciprocal space, while Fig. 1 b and
ig. S2 only correspond to the two zones along
pecific directions. Beyond that, our theoretical and
xperimental results indeed demonstrate the ex-
stence of low-lying phonon modes. From first-
rinciples calculations, we see that there exist the
voided crossings of optical–acoustic branches with
he emerging concerted rattling modes [29 ] in
ig. S6. These in turn modulate the group velocities
nd scattering process, and also suppress the κL .
n addition, we have calculated the participation
atio (PR) and spatial distribution of the phonon
odes in Fig. S7. Clearly, the PR values in Fig. S7 of
Page 3 of 10
the low-lying optical modes at ∼3.1 meV are close 
to ∼0.2, which means that these modes are likely 
localized [37 ]. The spatial distribution shows that 
the localized phonons with energy of < 4 meV are
mostly in the Ag atoms. The existence of abundant 
localized phonons often occurs in non-crystalline 
materials, quasicrystals and nanostructured materi- 
als, which would cause a transition from propagative 
to diffusive-like energy transport [37 ,38 ]. For our 
system, it brings about the abnormal ultralow two- 
channel heat transport mechanism in CsAg5 Te3 , as 
discussed below. 

The temperature-dependent behavior of the low- 
energy phonons is analysed by integrating the S( Q ,
E) data over 1.5 ≤Q ≤ 3.5 Å−1 , as shown in Fig. 2 a.
At 8 and 100 K, we observe one prominent peak,
as marked by the stars, as well as several less intense
peaks. Upon heating from 295 to 655 K, there is
only one intense peak in the indicated region. This 
big peak is far away from the intense elastic line
and corresponds to the low-lying phonon modes at 
around Q = 2.7 Å−1 , as shown in Fig. 1 and Fig. S4.
The scattering is further analysed in real space by 
Fourier-transforming the static structure factor into 
the pair distribution functions (PDFs). Figure 2 b 
shows the PDFs for the pair distances from 2.5 to
11.5 Å at selected temperatures. Figs S8 and S9 show 

the first peak located at ∼2.83 Å. The superposition 
of the nearest neighboring Ag–Te and A g–A g bonds,
which correspond to the structural tunnels in the 
crystal structure without local structural distortions, 
induces the absence of the shoulder peak at ∼2.83 Å
[39 ]. 

When the temperature is increased, the ampli- 
tude of the first peak in Fig. 2 b is monotonically de-
creased, while other peaks of > 3.5 Å are significantly 
affected and smoothed out. This clearly indicates 
that the structural framework is preserved well upon 
heating but exhibits substantial atomic motions. The 
long-distance pairs gradually lose their correlation 
upon heating. This fact is further confirmed by our 
simulated trajectories of the atoms in the x –y plane
at 300, 500 and 700 K by the molecular dynamics 
(MD) simulations, as presented in Figs S10 and S11. 
In Fig. S12, the self-part of the van Hove correlation
function Gs ( r , t ) calculated from the MD simula-
tions depicts the probability of atoms diffusing away 
from the initial positions by a distance r after a pe-
riod t . As time goes on, the Gs ( r , t ) fluctuate at a fixed
value for all atoms. There are no jump diffusions for
all atoms in CsAg5 Te3 . Meanwhile, our calculated 
Lindemann parameter, δ = ADP1/2 / RNN 

(where 
RNN 

is the nearest neighbor distance and ADP 
is the atom displacement parameters), is 0.0415, 
0.0494/0.050 and 0.061/0.076/0.079 for Cs, Te and 
Ag atoms, respectively. Clearly, the values of Ag 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
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Figure 2. Temperature-dependent vibrational properties and local structures of CsAg5 Te3 . (a) The cuts of S ( Q , E) at Ei = 

15.15 meV integrated over the range of 1.5 ≤ Q ≤ 3.5 Å−1 under all measured temperatures. (b) Neutron PDF data at the 
indicated temperatures, where the room-temperature neutron PDF data are refined using the P 42 / mnm space group (ambient 
crystal structure) with all atom positions and thermal parameters refined. (c) (Left) Neutron-weighted phonon DOS from the 
AMATERAS measurements at the indicated temperatures with phonon softening. The DOS at lower phonon frequencies ( < 1 
meV) are fitted to the Debye model. (Middle) Calculated generalized phonon DOS from DFT lattice dynamics and neutron- 
weighted phonon DOS from INS at 8 K. (Right) The partial phonon DOSs on Cs, Ag and Te from DFT. 
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toms exceed or approach to the criterion of melt-
ng ( ≥0.07) as in liquids [40 ]. This indicates that
he osci l lation amplitudes of the Ag atoms are much
arger than those of the Cs/Te atoms and they have
iquid-like motions as a melting sublattice in the crys-
al with weak chemical binding. Nonetheless, the
omplete structural skeleton is preserved with the
oexisting crystal–liquid duality [41 ], unlike mate-
ials with liquid-like states characterized by atomic
iffusions [40 ]. 
To investigate the temperature effect on phonons,

e resolve the phonon density of states (PhDOSs)
rom the temperature-dependent INS measure-
ents. As shown in Fig. 2 c, the PhDOS at 8 K
resents several pronounced peaks at 3.5, 4.2, 5.4,
.9 and 9.1 meV. These positions are related to the
at branches in Fig. S4. Consistently with S( Q , E) in
ig. 2 a, upon heating, the peak in Fig. 2 c at ∼3.5 meV
s broadened and softened, while the other features
ventually disappear into a broad bulge. Meanwhile,
he density functional theory (DFT)-based simula-
ions yield a total PhDOS with low-energy peaks at
.0, 3.5, 4.9, 5.8, 6.4, 7.3 and 9.3 meV. Although there
re differences in the intensity, number and position
f phonons obtained from theory and experiment,
he overall trend from theory is very close to that
f the INS PhDOS at 8 K. In fact, we should be
ware that theoretical calculations depend on the
seudopotential and some settings, while there must
Page 4 of 10
be errors between experimental measurements and 
true values. All these factors can lead to differences 
between theoretical and experimental values. The 
partial PhDOSs can be given by: 

gi (ω) =
∑ 

j,q 

∣∣ei ( j, q ) ∣∣2 δ ( ω − ω ( j, q ) ) , 

where ω and ei denote the phonon energies and 
eigenvectors, respectively, and i is the atom in- 
dex. The partial PhDOSs clearly show that the 
low-energy peaks ranging from 2 to 4 meV are over- 
whelmingly contributed by the structural tunnels 
dominated by the soft Ag–Te bonds [34 ]. The exis- 
tence of soft bonds is also evaluated by elastic prop- 
erties in Table S1. Importantly, this soft bonding is 
correlated with the strong lattice anharmonicity 
measured by the phonon softening with increasing 
temperature, as indicated in Fig. 2 c. 

Two-channel thermal conductivity 
As discussed above, CsAg5 Te3 has a well-ordered 
crystalline atomic structure, but features the liquid- 
like motions of Ag atoms. To accurately predict the 
κL , we solve the Wigner transport equation by si- 
multaneously considering the particle-like and the 
wave-like conduction mechanisms from both the 
population and coherence contributions [41 ,42 ]. In 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
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Exp indicate the values parallel and perpendicular to the pressing directions with the SPS 
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Exp represents the values of the hot-pressed sample, κExp are values extracted from our previous work [29 ], κp and κ c account for the heat 

transfer associated with the diagonal (populations) and the off-diagonal (coherences) Wigner distribution elements, respectively, and κ tot is the total 
lattice conductivity. The results of κPer 

Exp and κ
Par 
Exp are nearly the same, indicating the good reliability of our results. (b) Phonon-mode-resolved thermal 

conductivities of populations ( κp ) and coherences ( κ c ) at 300 K. Inset: the cumulative total thermal conductivity ( κ tot ) as a sum of the population 
contribution ( κp ) and coherences contribution ( κ c ) at 300 K. (c and d) Phonon lifetimes τ ( q ) = [ �( q )]−1 as a function of the energy ω( q ) at 50 (left) and 
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ur transport experiment, the measured κL value is
0.19–0.25 W m−1 K−1 , based on subtracting κe 

n Fig. S13 from the total κ in Fig. S14. To com-
are experimental data with theory, the calculated κ
f the sample is averaged along the three crystallo-
raphic axes. The calculated anisotropic κ is shown
n Fig. S15. As shown in Fig. 3 a, the calculated pop-
lation contribution κp is equal to 0.09 W m−1 K−1 

t 300 K, which is much lower than our measured
alues and the reported result (0.18 W m−1 K−1 )
29 ]. This means that, for CsAg5 Te3 , the Peierls pic-
ure breaks dow n in predicting κL w hen considering
nly the propagating vibrational waves as heat carri-
rs. Thus, the coherence lattice thermal conductiv-
ty κc , from the wave-like interband (Zener) tunnel-
ng of phonons, is also considered and is calculated
s 0.14 W m−1 K−1 at 300 K (see Fig. 3 a). The con-
ergent κL value in Fig. S16, as a sum of both κp and
c , is ∼0.23 W m−1 K−1 at 300 K, which coincides
ell with the experimental results. With increasing
emperature, the κp decreases inversely with temper-
ture, following the Peierls theory. This is in contrast
o the observed temperature dependence of the κL .
he contribution of the κc is almost unchanged and
s dominant in the range of the measured tempera-
ures. This contribution offsets the incorrect Peierls–
oltzmann conductivity and leads to our prediction
f κL ( κL = κp + κc ) in good agreement with the
xperimental values. This is also consistent with the
ypothesis of the well-ordered crystallized CsAg5 Te3 
ontaining ultralow κL with liquid-like vibrational
roperties [43 ,44 ]. Figure 3 b shows the contribu-
ions of κp (pink) and κc (olive), as well as the
umulative conductivity at 300 K. The diagonal pop-
Page 5 of 10
ulation contribution κp mainly comes from the low- 
lying modes of the overall crystal framework, as these
modes having the largest group velocities, whi le al l
phonons that contribute to the coherence term are 
in a random distribution. To analyse the strength of 
the particle-like and the wave-like conduction, we 
classify the phonon lifetime τ( q )s into three regimes 
in Fig. 3 c by using the Ioffe–Regel limit (1/ ω) and
the Wigner limit (1/ �ωavg ) [41 ,42 ]. Here, the av-
erage phonon interband spacing is calculated by us- 
ing �ωavg = ωmax /3 Na , where ωmax is the maxi- 
mum phonon frequency and 3 Na is the number of 
phonon bands. These regimes operate under differ- 
ent mechanisms. At 50 K, as indicated in Fig. 3 c,
most phonons are > 1/ �ωavg and the particle-like 
phonons (red) propagate 87.4% of the total κL . In 
medium- and high-temperature regions, for exam- 
ple at 300 K as shown in Fig. 3 d, the largest num-
ber of phonons are in the intermediate region be- 
tween the Wigner limit and the Ioffe–Regel limit, 
where the heat mainly diffuses in a wave-like fashion 
( κp = 0.09 W m−1 K−1 ; κc = 0.14 W m−1 K−1 ) with 
the major contributors to κc located near the diago- 
nal of the frequency plane between quasi-degenerate 
vibrational frequencies shown in Fig. S17. Note that, 
within the temperature range of 50–700 K, as in- 
dicated in Fig. 3 and Fig. S18, almost all phonons 
are above the Ioffe–Regel limit and sti l l exhibit the
well-defined quasiparticle excitations [45 ], despite 
containing the liquid-like features [43 ,44 ]. Typically, 
carriers exhibit wave-like behavior and diffuse via 
Zener-like tunneling between such quasi-degenerate 
vibrational eigenstates in non-crystal-like materials 
such as amorphous solids, glasses or liquids. Thus, 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
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he quasiparticle excitations in CsAg5 Te3 , which
anifest liquid-like features, give rise to the abnor-
al ultralow two-channel thermal conductivity. 

ISCUSSION 

eneral ly, a nonmetal lic solid wi l l always have a
igher κL when compared with a non-convective
iquid. However, the Ag and Te atoms in CsAg5 Te3 
ave soft bonds [34 ]. As a result, the structural
Ag5 Te3 ]−1 tunnels undergo strong motion upon
eating and the Ag atoms are almost melted in the
rystal. Simultaneously, the isolated Cs+ cations, ac-
ommodated in the tunnels, stabilize the structure
nd largely suppress the disorder of the Ag atoms
46 ]. This is very different when compared with
ther materials involving structural-disorder-driven
iquid-like features, such as Cu2 Se [15 ], AgCrSe2 
21 ] and argyrodites [25 ]. In these solids, the site
isorder of the ions allows thermally induced ionic
iffusion, which is connected to their liquid-like be-
avior and the reduced κL . In the well-ordered crys-
al of CsAg5 Te3 , although the Ag atoms exhibit large
ibrational amplitudes and liquid-li ke motions li ke
elting, they are sti l l constrained and remain around
heir equilibrium positions due to the intrinsic struc-
ure. Instead, the special structural tunnels with soft
onds strongly scatter the phonons. The low-energy
honons range from 2 to 4 meV, are mainly con-
ributed by the vibrations of such Ag–Te structured
unnels, exhibit large values of γ q ν (as shown in
ig. S19) and contribute to ∼70% of the total κp (see
ig. 3 b). Meanwhile, this structure also leads to nu-
erous low-lying optical phonons that cut the longi-
udinal acoustic mode, starting at ∼2 meV in Fig. S4,
hich can be associated with the presence of the con-
erted rattling modes [35 ], as described in our pre-
ious work [29 ]. These traits, together with strong
attice anharmonicity ( γ tot = 1.52 in Fig. S19), ef-
ectively disrupt the heat propagation, which accord-
ngly gives rise to the extremely low two-channel
L and almost temperature independence of the κL 
rom 300 to 700 K in CsAg5 Te3 . The liquid-like fea-
ures in this well-ordered crystal indicate a promis-
ng general strategy for obtaining high-performance
nergy conversion materials with ultralow κL . Struc-
urally, materials with rattling-atom-based tunnels
such as Cu, Ag atoms) occupied by heavy atoms
s well as having a well-ordered structure and hi-
rarchical soft bonds [34 ,35 ,46 –50 ] could be used
o achieve ultralow thermal conduction. Differ-
ntly from the general phonon–glass electron-crystal
trategy that disrupts phonon transport by introduc-
ng disorder through alloying, nanostructuring and
efect, our studies provide a useful way for realizing
Page 6 of 10
ultralow κ in materials with a low-energy strong scat- 
tering pattern from rattling modes as a signature. 

CONCLUSIONS 

In this study, we found that crystalline CsAg5 Te3 , 
despite lacking disorder, has a liquid-like ultralow 

κL value of ∼0.18 W m−1 K−1 in the temperature 
range of 30 0–70 0 K. Based on experimental and 
theoretical evidence, we verified that there are 
abundant low-lying phonon modes propagated at 
∼3.1 meV dominated by the liquid-like motions of 
the Ag atoms. In the two-channel model, the coher- 
ence contributions toward the κL come from wave- 
like phonon tunneling, dominated by the process of 
heat transport. By solving the Wigner formulation 
of thermal transport, our calculated κL offers sub- 
stantially good agreement with the measured data. 
Our results attest to the liquid-like heat transfer in a 
well-ordered crystal as a paradigm-shifting approach 
beyond the classic ‘phonon–glass electron-crystal’ 
paradigm in the design of low- κL materials. We 
believe that our work can significantly promote the 
development of thermoelectrics, thermal manage- 
ment, thermal barrier coatings, thermal insulators, 
materials science and energy conservation. 

MATERIALS AND METHODS 

Synthesis 
All synthesizing manipulations were conducted in a 
glove box (moisture and oxygen levels of < 0.1 ppm) 
or under a vacuum. Polycrystalline CsAg5 Te3 sam- 
ples were prepared from a mixture of Ag (shot, 
9 9.9 9 9%, Alfa Aesar), Te (shot, 9 9.9 9 9 9%, Alfa Ae-
sar) and Cs2 Te3 at a stoichiometric ratio of 10 : 3 : 1.
The reactants were loaded into a fused-silica tube 
under a vacuum and heated to 1073 K, maintained 
at this temperature for 2 h and then cooled to room
temperature. The obtained ingot was ground into 
fine powder using agate mortar to reduce the grains 
to < 4 mm in diameter. The powdered compounds 
were obtained as pure phases. 

Thermal conductivity 
The obtained powders were then placed inside a 
12.7-mm-diameter graphite die and densified by 
using spark plasma sintering (SPS, SPS-211LX, Fuji 
Electronic Industrial Co., Ltd.) at 723 K for 10 min 
under an axial compressive stress of 50 MPa in a 
vacuum. After this treatment, we obtained highly 
dense disk-shaped pellets, with densities of > 97% of 
the theoretical value (7.117 g/cm3 ). The pellets were 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae216#supplementary-data
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2.7 mm in diameter and 12 mm thick. Some of the
btained products were ground into fine powders
hat were subsequently condensed to a high density
f > 97% using a hot-pressed-only process at 500 K
nder a pressure of 60 MPa for 1 h (denoted as
he hot-pressed sample). The electrical resistivity
as measured in a low-pressure helium atmosphere
sing a ULVAC-RIKO ZEM-3 instrument system.
he thermal diffusivity ( D ) was measured on a sam-
le disk with a diameter of 12.7 mm and a thickness
f 1.0 mm under an argon atmosphere in the range
f 296–773 K by the laser flash diffusivity method
sing a commercial Netzsch LFA457 instrument.
he heat capacity ( Cp ) was obtained by using a
etzsch DTA 404 PC instrument. Prior to test-
ng, a uniform graphite layer needed to be sprayed
nto the surface of the material to achieve thermal
onductivity. During the testing process, the Cape
ehman + pulse model was selected for correction.
he total thermal conductivity was calculated by
sing the following formula: 

κ = D ×Cp × d, 

here d is the sample density, determined by using
he dimensions and mass of the sample and then re-
onfirmed by measurements using a gas pycnome-
er (Micromeritics AccuPyc 1340). According to
e = L σT = κ −κL , the lattice thermal conductivity
L could be obtained by subtracting κe from κ with
 Lorenz number (L) of 1.5 × 10−8 V2 K−2 . 

eutron diffraction measurements 
eutron powder diffraction measurements were
erformed using a multi-physics instrument [51 ] at
he China Spallation Neutron Source (CSNS) [52 ],
n China. The data were collected at 20 0, 30 0, 40 0
nd 500 K for the CsAg5 Te3 sample. The Rietveld
efinements of the neutron diffraction data at 300 K
or the crystal structures of the compound were
onducted using the general structure analysis sys-
em (GSAS-II) package. The real-space refinement
f the experimental G ( r ) was performed by using
he PDFgui [53 ] program. In the refinement, the
ositions of all atoms in the unit cell were written
nd refined, and the symmetry constraints were
enerated by the symmetry of the space group. 

NS measurements 
he INS measurements were performed by using
 cold neutron disc chopper spectrometer BL14
MATERA S [54 ] w ith a beam power of ∼830 kW
t the Materials and Life Science Experimental
acility (MLF), J-PARC in Japan. The chopper
onfigurations were set with incident energies Ei of
Page 7 of 10
15.15 and 41.98 meV, and corresponding energy res- 
olutions of 0.56 and 2.44 meV (full width at the half
maximum of the elastic peaks). A 5.97-g CsAg5 Te3 
powder sample was encased in a double cylindrical 
aluminum cell (14 mm in diameter, 1 mm thick) 
and the neutron beam size was ∼20 mm wide and 
∼40 mm high. Thus, the sample was completely 
immersed in the neutron beam. A top-loading 
closed cycle refrigerator (TL-CCR) was used for 
the temperature-dependent measurements at 8, 100, 
295, 395, 490, 585 and 655 K. The average data col-
lection time at high temperatures was ∼3 h, which 
was doubled at 295 K. Data reduction was completed 
using the Utsusemi software suite [55 ]. The back- 
ground, contributed by the TL-CCR with the same 
double cylindrical aluminum cell, was measured 
at the same temperatures with the same instru- 
ment configurations and was subtracted properly. 
The resulting dynamic structure factor S( Q , E) 
was defined as a function of the neutron energy 
transfer E = Ei − Ef and the momentum transfer 
Q = ki − kf = q + τ, where Ef is the scattered neu-
tron energy, ki ( kf ) denotes the incident (scattered) 
neutron wave-vector, q is the phonon wave-vector 
and τ is the reciprocal lattice vector. S ( Q , E) was fur-
ther visualized in the Mslice of the data analysis and 
v isualization env ironment (DAVE) [56 ]. Neutron 
absorption correction was conducted by consid- 
ering both the coherent and incoherent scattering 
cross sections and the absorption cross section was 
corrected by utilizing the Mslice/DAVE. The gener- 
alized Q -dependent phonon density of states (GP- 
DOSs), G ( Q , E), were related to the dynamic struc-
ture factor, S ( Q , E), by the following equation [57 ]: 

G ( Q , E ) = eQ
2 u2 

[ 
1 − e−

E 
kB T 

] E 
Q 2 S ( Q , E ) , 

where [1 − e−
E 

kB T ] indicates the Bose–Einstein 
statistics, eQ 2 u2 describes the Debye–Waller factor, 
u is the atomic thermal displacement, kB is the 
Boltzmann constant and T is the temperature. The 
Debye–Waller factor was ignored by setting u = 0 for
the Q -integrated GPDOS calculation. The impact 
was minimal, as we integrating a short Q range of
1.5–3.5 Å−1 for Ei = 15.15 meV and 3.0–5.5 Å−1 for 
Ei = 41.98 meV, with the data shown in arbitrary 
units. 

Computational details 
First-principles calculations were performed within 
the framework of the Perdew–Burke–Ernzerhof 
[58 ] generalized gradient approximation (PBE–
GGA) [59 ,60 ], as implemented in the Vienna ab
initio simulation package (VASP) [61 ]. The cut-off
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nergy for the plane-wave expansion was set as
00 eV on a 3 × 3 × 11 �-centered k -mesh. All
tructures were fully relaxed until the residual
orces on each atom were < 0.01 eV/Å and the
igh-symmetry lines of the tetragonal lattices
ere used according to previous calculations [62 ].
he second-order force constants were calculated
ithin the harmonic approximation using the finite-
isplacement method [63 ] on a 5 × 5 × 5 k -mesh
or CsAg5 Te3 , with a 1 × 1 × 3 supercell (containing
08 atoms) using Phonopy code [64 ] bundled with
ASP. The MD calculations were performed with a
 × 1 × 3 supercell via a canonical ensemble and a
osè–Hoover thermostat. At temperatures of 200,
0 0, 40 0, 50 0, 60 0, 70 0 and 80 0 K, the MD simu-
ations were calculated using a plane-wave cut-off of
00 eV and a total time of 50 ps, setting 1 fs as the
ime step. The corrections to the second-order force
onstants due to the finite-temperature anharmonic
ffects were applied using the DynaPhoPy code
65 ] from MD at different temperatures. 
The third-order force constants were computed

n a 3 × 3 × 3 k -mesh and interactions up to the
hird-nearest neighbors were considered, using
he Phono3py [66 ] package. The temperature-
ependent second-order force constants and third-
rder force constants were Fourier-interpolated on
 convergent (8 × 8 × 8) grid for thermal conduc-
ivity calculations and then generalized to an expres-
ion including both the population and coherence
ontributions [41 ,42 ], κL = κp + κc , with κp =
1 

(2 π ) 3 
∫ B 

∑ 

s C(q ) s V
α(q ) s,s V

β (q ) s,s 
1 

�(q ) s 
d3 q and

c = 1 
(2 π ) 3 

∫ B 
∑ 

s � = s′ 
ω(q ) s + ω(q ) s′ 

4 [C(q ) s 
ω(q ) s 

+ C(q ) s′ 
ω(q ) s′ 

]V α

q ) s,s′ V
β (q ) s′ ,s ×

1 
2 [�(q ) s +�(q ) s′ ] 

[ω(q ) s −ω(q ) s′ ] 
2 + 1 

4 [�(q ) s +�(q ) s′ ] 
2 d3 q,

here κp is the standard Peierls contribution to con-
uctivity and the additional tensor, κc , is derived
rom the coherence equation. The κ of the poly-
rystalline sample was further averaged along the
hree principal crystallographic axes [67 ]. Besides,
e also calculated the κL , κp and κc at 300 K for
sAg5 Te3 with force constants being extracted by
sing temperature dependent effective potential
echnique [68 ,69 ] as contrasts in Table S2. 
To compare with the experimental data from

he multi- Ei time-of-flight INS, the GPDOS of
sAg5 Te3 was calculated by summing the partial
hDOS values weighted by the atomic scattering
ross sections and masses: 

GPDOS =
∑ 

i 

σi 

μi 
PhDO Si , 

here σ i and PhDOSi represent the atomic scatter-
ng cross section and the PhDOS projected into the
ndividual atoms, respectively. The two-dimensional
 ( Q , E) patterns, as shown in Fig. 1 , were calculated
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from the second-order force constants with the 
Euphonic package [70 ]: 

S ( Q , E ) = 

1 
2 

∑ 

ν

∣∣F ( Q , ν) 
∣∣2 

×
(
nq ν + 1 

2 
± 1 

2 

)
δ
(
ω − ∓ωq ν

)
, 

where the upper and lower signs refer to the phonon 
creation and anni hi lation, respectively, nq ν is the 
Bose population function and F ( Q , ν) is the coher-
ent one-phonon scattering structure factor. 

SUPPLEMENTARY DATA 

Supplementary data are available at NSR online. 
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