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Abstract

A popular approach to learning about admixture from population genetic data is by computing the 

allele-sharing summary statistics known as f-statistics. Compared to some methods in population 

genetics, f-statistics are relatively simple, but interpreting them can still be complicated at times. 

In addition, f-statistics can be used to build admixture graphs (multi-population trees allowing 

for admixture events), which provide more explicit and thorough modeling capabilities but are 

correspondingly more complex to work with. Here, I discuss some of these issues to provide 

users of these tools with a basic guide for protocols and procedures. My focus is on the kinds 

of conclusions that can or cannot be drawn from the results of f4-statistics and admixture graphs, 

illustrated with real-world examples involving human populations.
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Introduction

f-statistics (Reich et al., 2009; Patterson et al., 2012) are a widely used toolkit for making 

inferences about phylogeny and admixture from population genetic data, particularly in 

humans. The statistics measure correlations in allele frequencies among sets of two, three, 

or four populations. Observed values reflect degrees of shared ancestry and can serve as a 

means for testing hypotheses regarding population split orders and past gene flow events 

under historical models.

As compared to some other common methods in population genetics, f-statistics are quite 

simple and flexible, but interpreting them is not always straightforward. Additionally, one 

of the primary applications of f-statistics is in building admixture graphs (i.e., phylogenetic 

trees augmented with admixture events) with more than four populations, which introduces a 

greater level of complexity. In this note, I hope to clarify some of these potential difficulties 
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and provide a range of tips for practitioners. Some of the topics have been addressed 

previously but are covered here as well for the sake of completeness.

f-statistics and admixture

Basic definitions and properties

More complete introductions to f-statistics have been published elsewhere (Reich et al., 

2009; Patterson et al., 2012; Lipson et al., 2013; Peter, 2016; Soraggi and Wiuf, 2019), but 

the following are some basics that are used in other sections of the paper. The most general 

definition is that of the f4-statistic f4 A, B; C, D , which measures the average correlation in 

allele frequency differences between (i) populations A and B and (ii) populations C and 

D (i.e., pA − pB * pC − pD , for allele frequencies p, typically averaged over many biallelic 

single-nucleotide polymorphisms [SNPs]). This f4-statistic is the same as the (perhaps more 

familiar) D-statistic up to a normalization factor. If the four populations are related by the 

(unrooted) phylogeny A, B , C, D , then the expected value of f4 A, B; C, D  will be 

zero, while the expected values of f4 A, C; B, D  and f4 A, D; B, C  will be positive. 

(When I refer to expectations of f-statistics, I mean with respect to the random noise in real 

data—typically assumed to be normally distributed—caused by sampling finite numbers of 

independent SNPs and individuals.) Simple algebra shows that

f4 A, B; C, D = f4 C, D; A, B ,
f4 A, B; C, D = − f4 B, A; C, D = − f4 A, B; D, C
f4 A, B; C, D = f4 A, C; B, D + f4 A, D; C, B .

,

The other two are of basic definitions the f2- and f3-statistics, which can be formulated as 

f2 A, B = f4 A, B; A, B  and f3 A; B, C = f4 A, B; A, C .

The most important usage for f-statistics is in the context of admixture. If a population C
has a mixture of ancestry derived from sources C′ and C′′ in proportions α and 1 − α , then 

in expectation,

f4 A, B; C, D = αf4 A, B; C′, D + 1 − α f4 A, B; C′′, D .

Expected values of f-statistics can be visualized in terms of overlapping paths in an 

admixture graph (Fig. 1; see also Patterson et al. (2012); Peter (2016); Soraggi and Wiuf 

(2019)). In the case of admixture, the above equation can be used to derive the expectation 

in terms of a weighted sum of path-overlaps involving each source (Fig. 1C). Thus, if C is 

admixed, the typical expected value of f4 A, B; C, D  will be a branch length times a mixture 

proportion (Fig. 1C).

Unlike FST (and normalized D-statistics, at least approximately), the values of f-statistics 

(including branch lengths in admixture graphs that are defined in f-statistic units, as in 

Fig. 1) depend on the absolute allele frequencies of the SNPs used to calculate them (cf. 

Lipson et al. (2013)). For example, adding fixed sites to the SNP set will shrink f-statistics 
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toward zero. As a result, when comparing multiple f-statistics, it is important that each one 

should be computed on the same set of SNPs (or as similar as possible). In applications 

involving ancient DNA, where missing data is common, I typically make the assumption 

that the SNPs covered for each individual or population are a random subset with respect to 

allele frequency. By contrast, comparisons across different genotyping arrays are likely to be 

biased.

Interpreting non-zero f4-statistics

If a set of four populations are unadmixed relative to each other, then some permutation of 

them will yield an f4-statistic of zero (in expectation), as in Fig. 1A. Equivalently, if all three 

permutations of f4-statistics for a certain set of four populations are (significantly) non-zero, 

then at least one of the populations must be admixed; this is one of the most common 

signals of admixture used in the literature. In this paper, I will use the example of a quartet 

consisting of four present-day human populations: Mixe (from Mexico), Han Chinese, 

French, and Baka (hunter-gatherers from Cameroon). The common ancestral population of 

all Native Americans is known to have been admixed with approximately 70% ancestry from 

an eastern Eurasian lineage and 30% from a western Eurasian lineage (Fig. 2) (Raghavan 

et al., 2014). Thus, in the context of this quartet, Mixe can be modeled as admixed with 

ancestry related to Han (~70%) and to French (~30%). I computed the three possible 

f4-statistics for the quartet and obtained significantly non-zero values, with the signs as 

expected based on the known history (Table 1). (These and all results in the paper are 

computed from previously published whole-genome sequence data (Mallick et al., 2016; 

Fan et al., 2019), on a set of ~1.1 million autosomal SNPs (Mathieson et al., 2015), using 

the implementation in ADMIXTOOLS (Patterson et al., 2012), including standard errors 

estimated by block jackknife.)

In this case, there is prior knowledge available about the admixture in Mixe, but in general, 

without additional information, the existence of such a quartet does not identify which of the 

four populations is admixed. Here, for example, it could also be that Han is admixed with 

most of its ancestry related to Mixe but a small amount related to Baka, and likewise for 

the other two (see further discussion in the admixture graph sections below). In real-world 

applications, it can also be true that more than one population is admixed, making the 

interpretation more complicated. Sometimes, in fact, two admixture events together can 

cause an f4-statistic to be close to zero and thereby mask the signal of admixture (at first 

glance).

Another observation is that as depicted in Fig. 1, f4-statistics are not only zero or non-zero 

but also carry quantitative information about amounts of shared drift between populations. 

One implication is that populations sharing more drift (i.e., yielding longer intersecting 

paths in an admixture graph) will have greater-magnitude f4-statistics associated with them. 

For example, in the trees of Fig. 1B–C, if one replaced population D with a population 

D′ that split halfway between D and the root of the tree, then the expected magnitude of 

f4 A, B; C, D′  would be smaller, since the length of the shared drift branch would now 

be less than y. As a result, under the model in Fig. 1C, one could use the fact that 

Lipson Page 3

Mol Ecol Resour. Author manuscript; available in PMC 2024 November 14.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



f4 A, B; C, D > f4 A, B; C, D′  to conclude that D is a better proxy than D′ for the ancestry in 

C (the component with proportion 1 − α). However, this procedure is complicated by the 

fact that if the D-related source was in fact itself admixed, with ancestry related to X and Y , 

then the f4-statistic can sometimes be maximized by X or Y  instead of by D, even though 

one would consider D to be a better proxy (Pickrell et al., 2014). It is also good to remember 

that if a certain signal is weak compared to the noise in the data—for example, if one were 

testing for admixture in C and the shared drift branch length y was short—then one may not 

have enough power to identify it.

Finally, f-statistics can be subject to certain kinds of biases and batch effects (to 

varying degrees, as with other methods) arising from SNP ascertainment, sample type 

and processing (ancient versus present-day, sequencing platform, etc.), and other aspects 

of the data, so it is important to keep such factors in mind when interpreting results. For 

ancient DNA data, challenges include C-to-T errors induced by postmortem deamination 

(Hofreiter et al., 2001), as well as short fragment lengths and (often) low coverage, which 

can exacerbate reference bias (Günther and Nettelblad, 2019). All of these effects can cause 

ancient individuals to appear artificially closely related to one another and to certain other 

populations (e.g., deep outgroups). In general, statistics f4 A, B; C, D  in which A and C share 

a data type and B and D share a different data type are most prone to this kind of artifact.

Admixture graphs: modeling and inference procedure

Fitting an admixture graph with qpGraph

In addition to their stand-alone usage, f-statistics can serve as a means to fit admixture 

graphs from allele frequency data. (Other kinds of statistics can also be used to fit admixture 

graphs, but I will not discuss such methods in detail here; see Discussion.) In this context, 

an admixture graph consists of an ordering of population splits, positions of admixture 

events, branch length parameters, and mixture proportions. Given the first two, the third 

and fourth can be inferred by solving a system of equations (linear in terms of the branch 

lengths) in which observed f-statistic values are matched to their expectations in terms of 

the model parameters. For example, one such equation for the model in Fig. 1B would 

be f2 B, C = x + y + z. With n populations, there are 3 × n
4  possible f4-statistics, 3 × n

3

possible f3-statistics, and n
2  possible f2-statistics, but many of these are linearly dependent; 

for example, f4 A, B; C, D = f3 A; B, D − f3 A; B, C . In fact, there are a total of n
2

linearly independent f-statistic equations, or in other words, f-statistics form a vector space 

of dimension n
2 . Possible choices of basis include (1) the set of all f2-statistics, and (2) the 

set of all f2- and f3-statistics with a given population in the first position.

The software I typically use to build admixture graphs is qpGraph (also referred to as 

ADMIXTUREGRAPH) (Patterson et al., 2012). In qpGraph, the user manually specifies the 

topology of the model, and the program then solves for the optimal values of the parameters. 

In theory, one might wish to search the entire space of all topologies and parameter values 

(for a given number of admixture events) to find the best-fitting model, but the size of the 
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space (exponential in the number of populations) makes this impractical for larger graphs 

(Leppälä et al., 2017). The set of basis statistics used for fitting is the set (2) alluded to in the 

previous paragraph, with the first population listed in the input file as the “base” population.

In its standard mode, qpGraph attempts to minimize the quantity 

S G = 1/2 g − f ′Q−1 g − f , known as the “score” of the model, where f is the vector 

of observed basis f-statistics (of length n
2 ), g is the vector of predicted f-statistics under the 

model, and Q is the (estimated) covariance matrix of the statistics. Assuming multivariate 

normal errors, the score gives the negative log-likelihood of the model; it measures the total 

amount by which the system of f-statistic equations (one for each basis statistic) fails to be 

satisfied, taking into account the empirical correlation among the statistics (see also the next 

section on fit quality). To help insure that Q−1 does not become unstable, one can use the 

“diag” input parameter to add a small number (“diag: 0.0001” works well in my experience, 

but smaller values may be sufficient as well) to the diagonal entries of Q. The program 

can also be run using simple least-squares optimization without the Q matrix by specifying 

“lsqmode: YES,” but in this case highly correlated statistics will be treated as independent 

for the sake of the fitting, and the score will no longer represent a log-likelihood, both of 

which make the full objective function preferable. Other input parameters I typically set are 

“outpop: NULL” (meaning no specified outgroup population in which SNPs are required to 

be polymorphic) and “lambdascale: 1” (leaving the f-statistics in typical units rather than 

scaling into approximate FST). More extensive descriptions of the qpGraph software can 

be found in Patterson et al. (2012) and in the ADMIXTOOLS package repository (https://

github.com/DReichLab/AdmixTools), and of the f-statistic-based admixture graph inference 

process more generally in Lipson et al. (2013); Leppälä et al. (2017).

By default, qpGraph utilizes the set of SNPs that have genotype calls for at least one 

individual in each population in the model. With low-coverage data (for example, in some 

ancient DNA applications), this can result in losing the majority of the sites in the initial data 

set. The program allows an option to use all SNPs instead (“allsnps: YES” or “use-allsnps: 

YES,” in which case each basis statistic is computed on as many sites as possible for the 

two or three populations involved), but this mode can give unreliable results, in particular 

when the base population is highly diverged from the other populations in the model. To the 

best of my knowledge, this effect is caused by greater absolute noise when estimating larger-

magnitude basis statistics, such that the small relative fluctuations in empirical f-statistics 

caused by modest changes in the SNP set become substantial in the context of the admixture 

graph. In my own work, my preference has always been to avoid using the all-SNPs option. 

If this causes an undesirable loss of coverage, then the best approach given the current 

implementation of qpGraph is probably to set as the base a population that (a) is not 

highly diverged from the others in the model, and (b) preferably has multiple individuals 

with diploid data (again to reduce the magnitudes of the statistics). Research is currently 

underway aiming to develop an improved all-SNPs methodology.
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Parameters and constraints

An important consideration is whether the system of equations used to infer the parameters 

of an admixture graph is over- or under-determined. As mentioned above, a model with 

n populations has n
2  linearly independent constraints (i.e., equations). In the absence of 

admixture, there are 2n − 3 parameters, which is the number of branches in an unrooted 

binary tree with n leaf nodes (with the settings I have described, qpGraph results should not 

depend on where the root of a graph is specified). Converting a population from unadmixed 

to admixed adds two parameters: one for the mixture proportion and one for the split 

position of the new source of ancestry. Thus, with a admixture events, the total number 

of free parameters is 2n + 2a − 3. One point to note is that in the case of an admixed 

population with two unsampled sources (which is the typical scenario), the three branch 

lengths surrounding the admixture event (in Fig. 3A, from the node “East1” to “East2,” 

from “West1” to “West2,” and from “pAM1” to Mixe) cannot be determined individually 

but instead form a single compound parameter α2x + (1 − α 2y + z (where α is the mixture 

proportion, x and y are the branch lengths to the two corresponding sources, and z is the 

terminal branch length). The only exception (to my knowledge) is the case in which at 

least three populations are included that can be modeled as having different proportions 

of ancestry from the same two sources, which allows the branch lengths to be solved for 

individually.

Even if the inequality n
2 ≥ 2n + 2a − 3 is satisfied for an admixture graph as a whole, 

there can be some parameters that are not uniquely determined because of repetition 

across the different equations caused by multiple populations in phylogenetically equivalent 

positions. Further discussion of this phenomenon can be found in the example sections 

below. Additionally, having sufficient constraint to estimate parameters is not entirely a 

yes-or-no proposition. A model can have enough populations in distinct positions to be able 

to estimate a mixture proportion, but if two of the populations are only slightly separated, 

then the precision of the estimate will generally be lower. Similarly, if one of the populations 

providing the constraint is itself admixed, then the power will often be reduced.

Fit quality

To my knowledge, no absolute measure of model fit has been developed for admixture 

graphs, but there are several ways to evaluate how well a given model fits the data (this is 

an area of active study; see also Lipson and Reich (2017); Lipson et al. (2017); Leppälä 

et al. (2017); Flegontov et al. (2019); Shinde et al. (2019); Lipson et al. (2020)). The 

following discussion is tailored for qpGraph, but the ideas also apply more generally. First, 

the program returns a list of residual poorly-predicted f-statistics and their Z-scores (drawn 

from the set of all possible f-statistics, not only those in the basis), which can give a good 

sense for the performance of the model and some idea of which populations are responsible 

for the greatest inaccuracies. There is no general rule for what threshold constitutes a 

significantly non-zero residual; the situation is complicated because there are many statistics 

being tested simultaneously, but many of those are also correlated with each other.
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Deviations between model predictions and the observed data can be caused either by an 

incorrectly specified topology or un-modeled admixture. In the first case, assuming that the 

program does not get stuck at a local optimum, it will try to move the populations as close 

as possible to their correct positions but will be constrained by the input topology. Thus, an 

incorrectly specified split order usually manifests as an inferred length-zero internal branch; 

when such branches (i.e., trifurcations) appear in the results, the order of splits should be 

adjusted and re-tried. (The default qpGraph visualization output rounds branch lengths to 

the nearest integer, so some non-zero-length but very short branches may initially appear as 

zero.) As noted in the f-statistics section above, however, one may not have sufficient power 

to resolve short branches, so some sets of three lineages may be found to be statistically 

consistent with forming a trifurcation, with all three possible split orders having similar fit 

quality.

In the case of un-modeled admixture, the observed deviations could potentially reflect 

admixture in one of multiple different populations. Often one can gain information by 

examining the full list of residuals and noting which populations occur repeatedly. Another 

approach is to remove one population from the model and see if the fit improves, although 

even if it does, that could imply either that the population in question had un-modeled 

admixture or that it provided a constraint enabling the detection of un-modeled admixture 

among the other populations.

The score of the final graph is also returned as an output from the program, so it can be used 

to compare the fit quality of different models with the same set of populations, preferring the 

one with the lower score. (If the equations being fit were independent, then one could apply 

a chi-squared test for the overall fit, but in practice they are heavily correlated. qpGraph 
returns a naive degrees of freedom count and p-value alongside the score, but they are 

not well calibrated.) As above, while this approach provides a useful heuristic, evaluating 

statistical significance is complicated, and I do not have a rigorous set of recommendations. 

One recent direction that seems promising is using the score to compare alternative models 

with the same populations and same number of admixture events. In that case, the score 

difference can be interpreted in an AIC/BIC framework, with the likelihood difference as a 

Bayes factor (Leppälä et al., 2017; Flegontov et al., 2019; Shinde et al., 2019). The same 

idea could also be applied in cases with unequal numbers of free parameters—for example, 

adding one admixture event and testing whether the score improvement is significant. 

However, defining the change in degrees of freedom is not straightforward in this situation: 

as noted above, a new admixture event creates two additional parameters in the model, but 

that does not account for whether the admixture comes from a pre-specified source or from a 

source that is allowed to be located anywhere in the graph. Finally, the score can additionally 

be used to compute confidence intervals on parameters (by considering the likelihood as a 

function of a single branch length or mixture proportion value), although it is worth keeping 

in mind that the results are model-dependent.

Admixture graphs: examples

One of the strengths of f-statistic-based admixture graphs is that they are computationally 

tractable enough that programs such as qpGraph can accommodate a large number of 
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populations and admixture events. Sometimes though it can be difficult to digest all of the 

information in large admixture graph models and to analyze their behavior. Fortunately, the 

main principles of admixture graph fitting can be illustrated with simpler examples, which, 

in particular, carry over directly to larger models by considering subsets of four and five 

populations.

Four populations

The first examples I will present are four-population admixture graphs containing Mixe, 

Han, French, and Baka. Given the observed non-zero f4-statistics in Table 1, there must 

be at least one admixture event present in order to fit the data. However, in light of the 

discussions above about determining which population is admixed and about parameters 

and constraints in admixture graphs, it would be expected that these models should be 

insufficiently constrained to determine which population is admixed. Indeed, they have 
4
2 = 6 constraints but 2 4 + 2 1 − 3 = 7 free parameters. Confirming this expectation, 

perfectly fitting models (i.e., sets of branch length and mixture proportion parameters such 

that the six basis f-statistics are predicted exactly, yielding S G = 0  can be obtained with 

Mixe specified as admixed (Fig. 3A) as well as with any of the other three populations 

(incorrectly) specified as admixed instead (Fig. 3B–D).

Interestingly, in some scenarios, the admixed population can be determined even with only 

four populations in the model: if a negative f3-statistic can be formed for some triple, then 

the population in the first position of the statistic (i.e., population A if f3 A; B, C < 0
must be admixed. To give an example, I replaced Mixe with Kyrgyz in the four-population 

model. With Kyrgyz modeled as admixed, the fit is perfect as before (Fig. 4A). With Baka 

modeled as admixed, however, the fit is very poor, with residuals up to Z = 27 (Fig. 4B). 

The most extreme residual is the statistic f3 (Kyrgyz; Han, French), which has an observed 

value of −0.0064 (Z = 27 for difference from zero) and can only be negative if Kyrgyz is 

admixed (i.e., in the position of the test population in a “three-population test” for admixture 

(Reich et al., 2009; Patterson et al., 2012)).

Another note is that in these examples, I have been focusing on the primary signal of deep 

eastern/western Eurasian admixture in Mixe. The other populations are also admixed in 

their own ways; for example, all of the non-Africans have small proportions of Neanderthal 

ancestry, and Baka are admixed with ancestry related to nearby Bantu-speaking farmers (Fan 

et al., 2019). However, the first signal is not evident in the data without deeper outgroups 

present, and the second without other African populations. Conversely, if the model 

contained several sub-Saharan African populations plus Mixe as the lone non-Africans, then 

the primary signal in our examples here would not be visible. In some ways, this inability to 

detect certain admixture events is beneficial, as it means that models can be constructed so 

as to focus on events of interest while ignoring some that are outside the desired scope of the 

work.
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Five populations

In general, in order to be able to solve for the parameters of an admixture graph including 

one admixture event, it is necessary to use at least five populations, providing n
2 = 10

constraints for the 2n + 2a − 3 = 9 free parameters. Concurrently, in contrast to the four-

population examples above, having five populations present allows one to determine which 

of the populations is admixed, as long as the topological relationships of the populations 

are all unique relative to the true mixing sources. More detail on this last point can be 

found elsewhere (Pease and Hahn, 2015; Lipson and Reich, 2017). A simple version of this 

statement is that, at least in the case of a single admixture event, one four-population subset 

will be unadmixed, whereas the other four subsets will include the admixed population. 

Similarly, in order to solve for a given mixture proportion in a larger graph, there must four 

populations present (aside from the admixed one in question) in distinct positions, yielding 

a non-redundant five-population subgraph; having three populations in distinct positions 

allows one to detect the signal of admixture but not to determine the proportion uniquely.

As an example, I added Ulchi (from the Amur River Basin of northeastern Asia) as a fifth 

population alongside the four from above. Ulchi splits closer to the eastern Eurasian source 

population for Mixe than does Han, which provides the additional degree of constraint. The 

five-population model is a good fit to the data, but not a perfect one (Z = 1.9 for the most 

significant residual; Fig. 5A). By contrast, if Baka are modeled as admixed instead of Mixe, 

the fit is poor (Z = 4.7; Fig. 5B). I also show an example where the topology is incorrectly 

specified, with Han closer than Ulchi to the eastern Eurasian source population for Mixe 

(Fig. 5C); this version fits poorly (Z = 5.7), and the branch connecting the split positions of 

Ulchi and Han collapses to length zero. If I add a second admixture event into the models 

in Figs. 5A–B, this creates more free parameters (11) than constraints, and indeed there are 

choices of the parameters that yield perfect fits, even with Mixe modeled as unadmixed (not 

shown).

Having five populations present (with a single admixture event) also provides the ability to 

infer uniquely optimal parameter values. In the four-population example model, the initial 

estimate of eastern Eurasian ancestry in Mixe was 71%, but with the proportion manually 

set at 75%, the fit is still perfect (Fig. 6A). Outside of a certain range of mixture proportions 

(dependent on the values of the branch lengths), the fit will become worse, but within a finite 

interval, the likelihood is entirely flat. In terms of f4-statistics, the observed non-zero value 

is being fit as equal to a branch length in the admixture graph times the mixture proportion 

(as in Fig. 1C), but without additional constraint, that product can remain the same while the 

branch length and mixture proportion covary (where the range is determined by bounds on 

the individual parameter values, e.g., positivity). With five populations, however, there is a 

unique optimal solution; for example, if I set the mixture proportion at 70% eastern Eurasian 

ancestry (as compared to the point estimate of 76% in the five-population model), there are 

residuals up to Z = 2.6 (Fig. 6B), and the score is more than 10 units worse. Even in the 

example above with Kyrgyz (i.e., a four-population model where the admixed population 

can be determined because of a negative f3-statistic; Fig. 4), the parameters remain not 

uniquely determined.
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Finally, in Fig. 5D, I show a model with the original four populations plus Hungarian instead 

of Ulchi. Although there are five populations present, French and Hungarian can be modeled 

as sister groups, so equations relating parameters in the graph to statistics of the form 

f2 (French, X) and f2 (Hungarian, X) are linearly dependent (up to their terminal branch 

lengths) and hence do not contribute fully independent constraints. This can be seen in the 

results, as Baka can successfully be modeled as the admixed population (with residuals up 

to Z = 1.2 reflecting small observed asymmetries between French and Hungarian). This 

contrasts with Ulchi, which has a distinct phylogenetic position from Han (relative to the 

other populations in the model) and thus adds new constraints (although it is worth noting 

again that a population with only a slightly different position adds constraint but only 

weakly).

Discussion

Most of the material in this paper pertaining to admixture graphs has been presented 

from the perspective of the qpGraph software, but other methods are also available, using 

both different kinds of data and different fitting schemes. At the level of mathematical 

formulation, the results have assumed that models are fit based on a distance metric 

(specifically, f-statistics). As an alternative example, the TreeMix algorithm (Pickrell and 

Pritchard, 2012) is based on a maximum-likelihood framework in terms of allele frequency 

covariances, although the information captured is the same; see Peter (2016) for the 

equivalence and a thorough exploration of alternative interpretations of f-statistics in terms 

of population genetic models. There are also methods that use richer summaries of the 

data (for example, the full joint allele frequency spectrum) to infer more complicated 

demographic models that are similar in form, or in some cases essentially identical, to 

admixture graphs—for example, ∂a∂i (Gutenkunst et al., 2009), G-PhoCS (Gronau et 

al., 2011), fastsimcoal2 (Excoffier et al., 2013), and momi2 (Kamm et al., 2019). The 

mathematical underpinnings of such methods are quite different from those based on 

f-statistics, and so the results presented here do not pertain to them. The choice of which 

program to use can depend on aspects of the particular application such as the data set (e.g., 

number of populations, whole-genome sequencing versus genotyping array, etc.) and the 

desired level of complexity and parametrization. Even more generally, of course, numerous 

other approaches exist to model population genetic structure beyond phylogenetic trees with 

gene flow. While it may sometimes be possible to evaluate empirically the suitability of an 

admixture graph for a given problem—for example, by exploring whether any graph of a 

reasonable size provides a good fit to the data—the choice of model is ultimately at the 

discretion of the analyst.

Within the class of f-statistic-based (or equivalent) admixture graph methods, there are 

different approaches to automation and the selection of which populations to model as 

admixed. qpGraph leaves the choice of how many admixture events to include (and which 

populations are admixed) up to the user; some guidelines pertaining to this choice have been 

discussed above. For smaller models, it can also be possible to search some or all of the 

full graph space (Shinde et al., 2019) to determine best-fitting topologies for a given number 

of admixture events (for example, using the similar admixturegraph R implementation 
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(Leppälä et al., 2017) and AdmixtureBayes (Nielsen, 2018); other techniques are the subject 

of ongoing work). MixMapper (Lipson et al., 2013) provides an intermediate level of 

automation by attempting to infer an unadmixed sub-model and then fitting one or two 

admixed populations onto this scaffold. With a small set of populations, this can sometimes 

be a useful approach, but it can largely be recapitulated within qpGraph, and the software 

does not support large models with more admixture events. At the most automated end 

of the spectrum is TreeMix (Pickrell and Pritchard, 2012), which only asks the user to 

supply the list of populations and the number of admixture events and then returns a single 

inferred model. The advantage of this strategy is that the program does all of the work of 

building the graph, which is especially useful if one has limited prior knowledge about the 

populations. The main drawback, in my view, is that the way the program builds the graph 

is by starting with an optimal mixture-free tree and then adding admixture events to account 

for deviations between the predictions of the tree model and the observed data. Depending 

on the true histories of the populations, this approach can be successful, but it can also 

increase the chances of falling into local optima imposed by the initial tree (especially if 

many populations are admixed; see (Lipson et al., 2013)). Additionally—as in other methods

—the choice of how many admixture events to include, which can sometimes be difficult, is 

still left to the user.

In my experience, I have found f-statistics and admixture graphs to be very useful tools for 

learning about phylogeny and admixture. I hope that this guide will help others to get the 

most out of these tools in a range of real-world applications.
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Figure 1. 
Expected values of f4-statistics under specified admixture graph models. (A) The expected 

value of f4 A, B; C, D  is given by the intersection between the path from A to B with the 

path from C to D. Under the model shown, E f4 A, B; C, D = 0. (B) The expected value of 

f4 A, D; B, C  is given by the intersection between the path from A to D with the path from 

B to C. Under the model shown, E f4 A, D; B, C = y. (C) With population C admixed, the 

path from B to C can be decomposed into two components. Under the model shown, with 

a proportion of α B-related ancestry and 1 − α D-related ancestry, the former yields a path 

(lighter red) that has a weight of α but does not intersect the path from A to D, while the 

latter yields a path (darker red) that has a weight of 1 − α and intersects the path from A to 

D over the branch with length y. In total, E f4 A, D; B, C = 1 − α y.
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Figure 2. 
Major human lineages used for examples in the paper, represented by Baka (African), 

French (western Eurasian), Mixe (Native American), and Han (eastern Eurasian). Setting 

aside other complexities in the histories of these populations, the admixture event being 

modeled involves eastern and western Eurasian lineages contributing ancestry to Native 

Americans (Raghavan et al., 2014). See Figs. 3A and 5A for fitted models using this correct 

topology.
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Figure 3. 
Four-population admixture graphs modeling (A) Mixe, (B) Baka, (C) Han, or (D) French 

as admixed. All four versions provide perfect fits to the data (exact agreement between 

observed and predicted f-statistics). In this and all following figures, branch lengths (in 

f-statistic units, multiplied by 1000) are rounded to the nearest integer.
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Figure 4. 
Four-population admixture graphs with Kyrgyz in place of Mixe, modeling either (A) 

Kyrgyz or (B) Baka as admixed. The first provides a perfect fit to the data, whereas the 

second has residuals up to Z = 27.
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Figure 5. 
Five-population admixture graphs. (A) Standard four-population example plus Ulchi; all 

f-statistics are predicted to within 1.9 standard errors of their observed values. (B) Same 

five populations, but with Baka modeled as admixed; residual statistics are present up to 

Z = 4.7 (C) Same five populations, with Mixe modeled as admixed, but with the positions 

of Han and Ulchi reversed; residual statistics are present up to Z = 5.7. (D) Original four 

populations plus Hungarian, with Baka modeled as admixed; all f-statistics are predicted to 

within 1.2 standard errors of their observed values.
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Figure 6. 
Admixture graphs with pre-specified mixture proportion parameters. (A) Four-population 

model, with the proportion locked at 75%; the fit is perfect. Note that the branch lengths 

shift slightly relative to Fig. 3A. (B) Five-population model, with the proportion locked at 

70%; residual statistics (indicating a need for more eastern Eurasian ancestry in Mixe) are 

present up to Z = 2.6.

Lipson Page 18

Mol Ecol Resour. Author manuscript; available in PMC 2024 November 14.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

Lipson Page 19

Table 1.

Observed f4-statistics (values and Z-scores for difference from zero) for the example populations.

Populations f4(A, B; C, D)

A B C D Value Z-score

Mixe Baka Han French 0.011 27.1

Mixe French Han Baka 0.013 35.8

Mixe Han Baka French −0.0025 −8.9
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