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Abstract

Genomic prediction (GP) has been evaluated in durum wheat breeding programs for several

years, but prediction accuracy (PA) remains insufficient for some traits. Recently, multivari-

ate (MV) analysis has gained much attention due to its potential to significantly improve PA.

In this study, PA was evaluated for several agronomic traits using a univariate (UV) model in

durum wheat, subsequently, different multivariate genomic prediction models were per-

formed to attempt to increase PA. The panel was phenotyped for 10 agronomic traits over

two consecutive crop seasons and under two different field conditions: high nitrogen and

well-watered (HNW), and low nitrogen and rainfed (LNR). Multivariate GP was implemented

using two cross-validation (CV) schemes: MV-CV1, testing the model for each target trait

using only the markers, and MV-CV2, testing the model for each target trait using additional

phenotypic information. These two MV-CVs were applied in two different analyses: model-

ling the same trait under both HNW and LNR conditions, and modelling grain yield together

with the five most genetically correlated traits. PA for all traits in HNW was higher than LNR

for the same trait, except for the trait yellow index. Among all traits, PA ranged from 0.34

(NDVI in LNR) to 0.74 (test weight in HNW). In modelling the same traits in both HNW and

LNR, MV-CV1 produced improvements in PA up to 12.45% (NDVI in LNR) compared to the

univariate model. By contrast, MV-CV2 increased PA up to 56.72% (thousand kernel weight

in LNR). The MV-CV1 scheme did not improve PA for grain yield when it was modelled with

the five most genetically correlated traits, whereas MV-CV2 significantly improved PA by up

to ~18%. This study demonstrated that increases in prediction accuracy for agronomic traits

can be achieved by modelling the same traits in two different field conditions using MV-CV2.

In addition, the effectiveness of MV-CV2 was established when grain yield was modelled

with additional correlated traits.
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Introduction

Durum wheat (Triticum turgidum L. ssp. durum Desf.) plays a crucial role in global agricul-

ture, accounting for approximately 5% of the total wheat crop, with an annual production of

40 million tonnes [1]. It is mainly cultivated in the Mediterranean basin, an area characterized

by strong climatic instability that limits yield and grain quality. This region is particularly vul-

nerable to climate change effects such as drought and salinity [2]. The new climate scenario

potentially undermines past efforts to improve yield and meet global food security goals [3]. In

recent years, advancements in genotyping technologies, especially the identification of Single

Nucleotide Polymorphisms (SNPs), have revolutionized breeding applications [4]. Molecular

breeding techniques leverage these advancements to enhance genetic gain, offering advantages

such as cost-effective genotyping and the ability to make selections during off-seasons, ulti-

mately saving time [5].

Genomic selection (GS) becomes an attractive plant breeding method for durum wheat and

other many species, increasing the genetic gain per unit of time [6, 7]. Compared to Marker-

Assisted Selection (MAS), GS is particularly advantageous for traits controlled by multiple

genes, enabling the capture of both major and minor Quantitative Trait Loci (QTL) [8]. There-

fore, GS appears more attractive than MAS for selecting complex agronomic traits, which gen-

erally have low heritability values and whose expression is often masked by climatic trends and

characteristics of the cultivation environment [9]. In the GS method, a statistical model is

trained using genotypic and phenotypic information from a set of individuals known as the

training population (TP). The model is then used to calculate the genomic estimated breeding

values (GEBVs) of a set of genotypes named the validation population (VP). The correlation

between GEBVs and true breeding values (TBVs) determines to the genomic prediction accu-

racy (PA) of the model [10, 11]. Subsequently, the trained model is applied to a breeding popu-

lation (BP), which has only been genotyped, to select new genotypes based on their GEBVs

[12]. Univariate (UV) genomic prediction, which computes a single trait at a time, has been

commonly utilized in durum wheat breeding to enhance various characteristics, including

grain yield, quality traits [13–17], phenological traits [18, 19], biotic [20–22], and abiotic stress

[23].

For durum wheat, as well as for all crops, the ultimate goal of breeding is to increase genetic

gain. Genetic gain per year can be estimated as ΔG = i r σA/t where ΔG is the response to selec-

tion, i corresponds to the selection intensity, r is the selection accuracy, σA is the square root of

the additive genetic variance, and t is the duration of the breeding cycle [5]. In a GS-based

breeding program, r corresponds to the correlation between TBVs and GEBVs, or the genomic

prediction accuracy. Prediction accuracy is a complex parameter to discern since it is influ-

enced by several variables, such as population size [24] marker density [25], heritability [10],

and the genetic architecture of the trait of interest [26], the relatedness among individuals in

the TP and VP [27] and the prediction model [28].

Therefore, improving genomic prediction accuracy is a crucial goal for many breeders, stat-

isticians, and quantitative geneticists [26, 29]. Consequently, multivariate (MV) genomic pre-

diction, which considers multiple variables simultaneously, is gaining widespread popularity.

This approach allows for the simultaneous exploitation of information from multiple traits,

thereby enhancing the genomic prediction accuracy [30]. Several studies in the literature have

already highlighted the effectiveness of implementing the multivariate approach to increase

prediction accuracy for a target trait due to borrowing information from secondary traits. For

instance, Jia and Jannink [30] compared uni- and multivariate GS models and reported that

prediction accuracy significantly increased for low-heritability traits when these were modelled

alongside correlated high-heritability traits. Lado and colleagues [29] evaluated the prediction
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accuracy using uni- and multivariate models and found the supremacy of an MV model when

one highly correlated secondary trait is phenotyped in both the TP and VP. In addition, pre-

diction accuracy for grain yield was significantly increased by the multivariate approach and,

in some cases, it was improved by ~100% compared to the single-trait method in spring wheat

[31]. The multivariate GP approach has also been successful in enhancing the prediction accu-

racy of deoxynivalenol content across various populations of soft red winter wheat [32]. Addi-

tionally, the integration of near-infrared (NIR) technology information into GP models aimed

to enhance PA of diverse end-product quality traits in wheat. Notably, the authors observed a

substantial 30% increase in PA by incorporating NIR-predicted data, surpassing the results

obtained from a single-trait analysis [33]. A recent study examined various agronomic traits,

including grain yield, thousand kernel weight, across 237 bread wheat lines. The comparison

between single-trait and multi-trait models revealed the superiority of the latter, demonstrat-

ing a genetic gain ranging from 5% to 22% more than the single-trait models [34]. Similarly,

multi-trait genomic selection proved to be more effective than single-trait models for predict-

ing micronutrients such as zinc and iron in wheat breeding [35]. Kaushal et al. [36] evaluated

high-throughput phenotyping-based (HTP) traits in MV-GBLUP (genomic best linear unbi-

ased predictors) models for predicting grain yield, test weight, and grain protein content.

While UV-GBLUP achieved a PA of 0.23 for grain yield, MV-GBLUP, incorporating HTP

traits collected during the booting stage, significantly improved PA, with an increase of 60 Fur-

thermore, multi-trait models that combine direct measurements of end-product quality traits

with their NIR predictions achieved higher prediction accuracy than single-trait models [33].

It was also demonstrated that the Fusarium-damaged kernels trait, assessed through a neural

network and cell phone camera images, can enhance genomic prediction accuracy for deoxy-

nivalenol when used as a secondary trait in a multi-trait GS model [37]. However, a study eval-

uating genomic prediction accuracy for three wheat diseases (tan spot, spot blotch, and

septoria nodorum blotch) found no advantage in modeling all diseases together compared to

using a single-trait approach in a synthetic hexaploid wheat population [38].

In this study, several multivariate genomic prediction models were implemented for vari-

ous traits and indices related to grain yield, quality, and crop phenology, observed in two dif-

ferent field conditions in a panel of 250 durum wheat genotypes using two cross-validation

schemes (CV1 and CV2). Our aims were (i) to compare the accuracy of uni- and multivariate

genomic prediction models for several agronomic traits under two field conditions, and (ii) to

test whether the prediction accuracy of grain yield can be improved by including the most

genetically correlated traits in MV genomic prediction models. Results from this study will

illuminate the usefulness of MV genomic prediction models for durum wheat breeding as well

as for similar breeding programs.

Materials and methods

Plant material and field trials

The two hundred and fifty durum wheat varieties used in this study constituted the SolACE

project durum wheat association panel (https://www.solace-eu.net/). The panel included 200

elite genotypes derived from Italian, French, and American breeding programs, as well as 50

inbred lines developed by the French National Research Institute for Agriculture, Food and

the Environment (INRAE) from an advanced Evolutionary Pre-breeding Population (EPO).

The field trial was conducted over two consecutive growing seasons (2017–2018 and 2018–

2019) at the experimental farm of the Research Centre for Cereal and Industrial Crops at Fog-

gia, south Italy (CREA-CI) (41˚27’40.2” N 15˚30’04.5” E). The genotypes were grown on clay

soil (United States Department of Agriculture Classification, Washington, DC, USA) with the
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following main agrochemical characteristics: organic matter (Walkley-Black method) 2.5 and

2.6% in 2018 and 2019, respectively; available phosphorus (Olsen method) 62.0 and 68.0 mg

kg−1; exchangeable potassium (ammonium acetate method) 422 and 450 mg kg−1; total nitro-

gen (Dumas method) 1.3 and 1.1%. The fields were homogeneous and without preceding

crops (“set-aside land”). The sowing was carried out on November 28th and December 7th in

2017 and 2018 respectively. An ordinary sowing density of approximately 350 seeds m-2 was

used. The plot dimensions were 2.4 m2 and 4.8 m2 for the first and second years of the trial,

respectively. Plots were arranged in a randomized complete block design with two replications.

The genotypes were randomly sown and arranged in a split-plot design, with two agronomic

treatments assigned to the main plots. The treatments included I) irrigation water supply and

high nitrogen input, referred to as HNW, and II) rainfed conditions and low nitrogen input,

referred to as LNR. In the high input treatment, 240 kg/ha of N fertilizer was divided into

three applications (120, 70, and 50 N kg/ha at tillering, stem elongation, and flowering time

respectively), and the plots were irrigated using a drip irrigation system maintaining soil mois-

ture not less than 20% of field capacity. Soil moisture probes evenly distributed across the fields

provided data to help ensure target field capacity was maintained. The low input treatment

was carried out under rainfed conditions and with a single application of 60 kg/ha of nitrogen

in the tillering phase. Durum wheat grains were machine-harvested at full maturity on the 25th

and 27th of June in 2018 and 2019, respectively, using a Wintersteiger Nursery Master Elite

plot combine (Wintersteiger Inc., Ried im Innkreis, Austria). Finally, the total precipitations

were also recorded, expressed in mm for each crop season using the public online software

NASA POWER (https://power.larc.nasa.gov, available online on 29 November 2021). Taking

into account the water needs of durum wheat, precipitations were observed from June to the

following June of each crop season to better investigate the field management effect.

Trait phenotyping

During the two growing seasons, wheat plants were phenotyped for ten agronomic traits in

both HNW and LNR management conditions. The plants were monitored twice a week to

record the date of flag leaf appearance (FLA), days to heading (DTHD), days to anthesis

(DTA), and days to maturity (DTM) of the main stem (i.e., growth stages 47, 55, 65 and 90)

[39] expressed as days from 1st April. The normalized difference vegetation index (NDVI) was

recorded at anthesis on each plot by using the GreenSeeker™ Trimble Inc. handheld optical

sensor unit. At harvest, grain yield (GY) (t/ha) was assessed for each plot at 15% moisture con-

tent. Grain protein content (GPC) (%), test weight (TW) (kg hl-1), and semolina yellow index

(YI) (ppm) were determined by near-infrared reflectance spectroscopy using an Infratec 1229

Grain Analyzer (Foss Tecator, Hillerød, Denmark). Thousand kernel weight (TKW) (g) was

measured as the mean weight of three sets of 500 grains per plot.

By using observed traits, two derivative parameters were calculated to better characterize

the entire durum wheat panel. Grain protein deviation (GPD) was expressed as the deviation

from the regression between GY and GPC. This was achieved by calculating the residuals from

the regression of protein content on grain yield based on environmental means [40] using the

following formula:

GPD ¼ GPC � a � bGY ð1Þ

Where GPC is the observed values for protein content, GY is the observed grain yield values,

and α and β are estimates of the intercept and coefficient of the regression between GPC and

GY, respectively. Changing the role of protein content and grain yield in the equation above

brings forth grain yield deviations (GYD) [15] that were also considered as a viable selection
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criterion:

GYD ¼ GY � a � bGPC ð2Þ

E-BLUEs, heritability, and genetic correlations

Empirical best linear unbiased estimates (E-BLUEs) were calculated from the observed data

based on the random complete block design. The E-BLUE values were estimated using a

restricted maximum likelihood (REML) approach by using the following linear mixed model:

yijk ¼ mþ gi þ ej þ rkðjÞ þ geij þ εijk ð3Þ

where yijk is the observed value, μ is the overall mean, gi the effect of the ith line assumed as a

fixed effect, ej is the jth environment (year) effect modelled as the random effect, rk(j) is the ran-

dom effect of the kth replicate in the jth environment, geij are the genotype by environment

interaction, and εijk corresponded to the residual effect considered a random effect and

assumed to have a normal distribution εijk � Nð0; s2
εÞ. This model was fit using the remlf90

function of the “breedR” package in R [41]. Estimates of broad-sense heritability (H2) were

obtained using Eq 3 for the calculation of E-BLUEs except for fitting gi as a random effect to

estimate the genotypic variance. The following formula was used to calculate the broad-sense

heritability:

H2 ¼
s2
g

s2
g þ

s2
ge
y þ

s2
ε
yr

ð4Þ

where s2
g is the genotypic variance, s2

ge is the variance coming from the genotype by environ-

ment (year) interaction, y is the number of years, r is the number of replications and s2
ε is the

error variance [42]. Finally, genetic correlations which measure the extent to which the varia-

tion in two traits is due to shared genetic factors were calculated. These correlations provide

an estimate of the additive genetic effect shared between two traits. Genetic correlations

between the two traits were calculated as follows:

rgij
¼

sgij

sgi
sgj

ð5Þ

Where sgij
is the genetic covariance between trait i and j, sgi

and sgj
represent the square root

of the genetic variances of i and j traits respectively. Genetic variance and covariance were esti-

mated using both phenotypic and genotypic information through the function multitrait in

the R package “BGLR” [43].

Genomic prediction models

Before harvest, leaf tissue of each genotype was collected at the third-leaf stage and stored at

-80˚C. DNA was extracted from the stored tissue using a Sbeadex Livestock kit (LGC Geno-

mics GmbH, Germany). Subsequently, genotyping of high-quality DNA was performed using

a 420K SNP Axiom Array at Gentyane, France (INRA, Clermont-Ferrand, France: http://

gentyane.clermont.inra.fr/). Raw data were filtered using a minor allele frequency (MAF) cut-

off of<5%, and missing data cut-off of<20%. The conversion from the Hapmap format to a

numerical matrix was conducted using the software Tassel 5.0 (https://tassel.bitbucket.io). The

software assigns a value of 1 to represent homozygous major allele, 0 for homozygous minor
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allele, and 0.5 for heterozygous genotypes. To align the numerical matrix with the used tools, a

substitution code was applied, replacing the values with -1, 1, and 0 respectively.

E-BLUEs were used to perform all genomic prediction analyses in both uni- and multivari-

ate approaches. The univariate genomic best linear unbiased prediction (UV-GBLUP) model

was utilized as a reference for all multivariate models, which included MV-GBLUP, Bayesian

ridge regression (BRR), Bayesian reproducing kernel Hilbert spaces regressions (RKHS), spike

and slab regression (SpikeSlab), and machine learning random forest (RF). In particular, the

univariate GBLUP model was formulated as the following equation:

y ¼ mþ Zgþ ε ð6Þ

where y is the vector of the E-BLUEs, μ is the grand mean, Z is the design matrix of random

effects, g is the vector of genomic breeding values, and ε is the vector of random residuals. In

this model, it assumed that g � Nð0; Gs2
GÞ, where G is the genomic relationship matrix built

from the SNP matrix, and s2
G is the additive genetic variance [44]. By contrast, multivariate

GBLUP was performed using the following model:

y
1

..

.

yp

2

6
6
6
4

3

7
7
7
5
¼

X1 � � � 0

..

. . .
. ..

.

0 � � � Xp

2

6
6
6
4

3

7
7
7
5

m1

..

.

mp

2

6
6
6
4

3

7
7
7
5
þ

Z1 � � � 0

..

. . .
. ..

.

0 � � � Zp

2

6
6
6
4

3

7
7
7
5

g
1

..

.

gp

2

6
6
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4

3

7
7
7
5
þ

ε1

..

.

εp

2

6
6
6
4

3

7
7
7
5

ð7Þ

Where y is the vector of BLUEs of p traits, X and Z are the design matrices for fixed and ran-

dom effects,

m1

..

.

mp

2

6
6
6
4

3

7
7
7
5

correspond to trait intercepts of p traits, the predicted genetic values,

denoted as

g1

..

.

gp

2

6
6
6
4

3

7
7
7
5

, were assumed to distributed as

g1

..

.

gp

2

6
6
6
4

3

7
7
7
5
� Nð0;H� GÞ, where G is the geno-

mic relationship matrix estimated from the markers, H is the unstructured variance-covari-

ance matrix for the genetic effects among traits, and� is the Kronecker product. It was also

assumed that the residual term,

ε1

..

.

εp

2

6
6
6
4

3

7
7
7
5

, followed a distribution

ε1

..

.

εp

2

6
6
6
4

3

7
7
7
5
� Nð0;R� IÞ, where R

is the diagonal variance-covariance matrix for the residuals effect among the traits, and I is the

identity matrix. This model was implemented for all traits, including the same trait in both

HNW and LNR conditions. Subsequently, GY was used as the primary trait, and the five most

genetically correlated traits were used as secondary traits, keeping the field conditions separate.

Both UV- and MV-GBLUP were trained using the mmer function of the “sommer” package

[45]. Two SNP-based models such as BRR, and SpikeSlab were applied by using the multitrait
function implemented in the “BGLR” R package [43] with the following data equation:

Y ¼ 1μ0 þ X1B1 þ E ð8Þ

where Y represents the matrix of the E-BLUEs for each individual and for each trait, μ =

(μ1,. . .,μt)0 are the trait-specific intercepts, X1 corresponds to the incidence matrix of the set of

the predictors (the molecular markers), B1 represents the matrix of effects, and E is the error
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matrix assumed to be independent and identically distributed (IID). In the error matrix, the

rows correspond to the individuals, and each row follows a multivariate normal distribution

(MVN) with zero mean and covariance matrix R0. Hence, the conditional distribution of the

data, given the regression parameters and the error covariance matrix, is as follows:

pðYjθÞ ¼
Yn

i¼1
MVMðyijηi;R0Þ ð9Þ

where ηi = μ+B01 x1i, which is a vector containing the conditional mean of the ith observations

for the tth trait where x1i correspond to the ith rows referring to the matrix X1, and θ = {μ,B1,

R0}. In addition, an individual-based model (RKHS) was also performed by applying the mul-
titrait function with a modified data equation:

Y ¼ 1μ0 þ U1 þ U2 þ U3 þ E ð10Þ

Where Y,μ, and E maintain their respective meaning from Eq (8). In addition, U1,U2, and U3

are the matrices of random effects which in our study correspond to the three kernel relation-

ship matrices K* derived from the markers [43, 46]. In Eq (10), the conditional distribution of

the data, given the regression parameters and the error covariance matrix, can be described

with Eq (9) where ηi = μ+u1i+u2i+u3i, where u*i is the ith rows corresponding to the U*matri-

ces, and θ = {μ,U1,U2,U3,R0}.

Finally, a multivariate machine learning random forest model was applied. Bootstrap sam-

ples were taken from the training population set and a random forest tree (TB) was subse-

quently built using the bootstrapped data with a splitting criterion which was specific for each

variable. The predicted values for the validation population were calculated using the following

equation:

ŷi ¼
1

B

XB

b¼1

TbðxiÞ ð11Þ

where ŷi is the predicted value for the ith individuals with genotype xi, B is the number of boot-

strap samples, and T is the number of trees. The hyperparameters optimization was performed

before fitting the model using an inner grid search cross-validation function. Different sets of

hyperparameters were considered, including the number of trees (100, 200, 300), the number

of variables to possibly split at each node (80, 100, 120), and the minimum size of the terminal

node (3, 6, 9). The latter model was run using the R function rfsrc which is implemented in the

package “randomForestSRC” [47]. The random forest model was complete only in the

MT-CV1 scheme because of the inability of the rfsrc R function to digest NA values. In this

study, prediction accuracy was estimated using the correlation between the genomic estimated

breeding values and the E-BLUEs. All the code for performing genomic prediction analyses is

available in the following GitHub repository: https://github.com/paolovitale777/Code-

univariate-and-multivariate-genomic-prediction/blob/main/Code. Finally, a mean separation

test (Duncan Test) was performed to compare sets of means and discern statistical differences

among prediction accuracies from all uni- and multivariate models. Duncan Test was applied

using the function duncan.test implemented in the “agricolae” R package (version 1.4.0) [48].

Cross-validation schemes

Prediction accuracy was assessed through five-fold cross-validation, repeated 10 times, using

two distinct schemes (CV1 and CV2) for two types of analysis. In the univariate approach,

only cross-validation 1 (UV-CV1) was used, where 4/5 of the population served as the training

population (TP), and the remaining 1/5 was designated as the validation population (VP)
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(Fig 1A). In the multivariate approach, two analyses were conducted: one encompassing all

traits and another specific to GY, using both CV1 and CV2.

Same trait in two field conditions

Data from each trait across both field conditions were incorporated into the model (Fig 1).

Two schemes were used for analysis: multivariate cross-validation 1 (MV-CV1) and multivari-

ate cross-validation 2 (MV-CV2). In MV-CV1, a randomly selected 4/5 subset of the popula-

tion was used to train a model incorporating genotypic and phenotypic data from both field

conditions, predicting the remaining 1/5 genotypes for each field condition separately (Fig

1B). In MV-CV2, the model was trained using genotypic information and phenotypic data

from the HNW condition for 4/5 of the population and phenotypic data from the LNR condi-

tion for all individuals. This model was used to predict the remaining genotypes in HNW con-

ditions (Fig 1C). The reversed scenario was also shown in Fig 1D (as in Lado et al. [29]).

Grain yield with correlated traits

In the second analysis, focusing on grain yield and correlated traits, prediction accuracy was

calculated by including the five traits most genetically correlated to GY (Fig 2). For the HNW

prediction, the predictive model included TKW, TW, GPC, YI, and FLA, while for LNR pre-

diction, TKW, TW, NDVI, GPC, and YI were used. This analysis was performed separately for

HNW and LNR conditions. In MV-CV1, a random 4/5 subset was sampled to train the model

using genotypic and phenotypic information of GY and the correlated traits. The model was

then validated on the remaining individuals for GY (Fig 2B). In MV-CV2, the model was

trained using GY for a random 4/5 subset, supplemented with phenotypic information of

other traits for the entire panel (Fig 2C), predicting GEBVs for 1/5 of the remaining genotypes

for GY.

Fig 1. Cross-validation scheme: Same trait in two field conditions. The training population (TP) is represented in

green, and the validation population (VP) in red. (A) Univariate cross-validation 1 (UV-CV1): this scheme was applied

for all traits, with 4/5 of the population used for training the model and 1/5 for validation. (B) Multivariate cross-

validation 1 (MV-CV1): the phenotypical information for the same trait in both high nitrogen and well-watered

(HNW) and low nitrogen and rainfed (LNR) conditions were included in the model for the individuals involved in the

TP. The correlation between the genomic estimated breeding values (GEBVs) and the BLUEs was performed

separately for the target trait in its HNW and LNR conditions. (C) Multivariate cross-validation 2 (MV-CV2):

phenotypic information from the LNR condition of the individuals in the VP was included in the model to predict the

HNW condition. (D) Multivariate cross-validation 2 (MV-CV2): the same scenario as in (C), but HNW and LNR

conditions reversed.

https://doi.org/10.1371/journal.pone.0310886.g001
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Results

General statistics, heritability, and genetic correlations

Basic summary statistics of the E-BLUEs for each trait and index under both field conditions is

displayed in Table 1. Standard error was very similar between the same trait in HNW and

LNR. The coefficient of variation (CV), calculated using the E-BLUE values, ranged from 0.03

(TW in LNR) to 0.16 (GY in HNW) for yield and related traits, from 0.06 (GPC in HNW and

LNR) to 0.73 (GPD in LNR) for quality traits, and from 0.04 (DTM in LNR) to 0.13 (DTHD in

HNW) for phenological traits. A wide range of heritability (H2) for yield-related traits was

observed, with values ranging from less than 0.05 for NDVI in HNW to 0.97 for TKW in LNR.

Broad-sense heritability for traits related to quality ranged from 0.36 for YI to 0.83 for GPC,

both evaluated in HNW. Moderate to high H2 for phenology-related traits were detected, rang-

ing from 0.48 (DTM in LNR) to 0.84 (DTHD in HNW). According to the analysis of variance

(ANOVA), the factor genotype was found to be a significant source of variation in the trials

for all traits (S1 Table). The field management source of variation was also statistically signifi-

cant for all traits except for GY and GPD, probably due to the large amount of precipitation

which confounded the effect of management. Specifically, total precipitation for the crop sea-

son 2017/2018 was 442.96 mm while the 2018/2019 crop season received 527.34 mm.

Fig 3 displays the genetic correlations between GY and all the other traits under two differ-

ent field conditions. In both field conditions, positive correlations were observed between GY

and other yield-related traits, while negative or weak correlations were noted with traits related

Fig 2. Cross-validation scheme: Grain yield with correlated traits. The training population (TP) is represented in green, and the validation population (VP)

in red. (A) univariate cross-validation 1 (UV-CV1): this scheme was applied for grain yield, with 4/5 of the population used for training the model and 1/5 for

validation. (B) Multivariate cross-validation 1 (MV-CV1): phenotypic information from the most five correlated traits were included in the model for the

individuals involved in the TP. (C) Multivariate cross-validation 2 (MV-CV2): phenotypic information from the most five correlated traits were included in the

model for the individuals involved in the TP and VP.

https://doi.org/10.1371/journal.pone.0310886.g002
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to quality and phenology. For each field condition, the five traits most genetically correlated to

GY were selected for inclusion in multivariate genomic prediction models. Excluding deriva-

tive indices (GYD and GPD), GY in HNW was most strongly correlated with GPC (-0.43),

FLA (-0.11), YI (0.30), TW (0.32), and TKW (0.34). Under the LNR management condition, it

was observed that GPC (-0.37), TKW (0.15), TW (0.20), NDVI (0.28), and YI (0.29) were the

traits most strongly correlated with GY.

Univariate genomic prediction

All samples were genotyped using an Axiom array of 420K SNP markers. After filtering, the

number of markers was reduced to 63,407. Estimates of genomic prediction accuracy for all

traits in both field management conditions are reported in Table 2. For yield-related traits, PA

estimates ranged from 0.43 (NDVI) to 0.74 (TW) in HNW, and from 0.34 (NDVI) to 0.73

(TW) in LNR. In particular, GY showed a moderate prediction accuracy in both field manage-

ments: 0.58 in HNW and 0.53 in LNR. For quality-related traits, PA ranged from 0.44 (YI) to

0.63 (GPC) in HNW, and from 0.48 (YI) to 0.54 (GPC) in LNR. For traits related to plant phe-

nology, moderate to high prediction accuracies were observed for both field conditions, rang-

ing from 0.62 to 0.70 for FLA and DTHD, respectively, in HNW. Prediction accuracy

Table 1. E-BLUEs summary statistics for all traits and indices.

Trait Field Condition Mean Min Max SE CV H2

GY (t/ha) HNW 5.94 3.74 8.76 0.06 0.16 0.32

LNR 5.90 3.55 8.30 0.05 0.13 0.53

TKW (g) HNW 45.10 34.14 54.07 0.24 0.08 0.95

LNR 49.33 38.69 59.56 0.25 0.08 0.97

TW (g) HNW 76.82 67.01 82.98 0.19 0.04 0.78

LNR 80.26 72.81 83.87 0.14 0.03 0.83

GYD (index) HNW -7.59 -11.80 -4.84 0.06 0.12 0.20

LNR -8.24 -10.55 -5.87 0.05 0.10 0.45

NDVI (index) HNW 0.56 0.43 0.66 0.00 0.09 <0.05

LNR 0.36 0.24 0.49 0.00 0.13 0.22

GPC (%SS) HNW 17.23 15.10 20.60 0.06 0.06 0.83

LNR 15.23 13.34 18.11 0.06 0.06 0.68

GPD (index) HNW -0.21 -2.13 2.84 0.05 0.70 0.80

LNR -0.15 -1.88 2.65 0.05 0.73 0.64

YI (index) HNW 20.01 11.84 25.40 0.14 0.11 0.36

LNR 21.07 15.16 27.53 0.14 0.10 0.48

FLA (days) HNW 21.68 16.25 30.75 0.16 0.12 0.63

LNR 18.98 12.25 25.75 0.12 0.10 0.52

DTHD (days) HNW 31.62 22.25 38.47 0.26 0.13 0.84

LNR 27.73 19.75 35.00 0.20 0.11 0.64

DTA (days) HNW 37.22 29.00 44.75 0.25 0.11 0.77

LNR 34.49 27.00 42.50 0.18 0.08 0.57

DTM (days) HNW 76.62 69.00 83.75 0.22 0.05 0.64

LNR 68.87 62.25 80.75 0.17 0.04 0.48

The table includes the mean, minimum value (min), maximum value (max), standard error (SE), coefficient of variation (CV), and broad-sense heritability estimates

(H2). GY, grain yield; TKW, thousand kernel weight; TW, test weight; GYD, grain yield deviation; NDVI, normalized difference vegetation index; GPC, grain protein

content; GPD, grain protein deviation; YI, yellow index; FLA, flag leaf appearance, DTHD, days to heading; DTA, days to anthesis; DTM days to maturity; HNW, high

nitrogen and well-watered; LNR, low nitrogen and under rainfed.

https://doi.org/10.1371/journal.pone.0310886.t001
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estimates ranged from 0.48 (DTM) to 0.56 (DTHD) in LNR. Finally, the Fisher test was per-

formed to discern statistical differences between the accuracy in HNW and LNR for the same

trait. Prediction accuracy in HNW was significantly higher than in LNR for almost all traits (8

out 12) with the exception of TW, GYD, GPD, and YI (S1 Fig).

Multivariate genomic prediction: Same trait in two field conditions

In this first analysis, an attempt was made to improve prediction accuracy for all traits by

modelling the same traits in both HNW and LNR conditions. Estimates of PA for all traits in

both field conditions, for the multivariate models, and the univariate GBLUP previously

described, are displayed in Table 2. MV-CV1 was found to be ineffective for improving PA for

any trait, but improvements were observed with MV-CV2. Regarding yield-related traits, sig-

nificant improvements were not observed when applying the first method of cross-validation.

However, significant increases in terms of PA for almost all traits were observed with

MV-CV2, with variations ranging from 1.56% for NDVI in HNW using MV-GBLUP to

56.72% for the trait TKW in LNR using the RKHS model. When MV-CV1 was applied to qual-

ity traits, the largest improvement was found for GPD evaluated in HNW using RKHS

(4.41%), although the difference was not statistically significant. Relevant variation in PA was

detected using MV-CV2, ranging from -8.64% to 50.2% for yellow index (MV-GBLUP) and

GPC (RKHS), respectively, both in LNR. Finally, when phenological traits were analyzed, a

limited range of variation in prediction accuracy was found using MV-CV1, ranging from a

decrease of -5.12% for DTA in the HNW condition using MV-GBLUP to an increase of 5.31%

for DTM in the LNR condition using RF. By contrast, MV-CV2 significantly improved PA,

with an increase of up to 23.57% for DTHD in LNR using the RKHS model.

Multivariate genomic prediction: Grain yield with correlated traits

The goal of the second analysis was to test multivariate strategy for GY by training the models

with GY alongside the five most genetically correlated traits. Consistent with the findings in

Fig 3. Genetic correlation between grain yield and other traits. In this plot grain yield (GY) was genetically

correlated with all the other traits under evaluation and derivate indices in both (A) high nitrogen and well-watered

(HNW) and (B) low nitrogen and rainfed (LNR) conditions. The five most correlated traits to grain yield were marked

with the asterisk. TKW, thousand kernel weight; TW, test weight; GYD, grain yield deviation; NDVI, normalized

difference vegetation index; GPC, grain protein content; GPD, grain protein deviation; YI, yellow index; FLA, flag leaf

appearance, DTHD, days to heading; DTA, days to anthesis; DTM days to maturity.

https://doi.org/10.1371/journal.pone.0310886.g003
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the first analysis, no improvements were found when MV-CV1 was applied. However,

MV-CV2 increased prediction accuracy under both field conditions across most models (Fig

4). Using MV-CV1 in HNW, prediction accuracy remained roughly constant except for the

MV-GBLUP model, which resulted in a significant decrease in PA of -7.34%. In contrast, a

general improvement in PA, by up to ~18%, was observed when the multivariate RKHS model

was applied using MV-CV2 in the same field management. For the LNR condition, a similar

trend in prediction accuracy variation was observed. Indeed, no evident variation in PA was

observed using MV-CV1, but statistically significant improvements were observed when

MV-CV2 was applied across all models, except for MV-GBLUP (Fig 4).

Discussion

This comprehensive study explored both univariate and multivariate genomic prediction strat-

egies to improve the accuracy of predicting key agronomic traits in durum wheat. A key aspect

involved modelling simultaneously the same trait under different field conditions using

Table 2. Prediction accuracy in univariate and multivariate using the same trait in two field conditions (Cond.).

UV-CV1 MV-CV1 MV-CV2

Traits Cond. UV-GBLUP MV-GBLUP BBR RKHS SpikeSlab RF MV-GBLUP BRR RKHS SpikeSlab

GY HNW 0.58 ± 0.02c 0.57 ± 0.02c 0.58 ± 0.02c 0.57 ± 0.02c 0.58 ± 0.02c 0.57 ± 0.02c 0.67 ± 0.02ab 0.69 ± 0.02a 0.70 ± 0.02a 0.66 ± 0.02b

LNR 0.53 ± 0.02c 0.52 ± 0.02c 0.55 ± 0.02c 0.54 ± 0.02c 0.53 ± 0.02c 0.55 ± 0.02c 0.67 ± 0.02a 0.67 ± 0.02a 0.67 ± 0.02a 0.62 ± 0.02b

TKW HNW 0.57 ± 0.03cd 0.55 ± 0.02d 0.59 ± 0.02c 0.58 ± 0.02cd 0.56 ± 0.02cd 0.55 ± 0.03cd 0.73 ± 0.03b 0.82 ± 0.01a 0.83 ± 0.01a 0.72 ± 0.03b

LNR 0.52 ± 0.02cd 0.47 ± 0.05d 0.51 ± 0.03cd 0.53 ± 0.02c 0.49 ± 0.03cd 0.49 ± 0.03cd 0.69 ± 0.06b 0.81 ± 0.01a 0.81 ± 0.01a 0.71 ± 0.02b

TW HNW 0.74 ± 0.01de 0.72 ± 0.01e 0.74 ± 0.01de 0.75 ± 0.02d 0.74 ± 0.01de 0.73 ± 0.01de 0.85 ± 0.02c 0.89 ± 0.01ab 0.90 ± 0.01a 0.87 ± 0.01bc

LNR 0.73 ± 0.01c 0.72 ± 0.01c 0.75 ± 0.01c 0.75 ± 0.01c 0.74 ± 0.01c 0.73 ± 0.02c 0.84 ± 0.05b 0.89 ± 0.01a 0.90 ± 0.01a 0.88 ± 0.01a

GYD HNW 0.51 ± 0.02cd 0.47 ± 0.04d 0.52 ± 0.02bc 0.52 ± 0.02bc 0.51 ± 0.02cd 0.52 ± 0.03bc 0.56 ± 0.03ab 0.60 ± 0.02a 0.60 ± 0.03a 0.56 ± 0.03ab

LNR 0.51 ± 0.02de 0.49 ± 0.02e 0.51 ± 0.02de 0.53 ± 0.02cd 0.52 ± 0.02cde 0.52 ± 0.02cde 0.58 ± 0.04ab 0.59 ± 0.02ab 0.60 ± 0.02a 0.56 ± 0.03bc

NDVI HNW 0.43 ± 0.03c 0.43 ± 0.02c 0.44 ± 0.02bc 0.44 ± 0.03bc 0.42 ± 0.02c 0.44 ± 0.02bc 0.43 ± 0.03bc 0.47 ± 0.02ab 0.50 ± 0.03a 0.46 ± 0.02abc

LNR 0.34 ± 0.02c 0.38 ± 0.03abc 0.36 ± 0.02bc 0.34 ± 0.03c 0.33 ± 0.03c 0.37 ± 0.03abc 0.42 ± 0.03a 0.40 ± 0.03ab 0.41 ± 0.03a 0.38 ± 0.02abc

GPC HNW 0.63 ± 0.02c 0.63 ± 0.02c 0.63 ± 0.02c 0.63 ± 0.02c 0.62 ± 0.02c 0.56 ± 0.03d 0.79 ± 0.01b 0.83 ± 0.01a 0.84 ± 0.01a 0.79 ± 0.02b

LNR 0.54 ± 0.02c 0.51 ± 0.02c 0.52 ± 0.02c 0.53 ± 0.03c 0.50 ± 0.03c 0.44 ± 0.03d 0.77 ± 0.02ab 0.79 ± 0.02a 0.81 ± 0.01a 0.75 ± 0.02b

GPD HNW 0.56 ± 0.03cd 0.57 ± 0.02cd 0.57 ± 0.03cd 0.58 ± 0.02c 0.55 ± 0.02de 0.52 ± 0.03e 0.78 ± 0.01a 0.79 ± 0.01a 0.79 ± 0.01a 0.74 ± 0.02b

LNR 0.52 ± 0.02c 0.52 ± 0.02c 0.53 ± 0.03c 0.52 ± 0.03c 0.48 ± 0.03d 0.45 ± 0.03d 0.77 ± 0.02a 0.77 ± 0.02a 0.78 ± 0.01a 0.72 ± 0.02b

YI HNW 0.44 ± 0.03b 0.34 ± 0.06c 0.45 ± 0.02b 0.44 ± 0.03b 0.44 ± 0.03b 0.46 ± 0.03b 0.44 ± 0.07b 0.59 ± 0.02a 0.60 ± 0.02a 0.54 ± 0.02a

LNR 0.48 ± 0.02b 0.30 ± 0.06c 0.47 ± 0.03b 0.47 ± 0.03b 0.48 ± 0.02b 0.48 ± 0.02b 0.44 ± 0.08b 0.61 ± 0.02a 0.62 ± 0.02a 0.57 ± 0.02a

FLA HNW 0.62 ± 0.01c 0.60 ± 0.02c 0.62 ± 0.02c 0.63 ± 0.02c 0.63 ± 0.02c 0.61 ± 0.02c 0.62 ± 0.02c 0.71 ± 0.02a 0.71 ± 0.02a 0.67 ± 0.02b

LNR 0.53 ± 0.02cd 0.51 ± 0.02d 0.55 ± 0.02c 0.54 ± 0.02cd 0.53 ± 0.02cd 0.53 ± 0.03cd 0.53 ± 0.03cd 0.65 ± 0.02a 0.65 ± 0.02a 0.60 ± 0.02b

DTHD HNW 0.70 ± 0.02c 0.67 ± 0.02cd 0.69 ± 0.02cd 0.68 ± 0.02cd 0.69 ± 0.01cd 0.66 ± 0.02d 0.75 ± 0.02ab 0.77 ± 0.01a 0.77 ± 0.01a 0.73 ± 0.02b

LNR 0.56 ± 0.03d 0.55 ± 0.04d 0.57 ± 0.02d 0.57 ± 0.02cd 0.57 ± 0.03cd 0.58 ± 0.02cd 0.62 ± 0.05bc 0.68 ± 0.02a 0.68 ± 0.02a 0.63 ± 0.02b

DTA HNW 0.69 ± 0.02b 0.65 ± 0.05c 0.69 ± 0.02b 0.68 ± 0.01bc 0.69 ± 0.02b 0.66 ± 0.02bc 0.75 ± 0.01a 0.75 ± 0.01a 0.76 ± 0.01a 0.74 ± 0.01a

LNR 0.52 ± 0.03c 0.51 ± 0.03c 0.53 ± 0.02c 0.53 ± 0.02c 0.53 ± 0.02c 0.53 ± 0.03c 0.59 ± 0.03b 0.63 ± 0.02a 0.64 ± 0.02a 0.59 ± 0.02b

DTM HNW 0.67 ± 0.02c 0.67 ± 0.02c 0.68 ± 0.02bc 0.67 ± 0.03c 0.67 ± 0.02c 0.65 ± 0.02c 0.72 ± 0.01a 0.70 ± 0.02ab 0.72 ± 0.01a 0.70 ± 0.02ab

LNR 0.48 ± 0.03d 0.50 ± 0.02cd 0.49 ± 0.03cd 0.48 ± 0.03d 0.48 ± 0.03d 0.51 ± 0.03cd 0.55 ± 0.03ab 0.56 ± 0.03ab 0.58 ± 0.03a 0.53 ± 0.02bc

Prediction accuracy (mean ± standard error) was observed using one univariate model as reference (UV-GBLUP) and five multivariate models such as MV-GBLUP,

BRR, RKHS, Spike and slab regression, and Random Forest (RF). The multivariate model was carried out in two cross-validation schemes (MV-CV1 and MV-CV2)

except for the model RF which was performed in MV-CV1 only. Duncan’s test was carried on for all output within each single row of the table. GY, grain yield; TKW,

thousand kernel weight; TW, test weight; GYD, grain yield deviation; NDVI, normalized difference vegetation index; GPC, grain protein content; GPD, grain protein

deviation; YI, yellow index; FLA, flag leaf appearance, DTHD, days to heading; DTA, days to anthesis; DTM days to maturity; HNW, high nitrogen and well-watered;

LNR, low nitrogen and under rainfed.

https://doi.org/10.1371/journal.pone.0310886.t002
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multivariate genomic prediction models, systematically applied to all studied traits. Addition-

ally, the five traits with the highest genetic correlations with grain yield were identified and

incorporated into the multivariate models alongside grain yield to enhance prediction accu-

racy. This analysis was conducted separately for high nitrogen and well-watered (HNW) and

low nitrogen and rainfed (LNR) conditions.

Univariate genomic prediction

For yield-related traits, univariate genomic prediction exhibited variable prediction accuracy,

ranging from 0.34 to 0.74. GY showed accuracies of 0.58 and 0.53 for HNW and LNR condi-

tions respectively. As a complex quantitative trait, grain yield has been well-studied in genomic

prediction [9]. Halie et al. [14] found prediction accuracy for GY using GBLUP was higher

than 0.70 in a double haploid population and around 0.5 in a breeding population, this last

outcome is close to our results using the same model. Genomic prediction is suitable and effec-

tive also for less complex traits such as those related to quality. Grain protein content presented

0.63 and 0.54 prediction accuracy in HNW and LNR conditions respectively, values compara-

ble to those reported by Halie and colleagues [14]. In cereal crops, phenology-related traits are

considered to have a relatively simple genetic architecture, being influenced by major genes

involved in vernalization, photoperiod sensitivity, and earliness per se [49]. A higher PA in

HNW compared to LNR was observed for most of the traits. This discrepancy is likely attrib-

uted to the environmental uncertainties introduced by the LNR condition, as well as the

Fig 4. Prediction accuracy for grain yield with correlated traits. Comparison of prediction accuracy (PA) for grain

yield among univariate (GBLUP) and the multivariate models (MV-GBLUP, BRR, RKHS, Spike and Slab regression,

and RF) in both multivariate cross-validation schemes (MV-CV1 and MV-CV1). The Random Forest (RF) model was

performed only in MV-CV1. This analysis was performed separately for (A) high nitrogen and well-watered (HNW),

and (B) low nitrogen and rainfed (LNR) conditions. Duncan’s test, represented by letters, was used to identify and

discern statistical differences among the PAs.

https://doi.org/10.1371/journal.pone.0310886.g004
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challenges in phenotyping complex traits under such conditions. This aligns with Rabieyan

et al. [50], who investigated genomic prediction accuracy for various traits in an Iranian wheat

population under optimal and rainfed environments. They also reported higher prediction

accuracy for several traits, including GY and TKW, in the optimal environment compared to

the rainfed one. Complex traits are under the genetic control of many genes with small effects,

whereas simple traits are controlled by fewer genes with large effects [51]. In our study, espe-

cially under HNW condition, traits such as grain yield exhibited a lower prediction accuracy

compared to quality and phenology-related traits. This can be attributed to the prominent

influence of heritability, which serves as the primary driving factor that substantially impacts

prediction accuracy, as underscored by Watson et al. [31]. Specifically, quality and phenology

traits had higher heritability than grain yield, which contributed to their higher prediction

accuracy.

Multivariate genomic prediction

Getting a high prediction accuracy is a fundamental prerequisite for implementing effective

genomic prediction in plant breeding programs [26]. The multivariate approach has a positive

impact on GP by increasing prediction accuracy compared to the univariate models, primarily

due to the exploitation of the variance-covariance matrix among traits. The MV genomic pre-

diction is particularly effective when low heritability traits are modelled together with high her-

itability ones [30]. Here, the prediction accuracy of 10 traits and two derivate indices was

evaluated in a genomic prediction scheme including in the models the same traits in two dif-

ferent field conditions, followed by modelling grain yield together with the five traits that most

genetically correlated with yield. In this work, the goal was to investigate whether the imple-

mentation of multivariate models could improve PA compared to a univariate model

(UV-GBLUP) in durum wheat. To accomplish this aim, multivariate genomic prediction was

performed using several models in two cross-validation schemes: MV-CV1, where no pheno-

typic information was available for the validation population, and MV-CV2, which included

supplementary phenotypic information for both the training and validation populations.

We failed to improve prediction accuracy using MV-CV1 in both analyses that were per-

formed. Contrarily, MV-CV2 consistently proved effective in increasing PA compared to the

single-trait model, suggesting that including phenotypic information of correlated traits of the

validation population in the training process significantly improve prediction ability. In this

study, the application of MV-CV2 revealed critical improvements, with recorded values

exceeding 50%. Similarly, many others studies have reported no improvements when CV1 was

applied [8, 52, 53]. Gill and colleagues [54] carried out multi-trait genomic prediction model-

ling for various agronomic traits (yield, protein content, plant height, and heading date) from

different environments in advanced lines of winter wheat. They observed PA of multi-trait

CV1 was similar to that of the single-trait model for most of the trait-environment combina-

tions. Jia and Jannink [30] concluded that the advantage of implementing CV1 is minimal

compared to the single traits approach, but suggested that this multi-trait scheme may be more

useful when applied to a primary trait with low heritability (H2<0.20). This was encountered

for NDVI in LNR which exhibited a low H2 (0.22). Despite the statistically insignificant nature

of the improvement, there was a noticeable enhancement in predictive accuracy, reaching up

to 12.45%, when employing MV-CV1 with the MV-GBLUP model. However, this result did

not occur for the same traits in HNW condition where an increase in PA of only up to 3.39%

was detected using RKHS. Shahi et al. [55] evaluated the possibility of improving the predic-

tion accuracy of five complex primary traits (harvest index, grain yield, grain number, spike

partitioning index, and fruiting efficiency) by incorporating in the model two physiological
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traits (canopy temperature, and NDVI) in 236 of soft wheat elite lines; the authors recognized

that the MV-CV2 model improved predictive ability by 4.8% to 138.5% compared to single

traits. The authors concluded that multi-trait genomic selection could accelerate breeding

cycles and improve genetic gain for complex traits in wheat and other crops. In addition, simi-

lar results were described by other researchers for many species such as wheat [56], sorghum

[57], rice [58], perennial ryegrass [53], and barley [59]. In multivariate GP, the CV2 scheme is

particularly useful when the primary trait presents a low heritability, and the secondary one

has high heritability [60]. This is consistent with our findings in the first analysis where pheno-

logical traits in LNR showed lower heritability than the same traits in HNW. Therefore, pheno-

logical traits in LNR demonstrated greater improvement in PA (up to 23.57%) when they were

modelled with the same traits in HNW using the MV-CV2 scheme compared to the reverse

operation (up to 13.04%).

In the second analysis of this work, a multivariate GP scheme was performed for grain yield

incorporating the five most genetically correlated traits in the model. Similar to the initial anal-

ysis, no significant improvement was observed between univariate and multivariate CV1 for

all models under either HNW and LNR conditions. On the contrary, notable increases were

detected in applying the second cross-validation scheme by up to 17.97% and 17.89% in HNW

and LNR respectively. Similarly, implementing grain yield together with grain protein content

in multivariate models increased PA compared to the single-trait analysis in a breeding panel

of durum wheat [14]. By contrast, Montesinos-López et al. [18] carried out a genomic predic-

tion analysis for grain yield in durum wheat observing univariate GBLUP showed similar

results to the multi-trait deep learning model. Our results align with those Gill et al. [54] and

Shahi et al. [55], who modelled grain yield alongside agronomic and physiological traits

respectively in bread wheat. Interestingly, also Semagn and colleagues [61] modelled GY

together with other six agronomic traits such as plant height, TKW, DTHD, DTM, TW, and

GPC comparing uni- and multivariate models in three spring wheat populations. The authors

used 75% and 25% of the population to train and to test the single-trait model, subsequently,

they applied two multi-trait schemes: MT1, where all traits were included in the models for the

training set, and no information from the validation set individuals were used; and MT2,

where the model assumed that the validation set was observed for some traits but not others.

They concluded that MT2 was superior compared to the single-trait and MT1 models increas-

ing PA by an overall average of 52.8%. Finally, these last outcomes suggest the effectiveness of

multivariate CV2 in improving prediction accuracy.

Prediction accuracy is influenced by many factors such as sample size, the relationship

between training and validation population, marker density, and statistical models [62]. In our

study, several multivariate models were performed such as MV-GBLUP, BRR, RKHS, Spike-

Slab, and RF. Overall, it was recognized the supremacy in PA of the BRR and RKHS models

over MV-GBLUP, SpikeSlab, and RF, among yield- quality- and phenology-related traits. For

instance, BRR outperformed MV-GBLUP for TKW, and RKHS outperformed MV-GBLUP

for TW under MV-CV1 in HNW. Similarly, the models BRR and RKHS showed a prediction

accuracy statistically higher than MV-GBLUP and SpikeSlab for traits FLA, DTHD, and DTM

using MV-CV2 in LNR. This outcome could be explained by the non-linear nature of some

models (such as RKHS), that probably be able to capture non-additive effects [63]. Zingaretti

et al. [24] carried out a comparison of genomic prediction models among Bayesian LASSO

(BL), BRR, Bayesian ridge regression general model (BRR-GM), RKHS, and a deep learning

model in polyploid outcrossing species using a conventional single trait scheme. They found

that BRR-GM produced the best result for fruit weight prediction, BL, BRR, and RKHS

showed the highest prediction accuracy for early marketable yield, and RKHS and BRR-GM

were the best models for total marketable weight. The authors reported that the RKHS model
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was able to capture complex interaction patterns, as previously explained by Gianola et al. in

2006 and 2008 [64, 65]. In a multivariate genomic prediction study, Sandhu et al. [66] com-

pared several different single- and multi-traits models such as GBLUP, Bayesian models, and

machine- and deep-learning models predicting grain yield and protein content in a dataset of

650 recombinant inbred lines of wheat. They observed multi- outperformed single-trait by up

to 28.50%, and they observed that RF and multi-layer perception were the best-performing

models for both traits. As observed by Zingaretti et al. [24] regarding RKHS models, similar

findings were reported by Sandhu et al. [66] for machine and deep learning models. This study

affirmed that machine and deep learning models possessed a remarkable level of flexibility in

mapping complex interactions between predictors and responses. Consequently, this flexibility

enables these models to effectively interpret the trends observed within the current dataset.

Multivariate GBLUP was used to assess prediction accuracy for grain yield, incorporating

high-throughput phenotyping traits as secondary traits in a CV2 approach. Consistent with

our findings, the authors have demonstrated the clear superiority of the multivariate approach

over the univariate strategy [36]. Here, an increase in PA was observed when using MV-CV2

instead of MV-CV1, while GY was modelled along with the five most genetically related traits

within the field condition. The latter result is very promising because it highlighted the poten-

tial of multivariate analysis to significantly improve genetic gain for GY by adding other agro-

nomic traits in genomic prediction models. While MV-CV1 is a preferred option for its

potential savings in phenotyping-related costs and time, MV-CV2 demonstrates the effective-

ness of incorporating additional field conditions into genomic selection-based breeding pro-

grams as well as including correlated traits for GY prediction, leading to improved prediction

accuracy and enhanced genetic gain. Modelling different correlated traits alongside grain yield

is especially valuable in predicting pre-yield trials in durum wheat breeding programs. Indeed,

generations such as F4 in durum wheat breeding are constrained by small seed quantities,

making it challenging for breeders to conduct yield trials. However, traits like TKW, TW,

NDVI and others are readily detectable in these trials. Therefore, training genomic prediction

models using data from the previous year for both grain yield and its correlated traits, along

with traits observed in pre-yield trial (target population), offers an effective strategy to enhance

prediction accuracy for grain yield. This approach empowers breeders to make more accurate

selections or discards based on predictions, starting from pre-yield trial before lines are sub-

jected to yield testing. As climate change poses unprecedented challenges, the adaptability of

our approach to marginal areas, such as drought-prone environments, becomes particularly

appealing. The ability to make more accurate selections based on predictions, even in the pre-

yield trials of the breeding pipeline, holds the key to developing resilient genotypes capable of

thriving in diverse conditions.

Conclusion

This investigation underscores the potential of employing a multivariate genomic prediction

strategy to elevate the accuracy of predicting grain yield and various agronomic traits in

durum wheat. The multivariate approach consistently outperformed the univariate counter-

part, particularly when incorporating information from secondary traits in the model, as evi-

denced by the results from multivariate cross-validation 2. This cross-validation technique

showed notable improvements in prediction accuracy across various scenarios: encompassing

the same trait in different field conditions and modelling grain yield alongside the five most

genetically correlated traits. The implications of this study might represent practical insights

that could be applied in durum wheat breeding programs that rely on genomic prediction. The

prospect of leveraging information gleaned from secondary traits, especially in predicting
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grain yield during pre-yield trials, emerges as a highly promising avenue. As highlighted in our

study, this strategic application not only enhances prediction accuracy but, more significantly,

could improve genetic gain in durum wheat breeding programs. These findings present a com-

pelling case for the integration of multivariate genomic prediction methodologies, paving the

way for the development of more resilient and productive durum wheat cultivars in the future.

Supporting information

S1 Table. Analysis of variance (ANOVA). Raw data were modelled to discern statistical dif-

ferences among all the factors under examination such as genotype, year, condition, block,

genotype by year, genotype by condition, and genotype by year by condition. GY, grain yield;

TKW, thousand kernel weight; TW, test weight; GYD, grain yield deviation; NDVI, normal-

ized difference vegetation index; GPC, grain protein content; GPD, grain protein deviation;

YI, yellow index; FLA, flag leaf appearance, DTHD, days to heading; DTA, days to anthesis;

DTM days to maturity; Gen, Genotype; Cond, Condition. Levels of significance:, <0.001 (***),
<0.01 (**), <0.05 (*), non-significant (ns).

(DOCX)

S1 Fig. Univariate genomic prediction accuracy for all traits. UV-GBLUP model was per-

formed for all traits in both high nitrogen and well-watered (HNW, pink), and (B) low nitro-

gen and under rainfed (LNR, teal) conditions. The Fisher test was performed to discern

statistical differences between the accuracies of two field conditions for the same traits. The

statistical significance was indicated by the asterisk. GY, grain yield; TKW, thousand kernel

weight; TW, test weight; GYD, grain yield deviation; NDVI, normalized difference vegetation

index; GPC, grain protein content; GPD, grain protein deviation; YI, yellow index; FLA, flag

leaf appearance, DTHD, days to heading; DTA, days to anthesis; DTM days to maturity.
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13. Fiedler JD, Salsman E, Liu Y, Michalak de Jiménez M, Hegstad JB, Chen B, et al. Genome-Wide Asso-

ciation and Prediction of Grain and Semolina Quality Traits in Durum Wheat Breeding Populations.

Plant Genome. 2017; 10. https://doi.org/10.3835/plantgenome2017.05.0038 PMID: 29293807

14. Haile JK, N’Diaye A, Clarke F, Clarke J, Knox R, Rutkoski J, et al. Genomic selection for grain yield and

quality traits in durum wheat. Molecular Breeding. 2018; 38. https://doi.org/10.1007/s11032-018-0818-x

15. Rapp M, Lein V, Lacoudre F, Lafferty J, Müller E, Vida G, et al. Simultaneous improvement of grain

yield and protein content in durum wheat by different phenotypic indices and genomic selection. Theo-

retical and Applied Genetics. 2018; 131: 1315–1329. https://doi.org/10.1007/s00122-018-3080-z PMID:

29511784

16. Mérida-Garcı́a R, Liu G, He S, Gonzalez-Dugo V, Dorado G, Gálvez S, et al. Genetic dissection of agro-

nomic and quality traits based on association mapping and genomic selection approaches in durum

wheat grown in Southern Spain. PLoS One. 2019; 14. https://doi.org/10.1371/journal.pone.0211718

PMID: 30811415

17. Esposito S, Vitale P, Taranto F, Saia S, Pecorella I, D’Agostino N, et al. Simultaneous improvement of

grain yield and grain protein concentration in durum wheat by using association tests and weighted

GBLUP. Theoretical and Applied Genetics. 2023; 136. https://doi.org/10.1007/s00122-023-04487-8

PMID: 37947927
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