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ABSTRACT
Background: Porcine epidemic diarrhea virus (PEDV) is a recurring coronavirus that causes severe diarrhea in pigs 
with high mortality and morbidity rates, especially in neonatal pigs. Despite the availability of vaccines, their efficacy 
is limited owing to antigenic differences between the vaccine and field strains, which poses a challenge to infection 
control. Antiviral drugs targeting conserved PEDV proteins show promise for complementing vaccination strategies. 
PEDV Nsp3 (PL2Pro) and Nsp5 (3CLPro) are essential proteases vital for viral replication, making them attractive 
targets for drug development against PEDV.
Aim: To address the lack of therapeutics against recurring PEDV outbreaks and bridge the gap in the application of 
bioinformatics in veterinary drug discovery, this study aimed to discover compounds that inhibit PEDV proteases from 
Philippine medicinal plants by applying a modified virtual screening methodology that considers the physiology of 
swine hosts.
Methods: This study employed a library of 690 metabolites from Philippine medicinal plants to screen for potential 
protease inhibitors targeting PEDV PL2Pro and 3CLPro. This includes evaluating the binding affinity, pharmacokinetics, 
dynamic stability, and critical binding site residues. Compounds demonstrating high affinity underwent a modified 
ADMET analysis, considering the enteric localization of the virus and potential toxicity to swine hosts. Furthermore, 
molecular dynamics simulations assessed compound stability under physiological swine conditions.
Results: The study identified Bisandrographolide from Andrographis paniculata, CID 162866964 from Euphorbia 
neriifolia, and betulinic acid from Vitex negundo and Ocimum basilicum as metabolites that bind favorably and 
selectively to PEDV 3CLPro and have excellent pharmacokinetic properties and dynamic stability. In contrast, no 
selective inhibitor for PL2pro passed the same criteria.
Conclusion: Employing the modified virtual screening protocol tailored for swine host considerations, the compounds 
identified in this study are anticipated to exert inhibitory effects against PEDV without off-target binding to analogous 
swine proteases and receptors. CID 162866964, bisandrographolide, and betulinic acid show promise for developing 
potent antivirals against PEDV.
Keywords: Antiviral, Drug discovery, PEDV, Veterinary drug, Virtual screening. 

Introduction
Porcine epidemic diarrhea is a viral enteric disease 
that affects pigs at various growth stages but is 
especially lethal to young and neonatal pigs (Lee, 
2015; Paraguison-Alili and Domingo, 2016; Salamat 
et al., 2021; Orosco, 2023). The disease is caused by 
the porcine epidemic diarrhea virus (PEDV), an alpha 
coronavirus belonging to the family Coronaviridae, 
which localizes in the swine intestinal mucosa and 
causes severe diarrhea, vomiting, dehydration, wasting, 
and decreased reproductive performance (Lee, 2015). 

Mortality and morbidity rates associated with the 
disease have caused significant economic losses in 
the global livestock industry, particularly in swine-
producing countries in Southeast Asia, such as the 
Philippines (Lee, 2015; Paraguison-Alili and Domingo, 
2016). Viral disease recurrence and the emergence of 
new recombinant strains make treatment and control 
initiatives imperative.
Due to the historically recurring nature and the ever-
present threat this viral infection poses to the swine 
industry, various control efforts have been implemented, 
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including biosecurity measures, intentional exposure 
of sows for feedback immunization, and vaccination. 
Despite the availability of vaccines, their effectiveness 
is often limited by various factors, including variations 
between the viral strains used in the vaccine and field 
epidemic strains (Lee, 2015; Zhang et al., 2022). Hence, 
managing the viral infection must not rely entirely on 
vaccines. Although vaccines protect healthy hogs from 
exposure, no treatment options are currently available 
for hogs with active infections, which are, in most 
cases, deemed futile. This necessitates discovering 
PEDV-specific antiviral drugs that can be used in 
active cases and serve as a complementary strategy to 
vaccination.
Traditional drug discovery pipelines are notorious 
for being lengthy and prone to failure in clinical 
trials, which not only costs billions of years for the 
industry but also sets back drug development to 
years (Anderson, 2003; DiMasi et al., 2016; Wang 
and Zhu, 2016; Batool et al., 2019; Orosco, 2023). 
Consequently, modern pharmaceutical research and 
development prioritizes the early and cost-effective 
identification of promising candidates (DiMasi et al., 
2016). Computational methods have emerged as a 
solution, enabling researchers to screen existing drug 
libraries for repurposing, evaluate natural products 
for bioactivity, and predict pharmacokinetic behavior 
(Anderson, 2003; Cheng et al., 2012; DiMasi et al., 
2016; Wang and Zhu, 2016; Batool et al., 2019). 
Structure-based drug discovery is a common approach 
employed in the computational screening of potential 
drugs. This method involves the identification of 
compounds with high affinity for known viral targets 
that are essential in the viral replication cycle, thereby 
inhibiting viral proliferation (Anderson, 2003; Cheng 
et al., 2012; Batool et al., 2019). 
Among the various proteins associated with PEDV, 
proteases play vital roles in viral replication and 
pathogenesis. Hence, targeting proteases is a promising 
strategy for developing antiviral drugs. Notably, two 
essential proteases, 3CLpro and PL2pro, are desirable 
targets because of their crucial function in the viral life 
cycle.
Philippine medicinal plants possess a wide range of 
biological activities, including antiviral effects (Dayrit 
et al., 2021) and good pharmacokinetic properties, 
making them a valuable source of potential lead 
compounds in drug discovery. Veterinary informatics 
(or vetinformatics) is an emerging interdisciplinary 
research area that utilizes bioinformatics to solve 
challenging veterinary science issues (Sujatha et al., 
2018; Pathak and Kim, 2022; Kim and Pathak, 2023). 
One issue that vetinformatics aims to address is the gap 
in the use of computational drug discovery in developing 
veterinary drugs (Pathak and Kim, 2022). However, 
despite developments in computational drug design 
and biochemical simulations, there is still a scarcity 
of tools adapted to animal models, as the tools focus 

more on drugs against human diseases and pathogens 
(Sujatha et al., 2018; Pathak and Kim, 2022; Kim and 
Pathak, 2023). Even so, several in silico drug screening 
studies have been applied to swine pathogens, such 
as PEDV (Pathak et al., 2023), porcine reproductive 
and respiratory syndrome virus (Pathak et al., 2022a,b, 
2023), and African Swine Fever Virus (Macalalad 
and Orosco, 2024), albeit lacking modifications in the 
protocol for animal host considerations. 
To address the lack of PEDV-specific antiviral drugs to 
complement vaccination strategies and take advantage 
of the bioactivity of the Philippines’ medicinal plant 
resources, this study applied a modified computational 
drug discovery protocol to screen 690 secondary 
metabolites from Philippine medicinal plants for 
potential inhibitory activity against PEDV 3CLPro 
and PL2Pro. Conversely, a modified virtual screening 
protocol adapted to swine host conditions bridges the 
gap in vet-informatics and veterinary drug discovery to 
study the compounds’ pharmacokinetics and stability 
in swine host conditions.

Materials and Methods
Modified virtual screening protocol for veterinary 
application 
A modified multi-level virtual screening protocol 
was used to screen the metabolites of Philippine 
medicinal plants for potential antiviral activity against 
PEDV 3CLPro and PL2Pro. Each level of the virtual 
screening protocol has strict criteria and validations 
for the exclusion of poor-performing candidates 
from further analyses. Modifications were made to 
the standard virtual screening setup to consider the 
different physiological conditions of pigs from those of 
standard human-centered protocols. Figure 1 presents 
the methodological framework for virtual screening 
used in this study, contrasting with the standard virtual 
screening protocol.
The standard virtual screening protocol enclosed in 
a box shown in Figure 1 is primarily designed for 
human drug discovery studies, focusing on human 
physiological and metabolic parameters. The tools 
needed for the protocol all use human models; 
hence, the protocol is much more straightforward. 
However, when applying these methods to veterinary 
applications, such as developing antiviral drugs for 
swine, it is crucial to adapt the screening process to 
account for species-specific differences in physiology, 
biochemistry, and drug metabolism.
In this study, modifications were made to the standard 
virtual screening protocol to accommodate the 
physiological conditions of pigs. These modifications 
included the addition of cross-docking experiments 
to determine the preference of the ligands for viral 
protease as opposed to the analogous swine proteases, 
off-target docking to cellular regulatory proteins of 
swine hosts to determine promiscuity and unwanted 
interactions, adjusted physicochemical property 
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thresholds to account for enteric localization in swine 
host, and finally, simulation of the ligand-protease 
complex using swine physiological conditions. All 
the modifications were made to ensure the identified 
compounds were safe and effective for veterinary use.
Ligand curation and standardization
Dayrit et al. (2021) identified 10 Philippine medicinal 
plants (Allium sativum, Andrographis paniculata, 
Cocos nucifera, Euphorbia hirta, Euphorbia neriifolia, 
Moringa oreifera, Ocimum basilicum, Piper nigrum, 

Zingiber officinale, Vitex negundo)) as sources of 
antiviral compounds for drug discovery. The initiative 
aims to inform research efforts seeking potential 
solutions against viral pathogens such as SARS-CoV-2 
and the Nipah virus; hence, it was employed in this study.
Six hundred ninety secondary metabolites (Table S1) 
from the ten Philippine medicinal plants mentioned 
earlier were curated by sourcing information from 
chemical repositories. Data on these compounds were 
obtained from PubChem (www.pubchem.com) (Kim 

Fig. 1. Modified virtual screening protocol adjusted for veterinary (i.e., swine) drug discovery 
compared to the standard protocol (enclosed in box). Created with BioRender.com.
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and Pathak, 2023), FooDB version 1.0 (www.foodb.
ca), and Dr. Duke’s Phytochemical and Ethnobotanical 
Databases of the United States Department of 
Agriculture (www.phytochem.nal.usda.gov).
Simplified Molecular Input Line-Entry System 
identifiers were used to construct 3D structures using 
OpenBabel (O’Boyle et al., 2011), which was then 
standardized in alvaMolecule (Mauri and Bertola, 
2022). Standardization procedures include eliminating 
duplicates, correcting non-standard valences, and 
neutralizing charged atoms or molecules. For any 
corrections necessitating the removal or isolation of 
segments within multi-molecular structures, manual 
adjustments were carried out using BIOVIA Discovery 
Studio Visualizer version 21.1.0.20298.
Subsequently, the corrected 3D structures were 
minimized using Avogadro (Hanwell et al., 2012) 
utilizing a 5,000-step conjugate gradient minimization 
protocol with Merck Molecular Forcefield 94 (Halgren, 
1996). These minimized structures were exported as 
PDBQT files for molecular docking studies.
Protein curation and preparation
The experimental structures of PEDV 3-chymotrypsin-
like (3CLpro) (6W81) and papain-like (PL2pro) 
(7F0U) proteases were obtained from the Protein Data 
Bank of the Research Collaboratory for Structural 
Bioinformatics (RCSB-PDB) (Berman et al., 2000).
For proteins with incomplete structures, corrective 
measures such as amputation of available structures, 
rotamer addition (Shapovalov and Dunbrack, 2011), 
and hydrogen addition was undertaken, followed by 
minimization using ANTECHAMBER (Wang et al., 

2004). The resultant prepared protein structures were 
then converted to the PDBQT format using AutoDock 
Tools (Forli et al., 2016).
The co-crystalized ligand of PEDV 3CLpro, X77 or 
N-(4-tert-butylphenyl)-N-[(1R)-2-(cyclohexylamino)-
2-oxo-1-(pyridin-3-yl)ethyl]-1H-imidazole-4-
carboxamide, was isolated from the structure and 
used for re-docking experiment to validate the 
docking protocol. On the other hand, only the protein 
ubiquitin and no small molecule ligands were bound 
to the PL2pro structure and hence were not used in re-
docking.
Crystal structures were visualized using UCSF 
Chimera to identify the binding sites of these proteins, 
as reported in the relevant literature, and their close 
homologs (Pettersen et al., 2004). Molecular docking 
grid box parameters were generated by covering the 
identified binding sites with a cubic search space of 
suitable dimensions. Additionally, a separate grid box 
covering the entire protein was employed for blind 
molecular docking to confirm preferred binding at the 
identified sites. The coordinates and dimensions of 
each grid box were determined using the AutoDock 
Vina (Trott and Olson, 2010) plugin of UCSF Chimera. 
Six grid boxes were used to examine ligand binding to 
PEDV proteases. The coordinates and dimensions of 
the grid boxes, including the key interacting residues 
from the literature, are presented in Table 1.
In addition to viral proteases, binding to off-targets, 
including analogous swine proteases (Table S2) 
and cellular and regulatory proteins (Table S3), 
was also considered as a descriptor of toxicity and 

Table 1. Grid boxes used for site-specific and blind docking protocols.

Protein Coverage
Coordinates Dimensions

Key residues
X Y Z X Y Z

3CLpro Whole (Blind) −10.0521 −5.12531 12.9697 50 75 45 --
3CLpro Catalytic Site 3.125 9.46471 13.3693 25 25 25 His-Cys Catalytic Dyad

HIS41, CYS144
3CLpro Dimerization 

Site
−4.80755 −8.71609 −0.06256 30 50 25 Dimer interface

ALA1, GLY2, ARG4, ALA7, SER10, 
GLY11, GLU14, GLY26, GLU286, 

SER138, PHE139. GLU165, GLY278, 
THR281, GLN295

PL2pro Whole(Blind) −3.48628 −19.8137 12.7294 45 70 45 --
PL2pro Ubiquitin 

binding site
−3.817 −22.1078 21.9595 25 25 25 Core

ASN103, ASN138, ASN100

Tail

ASP97, GLN94, GLY202, SER96, 
ASN43, SER44, GLY202, HIS203

PL2pro Catalytic Site 10.7159 −7.39618 18.321 20 20 15 Asp-His-Ser Catalytic Triad

ASP216, HIS203, SER44
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to accommodate potential veterinary applications. 
Homology models of these off-target swine receptors 
and proteases were generated from homologous 
proteins with available crystal structures from the 
RCSB-PDB using SWISS-MODEL (Schwede et al., 
2003). The co-crystallized ligands of the reference 
protein homologs used for receptor modeling served 
as positive controls for assessing ligand affinity. The 
resulting homology models were converted to PDBQT 
files using AutoDock tools for subsequent analyses.
Molecular docking
This study aimed to identify potential inhibitors 
targeting PEDV proteases while ensuring they do 
not bind to swine proteases. Given the inherent 
unpredictability of the ligand dataset and the possibility 
of yielding zero specific inhibitors, a conservative 
approach is necessary. Therefore, parallel analyses 
were conducted using these two pipelines. 

1. The first pipeline involved standard targeted 
docking to catalytic, oligomerization, and substrate-
binding sites, followed by blind docking validation.

2. The second pipeline utilized the results of targeted 
docking to the catalytic sites from pipeline one 
and compared them to the affinities of ligands 
for analogous swine proteases in cross-docking 
analysis.

Notably, only a single instance of site-specific docking 
was performed to target all binding sites. A critical 
distinction between the pipelines lies in analyzing the 
results; the first pipeline examined all grid box results, 
whereas the second pipeline only utilized the results 
from the catalytic site docking.
The top 10 compounds from both pipelines were 
compared to obtain a consensus list of high-affinity 
(≤ −7.0 Kcal mol−1), site-specific, and selective 
protease inhibitors. This parallel approach allows for a 
comprehensive assessment while mitigating the risk of 
overlooking potential inhibitors or encountering false 
positives. 
General docking protocol
An in-house Python script was used for automated 
molecular docking using AutoDock Vina 1.1 (Trott 
and Olson, 2010) and incorporating clustering across 
multiple runs. Triplicate static or rigid-receptor 
docking was conducted using predefined grid box 
coordinates (refer to Table 1 for PEDV proteases, Table 
S2 for swine proteases, Table S3 for cellular regulatory 
swine proteins) covering either a specific binding site 
(targeted) or the entire protein (blind), with a search 
exhaustiveness set to 32. Poses from these three runs 
were clustered based on the AutoDock 4.0 protocol 
(Morris et al., 2009), employing a root mean square 
deviation (RMSD) cut-off of 2.0 Å. Binding affinity 
was computed as the average per cluster, with the top 
pose from the top clusters designated as the reference 
pose. A threshold of −7.0 Kcal mol−1 (Wong et al., 
2022) was adapted to identify ligands with high affinity 

(≤ −7.0 Kcal mol−1), which are more likely to exhibit 
bioactivity.
Validation of docking protocol 
Before data collection using the two docking pipelines, 
the general Vina docking protocol was validated by 
re-docking the co-crystalized ligands of the target 
proteases, 3CLpro and PL2pro. As mentioned in the 
previous sections, only 3CLpro has an available small 
molecule ligand, X77, since the ligand of PL2pro is 
ubiquitin. Hence, only molecular docking to 3CLpro 
was validated by re-docking.
The structure of X77 obtained from the previous 
section was reparametrized using the same ligand 
preparation protocol previously discussed and was 
docked to 3CLpro using the same Vina protocol. 
The resulting docked pose was then compared to its 
native pose by calculating the heavy-atom (hydrogens 
were not considered) RMSD. Re-docking is deemed 
successful when the heavy atom RMSD between the 
crystal pose and the docked pose is less than or equal to 
1.5 Å (Hevener et al., 2009).
Standard docking pipeline and blind docking validation 
for site-specificity
Two standard docking setups were used in the first 
docking pipeline of the data collection proper. The first 
setup involves site-specific docking to the catalytic, 
oligomerization, and protein interaction interfaces 
of PEDV proteases. This approach allows for broad 
coverage evaluation of ligand interactions and the 
discovery of additional binding modes. Subsequently, 
a blind docking setup was employed to validate the 
preferential binding of the metabolites to specific active 
sites. An RMSD cut-off of 1.5 Å, as adapted from 
Hevener et al. (2009), was utilized as a reference value 
for the similarity between poses from site-specific and 
blind molecular docking. To be deemed valid, poses 
generated from blind docking must closely resemble 
those generated from targeted docking despite the 
larger search space.
Only metabolites meeting the RMSD cut-off and 
exhibiting binding affinities ≤ −7.0 Kcal mol−1 (Wong 
et al., 2022) were considered valid and subjected to 
further analysis. The conformations of the enzyme-
ligand complexes were visualized and analyzed using 
UCSF Chimera and Biovia Discovery Studios v. 4.1.
Cross-docking pipeline for protease selectivity
In the second pipeline, cross-docking experiments 
were conducted to ascertain ligand selectivity and 
binding preferences toward the catalytic site of PEDV 
proteases compared to structurally analogous swine 
proteases. Notably, PEDV 3CLpro and PL2pro have 
structural counterparts in swine hosts. Specifically, 
PEDV 3CLpro demonstrates a structural resemblance 
to other proteases in similar family such as elastase 
(3HGN), trypsin (1Z7K), and kallikrein (1HIA), 
whereas PL2pro shares similarities with Cathepsin B 
(3PBH), Cathepsin H (8CPH), and Cathepsin L (1CS8). 
The cross-docking experiment rigorously evaluated the 

http://www.openveterinaryjournal.com


http://www.openveterinaryjournal.com 
J. C. C. de Guzman et al. Open Veterinary Journal, (2024), Vol. 14(9): 2192-2214

2197

affinity of the ligands towards all six analogous swine 
proteases, shedding light on their potential promiscuity. 
Selective antivirals against PEDV 3CLPro and PL2Pro 
catalytic sites were determined by first clustering the 
phytochemicals through either Butina clustering with 
ECFP4-like Morgan fingerprinting (r = 2, cutoff = 0.5) 
in the rdkit Python library (O’Boyle and Sayle, 2016) or 
Scaffold Hunter (Wetzel et al., 2009). In both methods, 
the selected compound clusters must have an average 
binding score against the catalytic sites stronger than the 
−7.0 Kcal mol−1 threshold. The binding score to swine 
proteases was strongly correlated (R2 = 0.88 to 0.92) 
with binding to viral protease, which led to inflation of 
the difference in protease binding at stronger binding 
regimes. Selectivity was measured by calculating a 
particular cluster’s residual (>0.3) in the regression 
model of the binding score against the viral protease 
to the average binding score against the respective 
swine proteases. The residual threshold was validated 
to correspond to a standardized residual greater than 
one, significantly greater than the bootstrapped mean 
standardized residual (0) at α = 0.05.
Consensus of parallel docking pipelines
The integration of parallel docking pipelines has 
facilitated the development of a robust consensus list 
of protease inhibitors, addressing potential challenges, 
such as obtaining no compound that meets all the 
criteria, while ensuring comprehensive exploration. 
Employing stringent criteria, including a binding 
affinity threshold of −7 Kcal mol−1 (Wong et al., 
2022), guided the selection process, ensuring the 
inclusion of compounds with robust ligand-protein 
interactions. Additionally, the compounds identified 
through the initial pipeline demonstrated validated 
site-specificity. In contrast, those from the secondary 
pipeline exhibited confirmed selectivity for PEDV 
proteases, thus minimizing the risk of off-target effects 
on swine host proteases. A carefully curated consensus 
list was established by consolidating the top candidates 
from both pipelines, providing a solid foundation for 
subsequent analyses and further characterization. 
In silico ADMET analysis 
The standard in silico ADMET workflow was adapted 
to integrate considerations specific to swine hosts. 
Modifications encompass cross-docking experiments 
involving analogous swine proteases, off-target 
docking to cellular regulatory swine proteins for 
potential toxicity, and adjustment of ADMET 
thresholds to account for enteric localization of PEDV 
in swine hosts.
Compounds from the consensus list of high affinity 
(≤ −7.0 Kcal mol−1), site-specific, and selective 
protease inhibitors resulting from parallel pipelines 
underwent thorough evaluation of their predicted 
ADMET properties using a range of metrics. These 
metrics include the total count of violations based on 
Lipinski’s Rule of Five, as well as ADMET parameters 
obtained from ADMETLab 2.0 (https://admetmesh.

scbdd.com/) (Xiong et al., 2021) and SWISS-ADME 
(http://www.swissadme.ch) (Daina et al., 2017) web 
servers. The calculated parameters and expected values 
are presented in Table 2.
The threshold of the parameters marked with a star (*) 
was adjusted for maximum penetration and lower first-
pass metabolism, leading to increased bioavailability 
in the gut. Compounds with no more than one violation 
were selected as lead compounds and analyzed for 
dynamic stability in molecular dynamics (MD) 
simulations.
Off-target docking
In silico ADMET analyses rely on computational models 
to simulate the pharmacokinetic and pharmacodynamic 
properties of human drugs (Daina et al., 2017; Guan 
et al., 2018; Xiong et al., 2021). Although human and 
swine ADME properties share similarities and are often 
extrapolated in preclinical studies (Henze et al., 2019), 
it is essential to highlight that the toxicities reported 
by these computational tools and servers are specific to 
humans and human receptors.
To mitigate this disparity, we investigated the potential 
off-target effects of ligands by docking them into 
receptors associated with vital cellular functions 
in swine. Ligand docking to X-linked inhibitor of 
apoptosis protein, mouse double minute 2 homolog, 
and Bcl-2-associated X protein was performed to 
assess their influence on apoptotic pathways to identify 
perturbations in programmed cell death regulation. 
DNA Polymerase epsilon, Topoisomerase I, and 
dihydrofolate reductase were used to evaluate their 
impact on DNA replication fidelity and nucleotide 
metabolism. Docking analysis of eukaryotic 
initiation factor 4E and the complex mammalian 
target of rapamycin and FK506-binding protein-
rapamycin-associated protein explored alterations 
in protein synthesis and cellular signaling pathways, 
respectively. Tubulin and F0F1 ATP synthase (F0F1 
ATPs) were examined to understand the potential 
disruptions in energy metabolism and cytoskeletal 
dynamics. Additionally, interactions with methionyl-
tRNA synthetase, pyruvate dehydrogenase complex 
component E1, and acyl-CoA dehydrogenase were 
explored to assess their effects on metabolic processes. 
Through additional off-target analysis, we elucidated 
the binding affinity and mode of interaction between 
ligands and these diverse protein targets, providing 
insights into their potential toxicity or off-target effects 
on swine physiology and health.
Subsequently, compounds exhibiting favorable results 
in the protease selectivity test, standard ADME 
metrics, and swine off-target interactions were chosen 
for stability analysis through MD simulations.
MD simulations
MD simulations were performed using GPU-enabled 
GROMACS 2023.3 (Abraham et al., 2015). Protein 
parameterization utilized the July 2022 release of the 
CHARMM36 force field (Best et al., 2012), whereas 
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ligands were parameterized using the CHARMM 
General Force Field (CGenFF) (Vanommeslaeghe et 
al., 2010).
The systems were enclosed within a cubic box with 
15 Å padding and solvated using the TIP-3P solvent 
model. Sodium (Na+) and chloride ions (Cl-) were 
introduced into the system at a concentration of 
0.150 M. Simulation parameters included a leapfrog 
integrator, LINCS for controlling covalent bonds, a 
maximum distance of 12 Å for nonbonded interactions, 
a modified Berendsen thermostat for temperature 
coupling, and active periodic boundary conditions.
The system’s energy minimization was conducted until 
the maximum force converged below 10 KJ mol−1 or 
reached a maximum of 50,000 steps of steepest descent. 
Isochoric equilibration ensembles were performed with 
100 ps of relaxed pressure coupling at 312 K. Isobaric 
equilibration ensembles were executed through 100 ps 

of isotropic Berendsen pressure coupling in NPT (1 ps 
timestep, 4.5 × 10−5 bar−1 compressibility) at 312 K. 
Subsequently, production runs were conducted in 
triplicate runs of isotropic Parrinello-Rahman pressure 
coupling for 100 ns, with frames generated every 0.1 
ns (1,000 frames) at 312 K. The same preparation, 
minimization, equilibration, and production run 
protocols were applied uniformly across all analyses, 
including runs for drug complexes as positive controls 
and apoproteins as negative controls.
Post-MD analysis
The stability of the complexes was assessed using 
several parameters, including the RMSD, which was 
computed using Equation 1, the root-mean-square 
fluctuation (RMSF) described by Equation 2, the radius 
of gyration (Rg), and the hydrogen bond count from 
analysis tools available in GROMACS.

RMSD t( )  =  1
M i=1

N

∑ mi ri t( )− ri
ref 2

 (1)

Table 2. ADMET endpoints examined and their respective thresholds.

Property Server Output Ideal result
Lipinski’s rule of five
 MW 
 HBA 
 HBD 
 Log P

ADMETLab 2.0 g/mol 
count 
count 

Log P value

≤500 
≤10 HBA 
≤ 5 HBD 

2–5 Log P*
Absorption
 Caco-2 permeability ADMETLab 2.0 

admetSAR
log cm/second 

+/-
>−5.15 log cm/second 

+
 Gastrointestinal absorption ADMETLab 2.0 

SwissADME 
admetSAR

p (0 to1) 
High/Low 

+/-

p < 0.3 
High 

+
  P-glycoprotein (P-gp) inhibitor/

substrate
ADMETLab 2.0 

SwissADME 
admetSAR

p (0 to1) 
Yes/No 

+/-

p < 0.7* 
No 
-

Distribution
 Blood-brain barrier permeation ADMETLab 2.0 

SwissADME 
admetSAR

p (0 to1) 
Yes/No 

+/-

p < 0.7 
No 
-

 Plasma protein binding ADMETLab 2.0 
admetSAR

% bound <90%

Metabolism and excretion
  Cytochrome P450 (3A4, 1A2, 

2C19, 2C9, 2D6) substrate/
inhibitor

ADMETLab 2.0 
SwissADME 
admetSAR

p (0 to1) 
Yes/No 

+/-

p < 0.7* 
No 
-

Toxicity
 AMES mutagenicity

ADMETLab 2.0 
admetSAR

p (0 to1) 
+/-

p < 0.7 
-

 hERG cardiotoxicity
 Hepatotoxicity
 Carcinogenicity
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RMSFi  =  1
T i=1

T

∑ mi ri t( )− ri
ref 2

 (2)

The gmxMMPBSA tool (Valdés-Tresanco et al. 
2021) was used to determine the binding energies of 
the complexes. The gmxMMPBSA tool can use two 
methods in calculating binding free energies: Molecular 
Mechanics-Poisson-Boltzmann Surface Area and 
Molecular Mechanics-Generalized Born Surface Area 
(MM-GBSA). The calculation method used for the 
set of complexes is the MM-GBSA method, which 
uses the GB-Neck2 model (Su et al., 2015) and the 
recommended mbondi3 radii set alongside default 
parameters, a relatively simpler model and results in 
shorter calculation times.
The binding and total free energies were calculated 
using Equations 3, 4, and 5. However, it is important 
to note that the calculation of the entropic term in 
Equation 5 is computationally intensive and prone to 
high uncertainty. As a result, most virtual screening 
studies rely solely on binding free energy to measure 
relative stability (Duan et al., 2016).

ΔG Bind  =  G complex  −  G Ligand  −  G Protein
 (3)

ΔG Bind  =  ΔEvdw  −  ΔEele  − ΔG pol  +  ΔG np  (4)

G total  =  ΔG Bind −  TΔS  (5)

Energy decomposition of stable complexes was also 
conducted on residues within 6 Å of the ligand to 
discern the residues contributing to binding affinity and 
type of interaction.
Statistical analysis
Statistical analysis were conducted using the R 
software. Most statistical calculations, such as the 
Wilcoxon rank sum test, were carried out using basic 
packages, and the pheatmap package was used to 
generate the heat maps.

Results
Re-docking experiment validated the docking protocol
Using the docking parameters used in the study, re-
docking the X77 control ligand back to 3CLpro yielded 
a similar pose as its native conformation. The result of 
the re-docking experiment is visualized in Figure 2. 
Figure 2 shows the high similarity between the native 
pose (black) and the re-docked pose (yellow) of X77. 
The heavy atom RMSD between the two poses was 
found to be 1.416 Å, which is less than the 1.5 Å 
threshold for a valid docking protocol (Hevener et al., 
2009). Furthermore, examination of the interacting 
residues for the native and docked complexes shows 
similar interacting residues. Both the native and 

Fig. 2. Redocked Pose of X77 compared to the native conformation. The docked pose shown in yellow has high similarity (RMSD 
= 1.416 Å) with the native crystal confirmation. Analysis of binding interactions show similar interactions with the HIS41-CYS144 
catalytic dyad. Similar pi-sulfur interaction between the aromatic ring of X77 and  CYS144 in both the native and redocked 
conformations were observed. 
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redocked complexes show identical interaction with 
the catalytic dyad HIS41 and CYS144. Specifically, 
the ligands in both complexes form van der Waals 
interaction with HIS41 and a pi-sulfur electrostatic 
interaction between the aromatic ring and the CYS144. 
All the points discussed imply that the protocol 
reproduces the crystal pose successfully and that the 
docking parameters are valid.
First docking pipeline: targeted docking and blind 
docking validation
Targeted Docking to Catalytic, Substrate-binding, 
and Oligomerization sites 
Docking 690 metabolites to the known binding sites of 
PEDV 3CLPro and PL2pro yielded 2760 docked poses 
in a diverse range of activities, with docking scores 
spanning from −2.10 to −9.604 Kcal mol−1. The results 
of site-specific docking are depicted in Figure 3A.
The apparent low affinity observed towards the proteins 
was anticipated because docking was conducted 
without prior knowledge of the specific metabolite types 
exhibiting activity against the proteases. Moreover, the 
compounds were selected based on their plant sources’ 
potential antiviral activities, thus including inactive 
compounds within the docking results. To discern the 
relevant protein-ligand interactions from the docking 
results, an energy threshold of −7 Kcal mol−1 (Wong et 
al., 2022) was utilized to filter out compounds with low 
affinity (> −7 Kcal mol−1) for PEDV proteases. This 
filter yielded 438 (15.87%) docked poses with high 

affinity (<−7 Kcal mol−1) to PEDV proteases, which are 
more likely to translate to in vitro and in vivo activity.
Blind docking validation
Blind molecular docking was used to confirm the 
specificity of the docked compounds within their 
respective binding sites. The blind docking analysis 
successfully replicated 361 of the 438 (82.42%) 
site-specific poses of high affinity (≤ −7 Kcal mol−1) 
compounds with binding scores ranging from −7.001 
to −9.60 Kcal mol−1. The results of the blind docking 
are shown in Figure 3B.
In Figure 3B, areas shaded in grey represent poses from 
site-specific docking that were not reproduced by blind 
molecular docking, indicating their invalidity. From the 
96 validated docking poses, the top 10 highest-scoring 
compounds per grid box meeting the adjusted −7 Kcal 
mol−1 binding energy threshold were selected. This 
rigorous selection procedure identified 43 compounds 
with high binding affinity to PEDV proteases, 
displaying docking scores ranging from −7.34 to 
−9.604 Kcal mol−1 and confirmed site-specificity.
Subsequently, 35 compounds passed the site-specific 
and blind docking validation of the first pipeline. The 
35 compounds were subsequently compared with the 
results of the second pipeline to obtain a consensus 
list of selective protease inhibitors for further in-depth 
analysis based on their pharmacokinetic properties 
using in silico ADMET analysis.

Fig. 3. Results of site-specific and blind docking analyses from the first pipeline. (A) Heatmap of site-specific molecular docking 
(B) Filtered heatmap of blind docking with greyed-out areas indicating docked poses from site-specific docking that were not 
validated in blind docking. (C, D) Pie charts showing the source plant (C) and chemical class (D) of screened ligands.
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Docking validation studies identified the most promising 
binding sites, plant sources, and metabolite classes
Heatmap analysis revealed a distinct trend in protease 
preferences for specific binding sites. The docking 
results show that the catalytic site of PEDV 3CLpro 
displays a notably higher affinity for ligands than its 
dimer interface. Although the dimer interface showed 
numerous hits in targeted docking (Fig. 3A), blind 
docking indicated lower specificity, with ligands 
favoring the catalytic site (Fig. 3B). 
In contrast, PL2pro demonstrates greater receptivity 
at the ubiquitin-binding site than at its catalytic site. 
This observation suggests a need for tailored targeting 
strategies. Although competitive inhibition may prove 
effective for 3CLpro, disrupting protein-protein 
interactions might be more suitable for inhibiting 
PL2pro. This nuanced understanding of binding site 
preferences informs the development of effective 
antiviral agents, providing insights into the divergent 
targeting strategies needed for the optimal inhibition of 
PEDV proteases. 
To facilitate the discussion of the most promising 
plant sources and metabolite classes, the heatmap was 
divided into five columns. Each column within the 
heatmap was assigned numbers 1 to 5. The clustered 
blind-validated heatmap (Fig. 3B) identified columns 1 
and 2 as the most promising interaction clusters. From 
the data in columns 1 and 2, the most promising plant 
sources (Fig. 3C), chemical classes (Fig. 3D), and viral 
targets were identified. Examination of top columns 1 
and 2 identified Andrographis paniculata, Euphorbia 
neriifolia, and Ocimum basilicum as the best-performing 
plant sources (Fig. 3C), which were all plants identified 
in prior literature to contain compounds with antiviral 
potential (Dayrit et al., 2021; Khursheed et al., 2022; 
Orosco and Wong, 2023). At the same time, terpenoids 
and phenolics are the best-performing chemical classes 
(Fig. 3D), which are chemical classes known for their 
antiviral activities (Masyita et al., 2022; Saidu et al., 
2022; Orosco and Quimque, 2024).
Second docking pipeline: targeted docking to catalytic 
sites and cross-docking experiments
Cross-docking to analogous swine proteases
The binding affinities of the ligands to the catalytic 
sites of PEDV 3CLpro and PL2pro were obtained from 
the site-specific docking results in the first pipeline. 
The same set of ligands was docked onto analogous 
swine proteases. Selective antivirals against PEDV 
3CLPro and PL2Pro catalytic sites were determined 
by first clustering of the phytochemicals through 
either Butina clustering with ECFP4-like Morgan 
fingerprinting (r = 2, cutoff = 0.5) in the rdkit Python 
library (O’Boyle and Sayle, 2016) or through Scaffold 
Hunter (Wetzel et al., 2009). In both methods, the 
selected compound clusters must have an average 
binding score against the catalytic sites higher than 
the −7.0 Kcal mol−1 threshold. The binding score to 
swine proteases was strongly correlated (R2 = 0.88 

to 0.92) to binding to viral protease, which leads to 
inflation of the difference in protease binding. As such, 
selectivity was measured by calculating the residual 
(>0.3) of the particular cluster in the regression model 
of the binding score against the viral protease to the 
average binding score against the respective swine 
proteases. The residual threshold was validated to 
correspond to a standardized residual greater than 
one, significantly greater than the bootstrapped mean 
standardized residual (0) at α = 0.05. Compounds 
with lower promiscuity from cross-target docking and 
subsequent clustering were compared with the results 
of the first pipeline.
Consensus list of selective protease inhibitors
The results from both pipelines were compared to form 
a consensus list of inhibitors targeting PEDV protease. 
Analysis of the results from both pipelines yielded 35 
ligands that performed well in both the cross-docking 
and blind-docking analyses and were selected for 
further evaluation. The resulting consensus list of the 
ligands is presented in Table 3.
The 35 ligands from the parallel docking pipelines 
were expected to have high affinity, site-specific, and 
selective protease inhibitors. They were subsequently 
analyzed for in silico ADMET properties and swine 
off-target binding to balance veterinary safety per their 
expected potency.
In silico ADMET prediction and off-target docking
The compounds identified in the consensus list of 
specific protease inhibitors were analyzed for in 
silico ADMET properties using various web servers. 
A consensus pass/fail was obtained based on the 
agreement of the web server results. The total count 
of violations was computed based on the number of 
ADMET parameters violated, including Lipinski’s 
rule of five (Ro5). The rule of five only counts as 
one violation in the total score if more than two Ro5 
parameters are violated. The results of the ADMET 
property predictions are summarized in Table 4 (for a 
complete list of ADMET results, refer to Table S4).
The analysis identified 16 compounds with no more 
than 1 violation. Subsequently, these 16 compounds 
were scrutinized for potential off-target effects by 
molecular docking to cellular regulatory proteins, and 
their promiscuity was ranked accordingly (Table S5).
Molecular docking to cellular regulatory swine 
proteins yielded 11 compounds (Table 5) with minimal 
off-target interactions, which were further analyzed for 
dynamic stability through MD.
Stability of complexes from MD
During the 100-nanosecond runs of MD, the stability 
of the ligands within the binding sites was elucidated. 
Various stability metrics, including RMSD, RMSF, 
RoG, and H-bond count, were used to assess the 
relative stability of the complexes. As part of the 
analysis, apoproteins served as negative controls for 
protein-centered metrics (RMSF, Rg), whereas the 
complex of X77 or N-(4-tert-butylphenyl)-N-[(1R)-2-
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(cyclohexylamino)-2-oxo-1-(pyridin-3-yl)ethyl]-1H-
imidazole-4-carboxamide, a known inhibitor of PEDV 
3CLpro co-crystallized at the catalytic site, was used as 
a positive control. 

Root mean square deviation
The study examined the complexes’ RMSD to evaluate 
any structural deviations observed among the system 
components during the 100 ns simulation. The RMSD 

Table 3. Consensus list of high-affinity selective proteases from the two docking pipelines employed.

Code Compound Target Site Binding energy Protease specificity

O7443 beta-Cryptoxanthin PL2pro Catalytic Site −8.8685 +

O7407 Zeaxanthin PL2pro Catalytic Site −8.4565 +

P5490 Dipiperamide A, B PL2pro Catalytic Site −8.365 +

O7444 Cryptoxanthin PL2pro Catalytic Site −8.35575 +

P5489 Dipiperamide C PL2pro Catalytic Site −8.1512 +

P5493 Dipiperamide D PL2pro Catalytic Site −7.997 +

P5491 Dipiperamide E PL2pro Catalytic Site −7.887 +

M5288 Pterygospermin PL2pro Catalytic Site −7.29667 +

A7152 Ergosterol peroxide PL2pro Catalytic Site −7.07067 +

O7407 Zeaxanthin PL2pro Ubiquitin binding site −8.8995 -

O7408 Antheraxanthin PL2pro Ubiquitin binding site −8.40544 -

N7236 Brein PL2pro Ubiquitin binding site −8.32733 -

V5568 Neobignonoside PL2pro Ubiquitin binding site −8.30033 -

P5491 Dipiperamide E PL2pro Ubiquitin binding site −8.269 -

PO7157 Beta-Sitosterol PL2pro Ubiquitin binding site −8.24344 -

O5332 Secoisolariciresinol PL2pro Ubiquitin binding site −8.1703 -

P7538 Phytosterols PL2pro Ubiquitin binding site −8.106 -

A7147 Bisandrographolide PL2pro Ubiquitin binding site −8.047 -

P5494 Pipercyclobutanamide B PL2pro Ubiquitin binding site −8.018 -

A7147 Bisandrographolide 3CLpro Catalytic Site −9.604 +

N7247 Eurifoloid E 3CLpro Catalytic Site −8.52617 +

N5233 Eurifoloid F 3CLpro Catalytic Site −7.93144 +

N7240 CID 101570868 3CLpro Catalytic Site −8.14257 +

N7248 CID 118716354 3CLpro Catalytic Site −7.698 +

Z3629 Galanolactone 3CLpro Catalytic Site −7.49188 +

Z7680 Aframodial 3CLpro Catalytic Site −7.06792 +

N3229 CID 162866962 3CLpro Catalytic Site −7.35633 +

N3230 CID 162866964 3CLpro Catalytic Site −7.18 +

E7206 Ingenol triacetate 3CLpro Catalytic Site −7.24442 +

B788 Saponins 3CLpro Catalytic Site −7.72657 +

O7407 Zeaxanthin 3CLpro Dimerization Site −8.0922 -

P5491 Dipiperamide E 3CLpro Dimerization Site −7.7095 -

P5489 Dipiperamide C 3CLpro Dimerization Site −7.70038 -

N7252 CID 118716358 3CLpro Dimerization Site −7.66 -

VO7603 Betulinic acid 3CLpro Dimerization Site −7.34525 -
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analysis results for the 11 complexes are depicted in 
Figure 4.
The higher temperature setting used in the MD 
simulations, which is representative of the swine 
internal temperature, posed challenges for ligand 
stabilization. Among the initial 11 compounds studied, 
only 4 demonstrated relatively stable behavior within 
their binding sites, as observed by mean RMSD 
values of less than 5 Å and fluctuations within 2 Å. In 
contrast, the remaining 7 exhibited unbinding events 
and mean RMSD values of 15.20, 4.17, 9.55, 10.86, 
7.60, and 20.07 Å for 3CLpro-N3229, 3CLpro-N7247, 
3CLpro-N7248, 3CLpro-Z3620, 3CLpro-Z7680, and 
PL2pro-A7147, respectively.

The complexes 3CLpro-VO7603, 3CLpro-N5233, 
3CLpro-A7147, and 3CLpro-N3230 exhibited relative 
stability with average RMSD values of 2.81, 2.89, 
2.86, and 2.64 Å, which are much less than those of the 
unstable complexes. Although the RMSD values for 
these complexes fluctuated, the fluctuations remained 
within a 2 Å range, indicating stability. Visualization 
of the trajectories revealed that these ligands remained 
within their binding pockets despite exploring a larger 
conformational space owing to the higher temperature.
A known inhibitor of PEDV 3CLpro, X77, was also 
examined under the same conditions to validate 
the findings. Figure 4B shows that the X77 control 
exhibited similar fluctuations within a 2 Å range and an 

Table 4. ADMET violations of the compounds from the consensus list.

Code Lipinski 
violations*

Absorption 
violations

Distribution 
violations

CYP450 
violations

Toxicity 
violations Total Pass/Fail

O7443 2 1 1 0 1 4 FAIL
O7407 2 1 1 0 1 4 FAIL
P5490 1 1 0 1 1 3 FAIL
O7444 2 1 1 0 1 4 FAIL
P5489 1 1 0 1 1 3 FAIL
P5493 1 1 0 1 2 4 FAIL
P5491 1 1 0 1 1 3 FAIL
M5288 0 1 1 2 1 5 FAIL
A7152 1 0 1 0 0 1 PASS
O7408 2 1 0 0 1 3 FAIL
N7236 1 0 0 0 0 0 PASS
V5568 3 1 1 0 0 3 FAIL
PO7157 1 0 1 0 0 1 PASS
O5332 0 0 0 0 0 0 PASS
P7538 1 0 1 0 0 1 PASS
A7147 1 0 0 0 0 0 PASS
P5494 1 0 1 1 0 2 FAIL
N7247 0 0 1 0 0 1 PASS
N5233 0 0 0 0 0 0 PASS
N7240 0 0 1 0 0 1 PASS
N7248 0 0 1 0 0 1 PASS
Z3629 0 0 0 0 0 0 PASS
Z7680 0 0 1 0 0 1 PASS
N3229 0 0 0 0 0 0 PASS
N3230 0 0 0 0 0 0 PASS
E7206 0 1 0 0 1 2 FAIL
B788 3 1 0 0 0 2 FAIL
N7252 0 0 0 0 0 0 PASS
VO7603 1 0 1 0 0 1 PASS

* Counted as one in “TOTAL” if more than two drug-likeness rules are violated.
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average RMSD value of 2.81 Å. The four experimental 
ligands that demonstrated relative stability exhibited 
RMSD profiles comparable to those of the X77 control, 
confirming their stability.
Principal component analysis (PCA) of trajectories
To further assess the stability demonstrated through the 
RMSD analysis, PCA of the simulated trajectories was 
performed. The first two principal components with the 

highest contributions to the total variance were used to 
plot the 2D projection of the trajectory. The PCA plots 
for all simulated trajectories are shown in Figure 5.
The PCA plots are used to examine the fluctuations 
in the trajectory and confirm whether a convergence 
occurs in different time intervals. A scattered projection 
indicates structural fluctuations, while clustering 
of projections indicates structural convergence and 
stability. The projections plotted in Figure 5 are divided 
into 25 ns intervals. Ideally, structures are expected to 
converge at the last 25 ns of the simulation.
Based on the PCA plot, scattered projections are 
observed within the first 25 ns of the simulation for 
all complexes. This is an expected behavior as the 
system is still equilibrating and relaxing into the 
solvated system. The trajectory should, however, show 
visible convergence in the following intervals, and 
clustering should be observed within the last 25 ns of 
the simulation, shown as blue markers. 
The stable complexes from the RMSD analyses 
(enclosed in green box), 3CLpro-VO7603, 
3CLpro-N5233, 3CLpro-A7147, and 3CLpro-N3230, 
showed the characteristic scattering, albeit minimal, 
within the first 25 ns as the systems equilibrate but has 
observed reduced scattering in the 26–50 ns, 51–75 
ns, and more prominently, 76–100 ns region or the 
last 25 ns. This indicates convergence in the structural 
dynamics and stabilization of the complex.
On the other hand, the less stable complexes, 
3CLpro-N3229, 3CLpro-N7247, 3CLpro-N7248, 

Table 5. Finalized list of selective protease inhibitors to be 
analyzed for dynamic stability.

Compound Target 
protein Target site Affinity

A7147 3CLpro Catalytic site −9.604
N7247 3CLpro Catalytic site −8.52617
N7240 3CLpro Catalytic site −8.14257

A7147 PL2pro
Ubiquitin 

binding site −8.047
N5233 3CLpro Catalytic site −7.93144
N7248 3CLpro Catalytic site −7.698
Z3629 3CLpro Catalytic site −7.49188
N3229 3CLpro Catalytic site −7.35633
VO7603 3CLpro Dimerization site −7.34525
N3230 3CLpro Catalytic site −7.18
Z7680 3CLpro Catalytic site −7.06792

Fig. 4. RMSD profiles of 11 complexes in the 100 ns MD simulations. (A) All complexes (B) Contain relatively stable complexes 
with a maximum RMSD of less than 5 Å and fluctuations of < 2 Å.
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3CLpro-Z3620, 3CLpro-Z7680, and PL2pro-A7147, 
show highly scattered projections that become more 
apparent as the simulation progresses which reflects the 
unbinding events observed for said ligands. Periodic 
boundary conditions confined the unbound ligands, 
forming a circular pattern in the trajectory projection.
Root mean square fluctuation
This study also examined the RMSF of the complexes 
to assess the flexibility of the amino acid residues. 
Figure 6 illustrates the RMSF of the protein or protomer 
interacting with ligands.

Since the RMSF primarily characterizes the protein’s 
flexibility, the RMSF calculations for the experimental 
complexes were compared to the apo form of their 
respective proteins. Upon close examination of the 
RMSF plot in Figure 6, it was evident that for ligands 
bound to 3CLpro, only the complexes with VO7603, 
N5233, A7147, and N3230 exhibited lower RMSF 
profiles than those of apo 3CLpro. This reduction in the 
RMSF profile suggested decreased protein flexibility 
during complex formation, indicating stability.
On the other hand, for PL2pro, the lone complex with 
A7147 displayed RMSF profiles similar to the Apo 

Fig. 5. 2D Projection of the MD trajectories using the two principal components with highest eigenvalues from PCA. Stable 
complexes are enclosed in a green shaded box.
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PL2pro, indicating that the ligand had no discernible 
effect on the stability of the protein complex. In 
summary, the results of the RMSF analysis confirmed 
the relative stability of the VO7603, N5233, A7147, 
and N3230 complexes bound to 3CLpro.
Radius of gyration
The Rg was computed as a measure of protein 
compactness throughout the simulation. Fluctuations 
in the Rg values signify the typical expansion 
characteristics observed in free proteins. However, this 
expansion is typically restricted when a ligand binds, 
decreasing Rg. Figure 7 shows the Rg profiles of the 
11 complexes.
Consistent with the RMSF calculations, the stability of 
the complexes formed between 3CLpro and the ligands 
VO7603, N5233, A7147, and N3230 relative to Apo 
3CLpro is discernible from the Rg profiles. Among all 
ligands bound to 3CLpro, only these four compounds 
exhibited Rg profiles lower than the apoprotein, 
indicating constrained protein movement, restricted 
expansion, and a stabilized complex.
In contrast, although the PL2pro-A7147 complex 
initially displayed a lower Rg profile compared to apo 
PL2pro, it is noteworthy that this decrease occurred 
between 30 ns and gradually increased back to 90 
ns. Beyond this period, the Rg profile of the complex 
converged with that of the apoprotein, suggesting 
an instability in ligand binding. In summary, the 

Rg profiles further support the stability of VO7603, 
N5233, A7147, and N3230 in complexes with 3CLpro.
Hydrogen bond count
Finally, the number of hydrogen bond contacts was 
measured throughout the 100 ns MD simulation to 
estimate the relative stability of the attractive force 
holding the ligands in place. The hydrogen bond count 
analysis summary throughout the 100 ns runs is shown 
in Figure 8.
In the control complex of X77 with PEDV 3CLpro, 
while it remained stable in the binding pocket, 
fluctuating hydrogen bond counts were observed, with 
an average of only 0.10, suggesting a nuanced interplay 
between the ligand and protein over time. Although 
hydrogen bonds are pivotal in stabilizing complexes, 
their transient nature hints at a dynamic binding 
landscape, where interactions are formed and broken 
throughout the simulation.
Interestingly, this behavior extends beyond the control 
complex to the experimental ligands, exhibiting 
fluctuating hydrogen-bond patterns. This suggests that 
the observed dynamics might not be unique to a specific 
ligand but a characteristic feature of the binding event 
itself.
Considering this information, Figure 8 shows that 
ligands VO7603, N5233, A7147, and N3230 were 
the only ligands with sustained, albeit fluctuating, 
hydrogen bonds. Their average hydrogen bond counts 
were 0.91, 0.81, 0.98, and 1.35, respectively, which 

Fig. 6. RMSF profiles of the 11 complexes.
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are much higher than those of the control ligand. This 
indicates continued interaction with the complex, 
further affirming the trends already presented by other 
stability metrics such as RMSD, RMSF, and Rg.

While stable hydrogen bonds are desirable for robust 
ligand binding, transient interactions may also play 
significant roles in ligand recognition and binding 
kinetics. Thus, a comprehensive analysis requires 

Fig. 7. Rg profiles of the 11 complexes in the 100 ns MD simulations.

Fig. 8. Hydrogen bond count between the eleven ligands and PEDV proteases in the 100 ns MD simulations.
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more concrete measures of ligand stability, such as the 
binding energy and decomposition analysis.
Binding analysis, energy calculation, and energy 
decomposition
MM-GBSA energies of the stable 3CLpro complexes
Binding free energy calculations were conducted using 
MMGBSA to validate the relative stability of the 
complexes. The binding energy of the native PEDV 
3CLpro ligand, X77, served as a positive control and 
underwent a similar analysis. Given the scarcity of 
experimentally validated compounds against PEDV 
proteins, only X77, a control for the catalytic site, was 
prepared. A summary of the free-energy calculations is 
shown in Figure 9.
Examination of the binding free energy calculations 
revealed that two of the three compounds bound to the 
3CLpro catalytic site with binding energies similar to 
or greater than that of the X77 control (−10.36 Kcal 
mol−1). N5233 and A7147, which have binding energies 
of −12.55 and −9.41 Kcal mol−1 are within 1 Kcal mol−1 
difference with the control and were thus considered 
suitable candidates for further drug development of 
inhibitors targeting the catalytic site of PEDV 3CLpro. 
On the other hand, while no small molecule control is 
available for the dimerization site, VO7603 exhibited 
a high affinity for the dimerization interface with 
a binding energy of −18.53 Kcal mol−1. In cases of 
protein-protein interaction inhibitors such as VO7603, 
especially when no control is available to compare the 

energy, it is more important to determine whether the 
ligand interacts and occupies the hotspot residues to 
destabilize the dimer formation. To achieve this, energy 
decomposition and binding interaction analysis were 
performed. The results of these analyses are detailed in 
the succeeding sections.
Inhibition of catalytically active 3CLpro dimer 
formation
VO7603 exhibits a calculated binding energy of −18.53 
Kcal mol−1 according to MM-GBSA analysis. Despite 
surpassing the binding energy of the control complex, 
it is noteworthy that VO7603 binds to the dimerization 
site, in contrast to the catalytic site where X77 binds. 
Therefore, the difference in binding energy may not 
robustly indicate whether the compound serves as a 
potent inhibitor.
For compounds binding to the protein-protein 
interaction interface, such as oligomerization inhibitors, 
determining the binding site residues utilized by the 
ligand pose is crucial in assessing their inhibitory 
potential. A ligand must interact with identical residues 
within the hotspots of protein interactions. 
The dimerization site of PEDV 3CLPro utilizes 
the residues ALA1, GLY2, ARG4, ALA7, SER10, 
GLY11, GLU14, GLY26, GLU286, SER138, PHE139, 
GLU165, GLY279, THR281, and GLN295 (Ye et al., 
2016) to form a catalytically active dimer. To ascertain 
whether VO7603 engages with identical residues for 
binding interactions, energy decomposition analysis 

Fig. 9. Binding energy calculations of the four stable 3CLpro complexes (A) Binding energy graph of the four experimental 
complexes and X77 control (B) VO7603 bound to 3CLpro dimerization site (C) X77 control, N5233, A7147, and N3230 inside the 
3CLpro catalytic site.
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was conducted to identify the critical binding site 
residues utilized by the ligand. The detailed results of 
energy decomposition and binding analysis of VO7603 
at the PEDV 3CLpro dimerization site are presented in 
Figure 10.
Energy decomposition analysis revealed that VO7603 
interacts with six residues from the dimer interface 
hotspot, potentially inhibiting the formation of a 
catalytically active dimer. The heatmap in Figure 
10D shows that VO7603 employs ARG4, ALA7, 
SER10, GLU286, GLY279, and THR281. However, 
the energy decomposition of the 10 residues with the 
highest contribution (Fig. 10D) indicated that only 
ARG4 significantly influenced the binding energy. 
Additionally, most residues involved in VO7603 
binding participated in electrostatic interactions 
with residues adjacent to the dimerization hotspot. 
Nevertheless, using key residues in binding and the 
strong electrostatic forces with residues near the 
dimer hotspot suggest promising potential as 3CLpro 
dimerization inhibitors.
Inhibition of 3CLpro catalytic activity
From Figure 9A, the metabolites bound to the 3CLpro 
catalytic site have calculated binding energies of 
−12.55, −9.41, and −6.34 Kcal mol−1 for N5233, A7147, 
and N3230, respectively. Of the three ligands, only 
N5233 and A7147 have binding energies within 1 Kcal 
mol−1 difference from the control ligand X77, which 

has −10.36 Kcal mol−1. To compare the metabolites’ 
performance to that of the control inhibitor, an energy 
decomposition analysis was performed to determine 
the highest contributing residues to the overall binding 
energy and see if the metabolites use the same residues 
as that of the known inhibitor. The results of energy 
decomposition analysis for the 3CLpro catalytic site 
inhibitors are detailed in Figure 11.
A comparison of the binding site residues in the heatmap 
(Fig. 11A) revealed that N5233 uses both residues 
in the 3CLpro catalytic dyad, HIS41 and CYS144, 
and shares four similar binding site residues with the 
X77 control: MET25, PRO188, HIS41, and CYS144, 
exhibiting relatively strong energy contributions (Fig. 
11B). The energy decomposition of the ten highest 
contributing residues (Fig. 11C) also includes these 
four residues, characterized by a mix of strong van der 
Waals and electrostatic interactions.
In contrast, A7147 uses only one residue from the 
3CLpro catalytic dyad, CYS144, and shares two 
residues with the X77 control (Fig. 11A), displaying 
relatively weak energy contributions. The energy 
decomposition of the highest contribution (Fig. 11D) 
includes these two residues. However, most energy 
contributions come from strong van der Waals and 
electrostatic interactions involving LEU190, LEU164, 
PRO188, GLY142, and LEU166. Despite this, the 
high-energy residue interactions and the use of a 

Fig. 10. Energy decomposition and binding analysis of VO7603 at the PEDV 3CLpro dimerization interface. (A) VO703 inside the 
dimer interface (B) The dimer interface with key residues highlighted yellow and the VO7603 binding residues highlighted red (C) 
Structure and interaction map of VO7603 (betulinic acid) (D) Heatmap showing dimerization hotspot residues used by VO603 (E) 
Energy decomposition analysis of the 10 residues with the highest contribution to VO7603 binding.
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catalytic residue make it a potential candidate for a 
PEDV 3CLpro inhibitor.
Finally, N3230 uses catalytic dyad residues and shares 
seven residues with the X77 control (Fig. 11A), 
the highest of the three experimental ligands, with 
relatively high contributions. However, the energy 
decomposition of the ten highest contributing residues 
(Fig. 11E) shows that the interactions are primarily 
van der Waals interactions, leading to binding energy 
(−6.34 Kcal mol−1) significantly smaller than that 
of the X77 control (−10.36 Kcal mol−1), rendering it 
an unsuitable candidate. The findings regarding the 
residues used to interact with the 3CLpro catalytic 
site indicate the potential for derivatization that could 
improve its binding interaction with the binding site 
and lead to a more potent antiviral form.
The energy calculations and binding analysis results 
identified N5233 and A7147 as promising inhibitors 
of the PEDV 3CLpro catalytic site. Aside from 
performing better or similar to the control, the ligands 
also interact with the catalytic dyad, HIS41 and 
CYS144, further solidifying their potential as inhibitors 
of catalytic activity. However, while N3230 failed to 
meet the energy threshold set by the control and was 
not considered a promising candidate, the ligand also 
interacted with the catalytic dyad with even higher 
contributions than the two leads. This signifies that 
although it performs poorly in this study, derivatization 

may improve its binding affinity to 3CLpro. The binding 
interaction plot of the 3CLpro-binding compounds is 
detailed in Figure 12, which shows a mix of van der 
Waals, hydrogen bond, and alkyl interactions reflected 
on their energy decomposition analysis.

Discussion
This study delved into various facets of antiviral drug 
discovery against PEDV, shedding light on critical 
insights from molecular docking, in silico ADMET 
screening, and MD simulations. 
Molecular docking analyses revealed intriguing 
nuances in targeting strategies for PEDV proteases, 
highlighting distinct preferences for ligand binding 
between the catalytic site and protein interaction 
interfaces. Notably, the study observed increased 
receptivity of the catalytic site within PEDV 3CLpro, 
in contrast to its dimer interface. In comparison, 
ligands docked to PL2pro displayed a stronger affinity 
for the ubiquitin-binding site than its catalytic site. 
This observation is consistent with findings from 
research on related coronavirus, SARS-CoV-2, and 
their structurally similar proteases, where challenges 
in identifying effective compounds for the catalytic 
site of PL2pro have been encountered ( Štekláč et al., 
2021; Verma et al., 2021), whereas ligands have shown 
greater success in binding to the ubiquitin-binding site 
(Chu et al., 2018), indicating susceptibility to disruption 

Fig. 11. Energy decomposition per residue of 3CLpro catalytic site inhibitor complexes. (A) Heatmap comparing the energy 
contributions of residues used by the control ligand and those used by the experimental ligands. Enclosed in red boxes are catalytic 
residues of PEDV 3CLpro. (B–E) Energy decomposition analysis of 10 residues with the highest energy contributions to 3CLpro 
complexes with X77 control (B), N3230 (C), A7147 (D), and N5233 (E).
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of protein-protein interactions. Interestingly, although 
considerable attention has been devoted to targeting the 
catalytic site of 3CLpro in previous studies (Vergoten 
and Bailly, 2021; Zhang et al., 2021; Lam et al., 2022; 
Pathak et al., 2023; Li et al., 2024), its dimerization 
site has been relatively overlooked (Ye et al., 2016). 
Such distinctions suggest the need for tailored targeting 
strategies, promoting competitive inhibition of 3CLpro 
and disrupting protein-protein interactions for PL2pro. 
These insights offer an invaluable direction for 
optimizing drug design strategies to combat PEDV.
Furthermore, the docking results yielded valuable 
insights into the most promising plant sources and 
metabolite classes for PEDV proteases. Among these, 
Andrographis paniculata emerged as a promising 
plant source, while terpenoids emerged as the most 
promising chemical class. Similar research targeting 
the 3CLpro and PL2pro of structurally related SARS-
CoV-2 has also highlighted the strong binding affinity 
of a terpenoid derived from Andrographis paniculata 
(Verma et al., 2021). These findings validate the 
potential of natural compounds, particularly those from 
Andrographis paniculata and compounds belonging to 
the terpenoid class, as valuable candidates for further 
exploration in the quest for effective antiviral agents 
against PEDV and related coronaviruses.
Beyond molecular docking simulations and 
determination of binding affinity, the integration of 
swine-adapted in silico ADMET screening provides 
a robust framework for balancing drug potency with 
veterinary safety. Many computational drug discovery 

studies have been applied to veterinary pathogens, 
such as PEDV (Vergoten and Bailly, 2021; Verma et 
al., 2021; Pathak et al., 2022a). However, no drug 
discovery protocol has been adjusted for veterinary 
use. Hence, this study is the first to report a veterinary 
informatics approach to antiviral drug discovery 
against an animal pathogen. By incorporating off-target 
docking into swine-specific receptors and proteases, 
this approach identified promising candidates with 
favorable ADMET profiles, laying the groundwork 
for developing safe and effective veterinary antiviral 
drugs against PEDV. This interdisciplinary effort 
bridges computational pharmacology with veterinary 
medicine, thereby facilitating the translation of in silico 
discoveries into tangible veterinary applications.
Finally, MD simulations offered invaluable insights 
into compound stability under swine physiological 
conditions, essential for optimizing drug efficacy and 
safety. The observed fluctuating values of the stability 
metrics, including RMSD, RMSF, Rg, and H-bonds, 
from the MD simulations, were consistent with 
findings from previous studies that encountered similar 
dynamic behaviors (Štekláč et al., 2021). Notably, 
ligand binding to proteases tends to exhibit fluctuating 
behaviors characteristic of their binding modes. This 
phenomenon becomes particularly pronounced when 
simulating higher temperatures to better mimic host 
physiology. Despite the higher temperature settings 
reflective of swine internal environments, certain 
compounds demonstrated remarkable stability within 
their binding sites, indicating rational drug design 

Fig. 12. Binding interaction analysis of 3CLpro catalytic site inhibitors compared to the control ligand, the X77 inhibitor.
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efforts and enhancing the prospects of veterinary drug 
development against PEDV. These findings highlight 
the significance of interdisciplinary approaches 
in advancing veterinary informatics-driven drug 
discovery, offering a pathway toward effective antiviral 
interventions in veterinary medicine.
In conclusion, this study represents a pioneering 
effort in antiviral drug discovery against PEDV, 
leveraging cutting-edge computational methodologies 
and interdisciplinary approaches. By elucidating the 
preferences of PEDV proteases for ligand binding 
and identifying promising plant sources and chemical 
classes, this study provides valuable insights for tailored 
veterinary drug design strategies. The integration of 
swine-adapted in silico ADMET screening bridges 
the gap between computational pharmacology 
and veterinary medicine, thereby facilitating the 
development of safe and effective veterinary antiviral 
drugs. Additionally, MD simulations offer critical 
insights into compound stability under physiological 
conditions in swine, further enhancing drug design 
efforts. Overall, this interdisciplinary study lays 
the groundwork for the advancement of veterinary 
informatics-driven drug discovery, offering promising 
prospects for combating PEDV in veterinary medicine.
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