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It is a great honor to deliver the AAP Pres-
idential Address. Let me start with disclo-
sures. My main conflict of interest is that I 
try to be a scientist. This means I am prob-
ably biased and often wrong, but hopeful-
ly not totally resistant to the possibility of 
getting corrected. Let me also make some 
preemptive comments. First and fore-
most, science is the best thing that can 
happen to humans, and research should be 
supported with heightened commitments. 
You have probably heard this too many 
times, but it is worth repeating. Howev-
er, most research done to date has used 
nonreproducible, nontransparent, and 
suboptimal research practices. Science is 
becoming more massive and more com-
plex. Scientific publications (about 200 
million already, with 7 million more add-
ed each year) are mostly advertisements 
(“trust me, this research was done”); raw 
data and experimental materials and algo-
rithms are not usually shared. Moreover, 
our reward systems in academia and sci-
ence are aligned with nonreproducible, 
nontransparent, and suboptimal research 
practices. Can we do better?

Even though we all use the scientific 
method, maps of science may visualize 
many thousands of clusters representing 
different scientific disciplines (1). The 
research practices in these many disciplines 
vary substantially in both expectations and 
implementation. However, some features a 
re all too common. Notably, the quest for 
significance is almost ubiquitous. Signifi-
cance takes many forms, but one form, sta-
tistical significance, has become extremely 
widespread. While originally developed as 

a helpful discriminating tool for interest-
ing signals, statistical significance grad-
ually became a boring nuisance. Across 
PubMed, between 1990 and 2015, 96% 
of the biomedical literature that used P 
values claimed at least some statistically 
significant results (2). The good news is 
that, more recently, a higher rate of “nega-
tive” results is tolerated, especially in some 
study designs such as clinical trials (3). I am 
not sure whether this is further comfort, 
but biomedicine is not alone in the signif-
icance-chasing frenzy. Actually, empirical 
data suggest that economics, environmen-
tal sciences, and psychology have even 
higher rates of selective publication report-
ing bias (4). For example, in economics, 
roughly 70% of significant results would 
not have been statistically significant in 
a bias-free world (5). Also, please note 
that in medicine we also increasingly see 
patterns of inverse publication reporting 
bias (6), in which sometimes “negative” 
results are preferred. Worrisome examples 
include studies touting that high-profit 
drugs, biologics, or vaccines have no sig-
nificant harms; or noninferiority trials that 
conclude that a new candidate blockbuster 
drug that is very expensive is not that much 
worse than an older, cheaper comparator.

Meta-research entails the study of 
research practices and the scientific eco-
system at large. Most scientists are trained 
to focus, to zoom in. In meta-research, 
scientists mostly zoom out. All scientific 
disciplines can contribute tools, methods, 
and empirical data for meta-research. 
Moreover, science itself is a multifaceted, 
fascinating object to study.

One may model the scientific eco-
system in broad strokes. For example, 13 
equations can create an artificial mod-
el universe of science (7). This universe 
includes diligent, careless, and fraudulent 
scientists (8, 9). We all hope that the dili-
gent ones are the majority, by far. Howev-
er, if you ask how many scientists are slop-
py or outright frauds, the answer depends 
on whom you ask and how. Answers to the 
question, Are you sloppy? rarely receive 
affirmative answers. However, questions 
of the type, Are other scientists sloppy? 
are usually answered with Yes, of course. 
Fraud is the most difficult to fathom (9). I 
used to believe that fraud was rare. I sus-
pect my position has become increasingly 
difficult to defend and wrong nowadays, as 
I will discuss later.

If we run our modeled universe of sci-
ence through a number of reward cycles, 
where scientists get rewarded and create 
progeny based on what they accomplish 
(7), the sloppy and fraudulent scientists 
eventually become the majority. One does 
not need complex differential equations to 
understand why. If there are equal rewards 
for all three categories and no penalties, 
those who can cut corners, and, even more 
so, those who get credit with no work at all, 
just pure fraud, have a competitive evolu-
tionary advantage.

Our reward environment is such that 
cutting corners and even outright fraud are 
often tolerated and even incentivized. Some 
horrible pessimists, who should be canceled 
and be massively smeared in their Wikipedia 
pages, dare imagine that one day one of these 
problematic scientists may even become 
the president of Stanford or Harvard. Bitter 
jokes aside, science has become so massive 
that our traditional ways of correcting the 
literature are overwhelmed. In most fields, 
respectable specialty journals have tradition-
ally published a couple of hundred papers 
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building may create works of fiction, as 
Mitch Lazar has very nicely described in 
an insightful previous AAP Presidential 
Address (24). P < 0.05 is enough; there 
is no registration (“why decrease my 
data-dredging options?”), no data shar-
ing (“why offer my goldmine to compet-
itors?”), and no replication (despised as 
a “me too” effort). Small studies suffer 
power failure, fueling high false-negative 
and false-positive rates even with limited 
bias. Power failure is documented in very 
diverse scientific fields, ranging from neu-
roscience (25) to economics (26).

An alternative recipe for potential 
disaster is becoming more common: big 
data. Extremely large (overpowered) stud-
ies, e.g., those fueled by electronic health 
records, other routinely collected data, 
and omics platforms, create a firehose of 
statistically significant results. Still, sci-
entists may build narratives to get funded, 
so post hoc cherry-picking is still preva-
lent. Fancier statistical inference tools are 
often used, but they may be idiosyncratic, 
lacking consensus. There is no registra-
tion of protocols for most of this research. 
More data sharing occurs, but often with-
out understanding what exactly is being 
shared. Data users have limited insights 
into the data generation process.

Small data and big data both have 
problems, but the worst is stealth research 
that has no accessible data. The currently 
discredited Theranos, about which I pub-
lished the first negative article ten years ago 
(27) when the company was at its height, 
was a forerunner of the philosophy that, 
even in biomedicine, a company should 
be proud for operating without sharing or 
publishing their valued data and secrets. 
While some see Theranos as an isolated 
failure, the stealth mode is shared by half 
of the unicorn start-ups in health care fields 
(28). Moreover, it is becoming particularly 
prevalent in fields shaping the future of 
science. For example, in AI, academia and 
public institutions are currently dwarfs 
compared with the data availability and 
computational capacity of tech industries 
(29). If these companies decline to share, 
academic and publicly funded research 
may soon become obsolete. It is equivalent 
to pursuing microscopy discoveries, with 
Stanford, Harvard, and NIH having access 
only to light microscopes, while companies 
have electron microscopes.

content to accept evolution even at small 
but concrete steps. Moreover, I wonder: 
Should we focus mostly on identifying the 
problems and hope that their realization 
will suffice for diligent scientists to fix them 
or push for aggressive solutions (which may 
cause more problems, if untested and non-
evidence based)?

Reproducibility has become a 
buzzword
We all seek reproducibility, but what 
exactly is reproducibility (22)? We proba-
bly all value reproducibility of methods, 
being able to understand what was done in 
a study to put the experimental and com-
putational procedures to work again, if 
needed. But we may disagree about what 
pains we should take to ensure this. We 
all wish to have reproducibility of results, 
additional validation studies that corrobo-
rate initial findings. But there is resistance 
to spending extensive resources purely 
for replication. Finally, reproducibility of 
inferences is the most contentious. Even 
excellent, well-intentioned scientists 
often reach different conclusions upon 
examining the same evidence (23).

The typical recipe for research prac-
tices involves small-sample-size studies 
done by solo, siloed investigators and 
their small teams. To survive in the fund-
ing jungle, investigators may cherry-pick 
nice-looking results. Post hoc narrative 

each year. Currently, many mega-journals 
publish more than 2,000 peer-reviewed 
articles every year; some exceed 10,000 
publications annually (10).

Moreover, scientists are attracted to 
what is hot and incentivized. For exam-
ple, in 2020 and 2021, 98 of the top-100 
most-cited papers across all sciences 
were on COVID-19 (11). Within 4 years, 
probably about 2 million scientists pub-
lished more than half a million papers on 
COVID-19 (12, 13). These scientists came 
from all scientific fields. The Science- 
Metrix classification divides science into 
174 fields. Experts in all 174 of these fields 
published on the topic of COVID-19. The 
last field to succumb to COVID-19 was 
automobile engineering, in fall 2020. Most 
of these scientists ventured way beyond 
their expertise, in areas in which they 
lacked even basic skills and understand-
ing. Maybe I should have been excited that 
everyone overnight became a pontificating 
epidemiologist, but, well, it was scary. Too 
much work was also done in haste, cutting 
corners. Not surprisingly, despite some 
major scientific successes like vaccines and 
adaptive randomized trials, most of the 
peer-reviewed COVID-19 literature was of 
low quality (14–16) and largely a data fias-
co. Worse, science was hijacked not only by 
outrageous conspiracy theorists, but also 
by apparently legitimate influencers, jour-
nalists, and popular writers. Even if well 
intentioned, they often promoted and glo-
rified devastating policies such as school 
closures and aggressive lockdowns (17–19). 
Many of the things we demanded people 
do were not just nonevidence-based, they 
were just weird. I recall walking in the ruins 
of the Castle of Faneromeni in 2021, a vast 
desolate expanse on a mountain overlook-
ing the Aegean Sea on the island of Andros. 
The only person in a two-mile radius was 
my wife, yet there I was (Figure 1), carry-
ing a double mask, in red and blue colors 
(perhaps subconsciously hoping for some 
peaceful, unified bipartisan consensus on 
the pandemic response). Not surprisingly, 
trust in science is sadly declining (20).

Do we need revolution, or 
would evolution suffice to 
improve science?
Having published revolutionary manifestos 
(21), and having created many allies and 
many enemies as a result, I am currently 

Figure 1. Castle of Faneromeni, Andros, Greece. 
Offering a bird’s-eye view.
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may have sounded like getting an audit 
request from the IRS, almost half of the 
authors sent their datasets. Reassuringly, 
we obtained results very similar to those 
in the published record (42).

There is more good news
More sharing is happening over time 
across biomedicine, as we have docu-
mented in a large-scale evaluation of 
the entire open-access PubMed Central 
repository (43). However, there is still 
large heterogeneity across different scien-
tific subfields in terms of how often they 
share data or code and how often they 
register protocols. Moreover, sharing may 
have plateaued in the last 5 years. New 
initiatives such as those launched by the 
NIH (44) and some journals (e.g., BMJ 
extending the request for data sharing) 
(45) may further improve the situation, 
but we should seek empirical evidence to 
determine whether these initiatives work.

A special mention is due regarding the 
reproducibility of computational meth-
ods. Science is becoming more complex 
computationally (46). There is an inverse 
relationship between transparency and 
complexity (47). More complex computa-
tions require extra steps of documentation 
to open the researchers’ “black boxes.” 
Transparency, nevertheless, is feasible 
even in the most complex AI methods 
(48). Tools are available to make them 
maximally reproducible. With the advent 
of large language models, there are fur-
ther exciting opportunities, but also lim-
itations, challenges, and threats (49). Peer 
review is also changing rapidly, with mul-
tiple new options and major known prob-
lems. Even though I am one of the direc-
tors of the International Congress on Peer 
Review and Scientific Publication (50), 
I have no clue how peer review and sci-
entific publication will look like by 2035. 
Regardless, it is fascinating to follow the 
ongoing changes and debates.

No matter how science evolves, we 
need to reengineer our reward system 
in ways that incentivize good science 
of high value and disincentivize poor 
research practices and waste. We have 
long focused on productivity, and there 
is nothing wrong per se with productivity. 
However, we also need more emphasis 
on quality, reproducibility, sharing, and 
translational impact (51). In assessing 

worked at least in some fields and/or hold 
high promise (37): conduct of large-scale, 
collaborative research; adoption of a rep-
lication culture; registration (of studies, 
protocols, analysis codes, datasets, raw 
data, and results); sharing (of data, proto-
cols, materials, software, and other tools); 
implementation of reproducibility prac-
tices; containment of conflicted sponsors 
and authors; application of more appro-
priate statistical methods; standardiza-
tion of definitions and analyses; estab-
lishment of more stringent thresholds 
for claiming discoveries or ‘‘successes’’; 
improvement of study design standards; 
improvements in peer review, reporting, 
and dissemination of research; and bet-
ter training of the scientific workforce in 
methods and statistical literacy.

None of these approaches needs to 
assume that we have a problem with fraud. 
It suffices to assume that we have a prob-
lem with low efficiency and high waste and 
that we can honestly improve ourselves. 
Nevertheless, I have come to revisit my 
ideas about fraud. For example, the work 
of John Carlisle is revealing (38). As edi-
tor of Anesthesia, a respectable journal, he 
demanded the raw data from many of the 
trial papers submitted to his journal. He 
concluded that 30%–40% of them were 
“zombie” trials: their results were either 
entirely messed up or clearly fraudulent. If 
what happened in Anesthesia applies across 
the medical literature, I estimated that half 
a million zombie clinical trials are circu-
lating among us; the editorial was appro-
priately published on Halloween day (39). 
Fraud may become more widespread with 
new AI tools. For example, Wiley recently 
revealed that when they used a new detec-
tion tool, 10%–13% of the 10,000 papers 
submitted per month in 270 journals were 
identified as products of paper mills (40). 
Apparently, fake papers have already mas-
sively invaded the scientific literature (41).

Conversely, in other situations, 
one can fully trust what one reads in a 
peer-reviewed journal with full trans-
parency. For example, the BMJ and PLoS 
Medicine have adopted a policy in which 
all data for clinical trials should be made 
available to anyone who asks for them. 
Several years ago, we sent requests to the 
principal investigators of trials published 
in these journals, saying that we planned 
to reanalyze their data. Even though this 

I have absolutely no wish to demonize 
the industry. In fact, companies are also 
victims and heroes of the replication crisis. 
Failed replication in preclinical research 
was first documented convincingly by big 
pharma (30). Frustrated by their inability 
to reproduce research from top academic 
institutions to put it to work for drug devel-
opment, the industry published papers 
documenting the nonreproducibility of 
academic work. In a landmark Nature 
paper, in which only six of 53 landmark 
oncology target projects reassessed by 
Amgen could be reproduced, the authors 
concluded that “the failure to win ‘the 
war on cancer’ has been blamed on many 
factors . . . But recently a new culprit has 
emerged: too many basic scientific discov-
eries . . . are wrong” (31).

Initially, these findings were attacked 
as biased and nontransparent, since raw 
data were not shared. However, since then, 
multiple independent efforts from non-
conflicted initiatives have shown similar 
patterns. Most of the research in our liter-
ature is nonreproducible. In the Reproduc-
ibility Project: Cancer Biology (32, 33), 193 
experiments from top-notch publications 
were designed, but only 87 could be initi-
ated, and only 50 could be completed. For 
the rest, the information was insufficient 
in the published methods and could not 
even be resurrected in a functional way by 
communicating with the primary investiga-
tors. Most completed experiments showed 
very different results from what had been 
published originally. Moreover, the replica-
tion process took, on average, 197 weeks — 
almost four years. You can imagine a PhD 
student starting their first lab rotation by 
repeating an experiment from published lit-
erature and taking four years to accomplish 
this introductory task — plus, most of the 
time failing to make the experiment run.

This uneasy situation leads to “repro-
ducibility wars” with animosity and heat-
ed exchanges as reputations are battered. 
There is also resistance to refutation. 
Even squarely refuted studies continue 
to be heavily cited. This paradox has been 
demonstrated in diverse fields ranging 
from medicine and epidemiology to psy-
chology (34, 35). Even fully retracted papers 
may continue to be heavily cited (36).

Several approaches may increase the 
proportion of true findings. Ten years ago, 
I published a list of practices that have 
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