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Abstract

Objectives—This study aimed to identify plasma proteomic signatures that differentiate active 

and inactive giant cell arteritis (GCA) from non-disease controls. By comprehensively profiling 

the plasma proteome of both patients with GCA and controls, we aimed to identify plasma 

proteins that (1) distinguish patients from controls and (2) associate with disease activity in GCA.

Methods—Plasma samples were obtained from 30 patients with GCA in a multi-institutional, 

prospective longitudinal study: one captured during active disease and another while in clinical 

remission. Samples from 30 age-matched/sex-matched/race-matched non-disease controls were 

also collected. A high-throughput, aptamer-based proteomics assay, which examines over 7000 

protein features, was used to generate plasma proteome profiles from study participants.

Results—After adjusting for potential confounders, we identified 537 proteins differentially 

abundant between active GCA and controls, and 781 between inactive GCA and controls. 

These proteins suggest distinct immune responses, metabolic pathways and potentially novel 

physiological processes involved in each disease state. Additionally, we found 16 proteins 

associated with disease activity in patients with active GCA. Random forest models trained on 

the plasma proteome profiles accurately differentiated active and inactive GCA groups from 

controls (95.0% and 98.3% in 10-fold cross-validation, respectively). However, plasma proteins 

alone provided limited ability to distinguish between active and inactive disease states within the 

same patients.

Conclusions—This comprehensive analysis of the plasma proteome in GCA suggests that 

blood protein signatures integrated with machine learning hold promise for discovering multiplex 

biomarkers for GCA.

INTRODUCTION

Early in its disease course, giant cell arteritis (GCA) can cause irreversible vision loss 

and cerebrovascular events,1 highlighting the critical need for prompt diagnosis and 

treatment. Although diagnostic modalities such as temporal artery biopsy, ultrasonography, 

and other imaging techniques are available, there is still no specific laboratory marker for 

this disease.1 To mitigate the current challenge associated with the lack of a diagnostic 

biomarker for GCA, researchers have evaluated conventional acute phase markers, such 

as erythrocyte sedimentation rate (ESR) and C reactive protein (CRP), for their potential 
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clinical applicability in GCA diagnosis. Notably, Kermani et al investigated the diagnostic 

performance of CRP and ESR for biopsy-confirmed cranial GCA.2 Their findings revealed 

that ESR and CRP, though sensitive at 84.2% and 86.4%, respectively, were limited by low 

specificity, at 29.5% and 30.5%, respectively. These results emphasise the need for more 

definitive and precise biomarkers in clinical practice.

Going beyond the scope of traditional acute phase markers, several recent studies have 

turned to blood proteins to identify indicators of disease. A study by van der Geest et al 
compared serum protein abundances between patients with GCA and controls, identifying 

seven proteins with significantly altered abundances.3 Similarly, Burja et al compared 65 

immunological parameters between treatment-naïve patients with GCA and controls.4 The 

investigators found 27 proteins that were differentially abundant in the plasma of patients 

with GCA, identifying elevated levels of IFN-γ, IL-2, TNF-α and others. Another study 

by Wadström et al identified eight plasma proteins (CCL25, CD40, CXCL9, IL-2, IL10RB, 

IFN-γ, MCP3 and SCF) that were more abundant in individuals who eventually developed 

GCA.5

However, to date, studies have been limited to profiling a relatively small number of 

proteins, which might obscure the identification of other critical proteins or proteomic 

patterns that could serve as key markers for GCA. Therefore, comprehensive studies are 

essential to fully elucidate the diagnostic potential of plasma proteins. A recent study 

examined 1463 proteins in serum samples from 16 patients with new-onset GCA and 13 

patients in remission.6 Through clustering analysis, the researchers identified distinct patient 

subgroups characterised by specific proteomic signatures and disease phenotypes.

While recent discoveries regarding plasma proteins advanced our understanding of the 

biomolecular hallmarks of GCA, the clinical transition from active disease to remission, and 

the potential recurrence of disease, remains complex and necessitates further investigation. 

Patients typically exhibit a favourable response to glucocorticoid therapy, with rapid 

symptom relief and a high rate of remission.7 8 Nonetheless, 20%–70% of patients 

experience disease relapse.9-12 Although acute phase markers have some utility in the 

assessment of disease activity, the lack of specificity is a significant limitation. Additionally, 

patients may exhibit smouldering inflammatory activity despite normal marker levels. 

Elevated cytokine levels have been reported in patients with GCA in clinical remission, and 

these increased levels were found to be associated with a higher risk of relapse.9 It remains 

uncertain whether other blood proteins persist at high levels in clinically quiescent disease. 

Consequently, compared with non-disease controls, a comprehensive analysis of the global 

blood proteome in patients with GCA (including those in later clinical remission) would 

represent a significant advancement in GCA research. Here, we present a detailed plasma 

proteome analysis in patients with GCA, aiming to identify proteins that differentiate active 

GCA, remission and control groups. This initial GCA versus control comparative analysis 

establishes a crucial starting point for future plasma proteomics studies to distinguish GCA 

from other inflammatory conditions.
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METHODS

Patient enrolment, eligibility criteria and sample collection

The study population involved patients diagnosed with GCA from the multicentre, 

observational Vasculitis Clinical Research Consortium (VCRC) Longitudinal Study of GCA. 

Patients enrolled were over the age of 50 years and met the 1990 American College of 

Rheumatology classification criteria for GCA13 or had evidence of large-vessel vasculitis 

(LVV) by angiogram or biopsy. Data collected included demographics, medical history 

and measures of disease activity. Age-matched, sex-matched and race-matched non-disease 

individuals (controls) from the Mayo Clinic Biobank were also recruited for the study. None 

of the controls had autoimmune or inflammatory disease at the time of sample collection.

Plasma samples from 30 patients with GCA at two visits were included in this study. 

Samples were collected from patients between 2008 and 2018 (median (IQR): 2012 (2010, 

2014)). The initial sample was drawn during the active stage of the disease; the second 

sample was taken when the patient was in clinical remission. For the purposes of this study, 

patients with GCA were ‘active’ if they had a Physician Global Assessment (PGA) score 

of 2 or higher at the study visit, as determined by the VCRC investigator. The PGA score 

was determined by clinical assessment while considering clinically available markers (ESR, 

CRP). The scale ranges from 0 (no disease activity) to 10 (maximum disease activity). There 

were no other disease characteristics or features for which the patients were selected. For 

the second sample, participants were required to have a PGA score of 0, an ESR of less 

than 30 mm/hour and a CRP level below 10 mg/L. (See online supplemental information 

for details on CRP reference ranges at each study site.) This sample was collected within 

2.5–6.5 months after the initial sample. If multiple samples met these criteria, the sample 

collected closest in time to the initial sample was selected. If a participant had more than 

one qualifying paired sample, the pair with the highest PGA score at the initial sample was 

chosen. All plasma samples were stored in tubes containing EDTA at −80°C prior to use.

Plasma proteome profiling

The SomaScan Assay version 4 from SomaLogic was used to quantify over 7000 human 

proteins in 55 μL of plasma. This platform uses protein-capture SOMAmer (Slow Off-

rate Modified Aptamer) reagents.14 15 Briefly, SOMAmers are single-stranded, chemically 

modified nucleic acids designed for high affinity, slow off-rate and high specificity to target 

proteins. This multiplexed, aptamer-based assay measures the relative binding of target 

proteins to aptamers. After protein concentrations were converted into corresponding DNA 

aptamer concentrations, protein abundance levels were quantified with a DNA microarray 

in relative fluorescence units (RFUs). Details regarding data standardisation, including 

normalisation and calibration, can be found in online supplemental information. A total 

of 90 plasma samples were profiled using the SomaScan assay, and protein abundance RFUs 

were quantile normalised prior to all statistical analyses.

Identification of differentially abundant proteins

Multiple linear regression models (MLRMs) were used to identify differentially abundant 

proteins between two study groups. Each MLRM aimed to characterise the association 
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between protein abundance and the study group while concurrently adjusting for potential 

confounding factors. Preliminary steps in identifying potential confounders involved the 

construction of univariate (marginal) linear regression models for each protein, designating 

protein abundance as the response variable and one of six demographic or clinical features 

(ie, age, smoking status, sex, prednisone, methotrexate and aspirin use) as the predictor 

variable. Confounders were deemed significant if the p value of the predictor’s coefficient 

in the linear model was less than 0.05. After identifying significant confounders, MLRMs 

were formulated with protein abundance as the response variable, and the study group (eg, 

active GCA and controls) and any significant confounders as predictors. For example, if age 

and smoking status were both found to be significantly associated with the abundance of a 

certain protein, the corresponding MLRM would incorporate these variables alongside the 

study group as predictors. The significance of the association between protein abundance 

and the study group was determined by examining the p value of the study group’s 

coefficient in the MLRM, with a threshold set at p<0.01.

Additionally, mixed-effects linear regression models (MeLRMs) were used to identify 

differentially abundant proteins between active and inactive visits within patients with 

GCA while adjusting for significant confounders and intrasubject longitudinal variation. 

Significant confounders were identified in the same manner as described above. MeLRMs 

were then constructed with protein abundance as the response variable, the study group 

and all identified significant confounders as fixed-effect predictors and patient ID as the 

random-effect variable.

For these analyses, a protein was considered to be significantly associated with the study 

group, indicating differential abundance between the two phenotypes, if its p value met the 

significance threshold (p<0.01).

Identification of plasma proteins correlated with PGA and CRP

Spearman’s rank correlation coefficient (ρ) was calculated to quantify the correlation 

between protein abundance and PGA or CRP (mg/dL) in patients with active GCA 

patients. Additionally, MLRMs were used to identify proteins associated with PGA or 

CRP Following the protocol for identifying significant confounders, linear models were 

constructed with protein abundance as the response variable, and either PGA or CRP along 

with any of the identified significant confounders, as the predictor variables. The linear 

models provided the p value of the coefficient for PGA or CRP Proteins were classified as 

correlated with PGA or CRP if they met two criteria: (1) an absolute Spearman’s ρ (or |ρ|) 

exceeding 0.4 and (2) a p<0.05 from the coefficient in the linear regression model.

Leave-one-patient-out cross-validation

The active versus inactive GCA classification scenario involves the same individuals at 

different disease stages. This scenario requires a cross-validation technique that controls 

for patient identity and ensures the model does not identify patient-specific variations 

rather than disease-related features. Therefore, classification accuracy between active and 

inactive GCA was assessed through ‘leave-one-patient-out’ cross-validation. In this method, 

patient-matched active and inactive GCA samples served as the test set (2 samples per 
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iteration) while the remaining samples formed the training set (58 samples per iteration). 

This process was iteratively applied across all unique patients. This approach effectively 

controls for intrasubject similarities by leveraging repeated measurements from the same 

patient, ensuring that the model’s performance is assessed on truly independent data points.

Feature selection using linear regression modelling

Feature selection was performed within each training fold of the cross-validation process 

prior to training a random forest classifier. This process involved constructing univariate 

linear regression models to identify the significance of the association between protein 

abundance and study group. The linear regression model treated protein abundance as 

the response variable and the study group as the predictor. Proteins were rank-ordered 

according to the product of their –log10(p value) and log2(fold-change) in descending order. 

The p value corresponds to the coefficient associated with the study group in the linear 

regression model; and the fold-change was defined as the ratio of mean abundance in GCA 

patients to that in controls, thus prioritising proteins with higher abundance in GCA for the 

top set of features. To examine how the number of input proteins affects the classifier’s 

performance, varying numbers of features (ranging from the top 10–250 significant proteins) 

were selected to be included in the model.

RESULTS

Participant characteristics

The study cohort included 30 patients with GCA and 30 age- matched/sex-matched/race-

matched non-disease controls. Of the 60 study participants, 76.7% (46 of 60) were female 

and the majority were white (table 1). For patients with GCA, the two visits were spaced 

an average of 123.2 days apart (figure 1A). Patients with active GCA had mean CRP levels 

and PGA scores of 3.2 mg/dL (SD=2.6) and 4.4 (SD=2.1), respectively (table 1). Patients 

in clinical remission had mean CRP levels and PGA scores of 0.5 mg/dL (SD=0.3) and 

0.0 (SD=0.0), respectively. Among 30 patients with active GCA, 24 (or 80%) were in the 

early disease course (ie, within 1 year of initial diagnosis) with a mean disease duration of 

7.6 months. Notably, 9 (or 30%) were confirmed to have LVV by angiogram or biopsy at 

baseline while the remaining 21 had cranial GCA. Table 1 and online supplemental table 

1 describe the study participants’ demographic and clinical characteristics, including race, 

smoking status (ie, smokers or non-smokers), body mass index and medication use.

Plasma proteome profiles differ between GCA groups and controls

Figure 1B displays a principal component analysis (PCA) plot of all 90 plasma proteome 

profiles (online supplemental table 2) projected onto the first two principal components 

(PC1 and PC2). By reducing the high dimensionality of the dataset, each PC, representing a 

linear combination of a set of proteins, captures a significant amount of variance in protein 

abundances. Specifically, PC1 and PC2 together account for 63.3% of the total variance 

in the dataset. Notably, the PCA plot shows a clear separation between the GCA groups 

(active and inactive) and controls along PC1 (p<0.05, Mann-Whitney U test). However, no 

significant difference was observed between the active and inactive GCA groups along either 

PC1 or PC2 (p≥0.05, Wilcoxon signed-rank test), suggesting that differences between these 
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disease states may be subtle and involve a relatively small set of proteins. As shown in 

figure 1C, the first PC was mainly driven by the study group (ie, active GCA, inactive GCA, 

controls) while the age of participants and prednisone use (by patients with GCA only) were 

also significantly associated with PC1 (p<0.05, univariate linear regression models).

Plasma protein differences in active and inactive GCA compared with controls

We identified a total of 537 plasma proteins that were significantly different between the 

active GCA group and controls (p<0.01, MLRM; figure 2A-C and online supplemental table 

3). Among these, 202 proteins, including CCL14, CD34, CD59, CD8A, IL17C, IL1RL1, 

IL5, IL31, MMP19 and TNFRSF1A (designations for all protein symbols are provided in 

online supplemental information), were more abundant in patients with active GCA than in 

controls. Notably, 7 of the 202 proteins (CD206, endostatin, IL-31, PRTN3, PTX3, TNF 

R1 and VCAM-1) had previously been reported to be more abundant in the blood of active 

GCA patients than controls (online supplemental table 4) while the rest are reported here 

for the first time using a much higher throughput assay. Conversely, 335 proteins, such as 

CDK2, IFNG, IFNL1, STAT3, S100A4 and S100A6, were less abundant in patients with 

active GCA. Between the nine LVV and 21 cranial GCA (CGCA) patients, only 32 proteins 

were found to be differentially abundant during the active disease state: 25 proteins were 

more abundant in LVV and 7 proteins were more abundant in CGCA (online supplemental 

table 5).

Our analysis also revealed 781 plasma proteins differentially abundant between patients 

of the inactive GCA group and controls (p<0.01, MLRM; figure 2A,B and D and online 

supplemental table 6). Of these, 331 proteins, including CCL1, CCL18, CCL23, CD14, 

CD8A, CXCL16, CXCL9, IL12RB1, IL18R1, IL18R1, IL36A, IL5, LILRB5, TLR1 and 

TNFRSF1B, were significantly higher in the inactive GCA group, while 450 proteins, 

including BCL2, CD2AP, CD38, CDK2, IFNG, IFNL1, IL2RG, STAT3, S100A4 and 

S100A6, were of lower abundance in inactive GCA. Notably, 73 of the 202 proteins that 

were more abundant in active GCA compared with controls, and 261 of the 335 proteins that 

were less abundant in active GCA compared with controls, remained so even in the inactive 

disease state (figure 2A,B). This suggests that certain blood proteins maintain altered levels 

even during remission of GCA.

To further address potential confounding effects of immunosuppressive medications, we 

performed an additional analysis restricted to the seven inactive subjects with GCA 

who were not taking any immunosuppressants (abatacept, leflunomide, methotrexate or 

prednisone) at the time of sample collection. We found 551 and 414 proteins that were 

significantly higher and lower, respectively, in patients in remission and off treatment (online 

supplemental table 7). Notably, 165 and 312 of these proteins displayed directional changes 

consistent with those observed in the analysis that included all inactive subjects with GCA 

(n=30). These overlapping proteins, despite arising from a smaller sample size comparison, 

may provide greater confidence in identifying truly differentially abundant proteins in 

patients in remission, as they are less likely to be confounded by treatment effects.

In addition to the differences observed between the GCA groups and controls, we identified 

10 plasma proteins that showed significant differences in abundance between the active 
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and inactive GCA groups (p<0.01, MeLRM; figure 2E and online supplemental table 8). 

Specifically, four proteins (APOA4, BCAN, P4HB and CCL11) significantly decreased 

on remission. In contrast, six proteins (PLOD3, IMPA1, NRN1L, TOM1, MMP12 and 

UCHL1) significantly increased in abundance when patients transitioned from active GCA 

to remission.

We performed an additional analysis focusing on patients who were taking 

immunosuppressive medications (abatacept, leflunomide, methotrexate or prednisone) at 

both their active disease and remission visits (n=18). Using the same statistical approach 

as previously described for all patients (n=30), we found nine proteins (activated protein 

C, CA056, CLC4G, CYTF, HMGN1, IGFBP-6, Met, protein C and TFPI) that were 

significantly higher and one protein (SOM2) that was significantly lower in patients with 

active GCA compared with those in remission (online supplemental table 9). Notably, none 

of these proteins overlapped with those identified in the analysis that included all subjects 

with GCA, despite adjusting for medication use in the statistical models. This finding 

underscores the complexity of disentangling disease activity from treatment effects and 

highlights the importance of considering medication status in blood proteomic studies in 

GCA.

Functional enrichment analysis of differentially abundant proteins

Having identified differentially abundant plasma proteins, we next investigated the 

biological processes associated with these proteins through gene ontology (GO) enrichment 

analysis. Using the DAVID online tool,16 we identified 193 significantly enriched (ie, over-

represented) GO terms associated with proteins higher in the active GCA group compared 

with controls (p<0.01, modified one-tailed Fisher’s exact test; online supplemental table 

10); and 357 GO terms enriched in proteins higher in the inactive GCA group (online 

supplemental table 11). Figure 3A,B illustrates the top 20 enriched biological processes for 

proteins more abundant in active and inactive GCA groups, respectively, compared with 

controls. Most of these enriched GO terms were found to be related to immune processes 

and inflammation, including ‘humoral immune response’, ‘response to bacterium’ and 

‘inflammatory response’. Altogether, plasma proteins enriched in immune functions were 

elevated in patients with active GCA and remained elevated even after patients achieved 

remission.

Additionally, we found a total of 432 (online supplemental table 12) and 578 (online 

supplemental table 13) enriched GO terms in proteins significantly lower in patients 

with active and inactive GCA compared with controls, respectively. Figure 3C,D displays 

the top 20 enriched biological processes for proteins less abundant in the active and 

inactive GCA groups compared with controls. Many of these GO terms were linked 

to metabolism, including ‘phosphorous metabolic process’, ‘carboxylic acid metabolic 

process’ and ‘nucleotide metabolic process’ and also to biological processes involved in 

cell signalling and biomolecular transport.
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Correlation of plasma proteins with PGA and CRP in patients with active GCA

To determine whether plasma proteins reflect disease activity in active GCA, we examined 

the correlation of their abundances with PGA. We found 16 proteins with significant 

correlations (|Spearman’s ρ|>0.4 and p<0.05 in MLRMs; figure 4A and online supplemental 

table 14): 5 (including IHGA1 and NUMBL) showed positive correlations with PGA while 

11 (including FAM171B, HS6ST2 and COLEC12) displayed negative correlations. Notably, 

only one protein (LAMA3) overlapped between the sets of proteins differentially abundant 

in active GCA versus controls and those correlating with PGA. These findings suggest that 

LAMA3 may serve as a potential biomarker for disease activity in GCA.

Next, to evaluate whether plasma proteins in active GCA reflect inflammatory conditions, 

we analysed the correlation of their abundances with CRP. We identified 21 proteins 

significantly correlated with CRP (|Spearman’s ρ|>0.4 and p<0.05 in MLRMs), with 10 

(including NGFR, RAB3D and RIPK2) and 11 (including FCRL4, KIR3DL1, PDGFC, 

PTP4A1 and PGAM2) exhibiting positive and negative correlations, respectively (figure 4B 

and online supplemental table 15). There was no overlap between the proteins significantly 

correlated with CRP and those differentially abundant in the active GCA versus control 

comparison. Moreover, no proteins overlapped between those correlated with either PGA or 

CRP and the proteins differentially abundant between active and inactive GCA states.

Plasma proteome profiles with machine learning distinguish patients with GCA from 
controls

For our final analysis, we developed two random forest classification models: one using 

plasma proteome profiles from patients with active GCA and controls; and the other using 

profiles from patients with inactive GCA and controls. These models were tasked with 

classifying participants as either active GCA versus controls; or inactive GCA versus 

controls. In 10-fold cross-validation, these approaches achieved a classification accuracy 

of 95.0% and 98.3% in distinguishing active and inactive GCA groups from controls, 

respectively (table 2). Moreover, the models achieved very high (≥90.0%) specificity, 

sensitivity, positive predictive value and negative predictive value, as detailed in table 2.

We next addressed the question of the minimal set of plasma proteins necessary to 

effectively differentiate between the GCA patient groups from controls. For this, we used 

linear regression models for feature selection within each fold of cross-validation (see 

the ‘Methods’ section). We conducted multiple instances of 10-fold cross-validation to 

thoroughly evaluate the impact of varying the size of the feature set (of the most significant 

proteins) on model performance. We found that classification accuracy remained relatively 

stable across a wide range of feature set sizes (figure 5). Interestingly, as few as 10 plasma 

proteins were sufficient to distinguish active and inactive GCA groups from controls with 

accuracies of approximately 95.0% and 98.3%, respectively.

Finally, we investigated the potential of machine learning to classify patients as either having 

active or inactive GCA based on their plasma proteome profiles. This classification was 

performed using a ‘leave-one-patient-out’ cross-validation strategy, which accounts for the 

presence of multiple plasma samples from different visits for the same patient (see the 
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‘Methods’ section). Using this approach, the accuracy of distinguishing between active and 

inactive GCA based on plasma proteome profiles was 51.7% (table 2).

DISCUSSION

While several studies have identified key inflammatory molecules as potential biomarkers 

for GCA,3-5 the exploration of the blood proteome could provide additional options for 

disease assessment. Furthermore, the distinction between plasma protein profiles of patients 

with GCA while active and in remission, compared with control groups, remains largely 

unknown. In the current study, we performed proteomic profiling of plasma from patients 

with GCA enrolled in a prospective longitudinal cohort study, and non-disease controls, 

to identify signature proteins and their associated functions. Our study design uses a 

longitudinal approach, following the same patients over two time points as their disease 

activity transitions from active to inactive. This within-patient design offers advantages in 

controlling for certain confounding factors, especially individual genetic variations. We also 

identified proteins linked to PGA and CRP in active GCA. Additionally, we present a proof-

of-concept machine-learning strategy that could potentially enhance diagnostic accuracy 

for GCA. Promisingly, our random forest-based machine-learning models were able to 

distinguish active GCA from controls, and inactive GCA from controls, with a classification 

accuracy exceeding 90%, even when limited to a small number of proteins. We share the 

plasma proteome profiles from our study (online supplemental table 2) with the scientific 

community to encourage further research into GCA.

Our study identified immune response proteins that are common to both active and inactive 

GCA, as well as those that differ between these states. We observed that 23 immune 

response proteins, including B2M, C9, CD8A, LBP IL5 and TRIL, were more abundantly 

present in both active and inactive GCA compared with controls. (Designations for all 

protein symbols are provided in online supplemental information). However, we identified 

28 immune response proteins (eg, C8G, CCL14, CFD, CD59, IL1RL1 and PDCD1) that 

were exclusively more abundant in active GCA (but not in inactive GCA) relative to 

controls. Interestingly, our analysis revealed that certain coinhibitory receptors that regulate 

T cell activation, specifically PDCD1,17 were more abundant only in active GCA. The 

PDCD1 gene was reported to be highly expressed in the arteries of patients with untreated 

GCA, whereas its expression was nearly absent in healthy vessels.18 This could potentially 

align with our observation that plasma PDCD1 exhibits higher abundance in active GCA 

(but not in inactive GCA) compared with controls, potentially reflecting abnormal immune 

cell activity within the arteries affected by GCA.

Our analysis revealed a higher number of proteins differentiating inactive GCA from 

controls compared with active GCA. This unexpected finding warrants further investigation. 

One potential explanation lies in our study design. We used a much larger feature 

space, encompassing a wider range of proteins than previous studies that often focus on 

inflammatory panels. This broader approach might be more sensitive to subtle proteomic 

changes associated with inactive GCA. For example, we identified 51 immune response 

proteins (eg, CCL3, CFB, CXCL3, CXCL9, CCL23, HLA-G and IL18R1) that were 

exclusively elevated in inactive GCA (compared with both active GCA and controls). 
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Intriguingly, these proteins differentiating inactive GCA could point towards previously 

unexplored areas of human physiology, which were potentially influenced by medications, 

the time elapsed since the active state or other factors. Notably, complement proteins 

unique to inactive GCA are components of pathways that are upstream and downstream 

of complement activation, including classic and lectin pathways (C1RL, C1S, C2 and 

C4BPA), regulatory proteins (CR1, CFI and CLU), the alternative pathway (CFB, CFHR1 

and CFHR5) and the terminal complement cascade (C5 and C6). Conversely, complement 

proteins unique to active GCA were related to lectin pathway (MASP1), alternative pathway 

(CFD), regulatory protein (CD59) and terminal complement cascade (C8G). Of note, both 

C3 and C9 were higher in active GCA and inactive GCA compared with controls. Although 

we found a higher number of complement proteins involved in inactive GCA, further 

investigation is necessary to address whether the different landscape of complement proteins 

between active and inactive GCA is mainly a consequence of treatment19 or a unique 

characteristic of the inactive state of GCA.

We identified a substantial number of plasma proteins associated with GCA in both active 

(537 proteins) and inactive states (781 proteins) compared with controls. However, a 

direct comparison between active and inactive GCA revealed only 10 proteins showing 

significant differences. Within this small set, a notable finding was matrix metallopeptidase 

12 (MMP12), which may hold potential in distinguishing inactive GCA from active 

GCA. We observed a higher abundance of MMP12 in inactive GCA compared with 

both controls (p=0.010) and active GCA (p=0.003), whereas its levels in active GCA 

did not significantly differ from controls. This specific association of MMP12 with 

inactive GCA is a novel discovery, contrasting with previous research which did 

not identify MMP12 gene expression in ascending aortic tissues as a distinguishing 

factor between inflammatory aneurysms (including GCA and clinically isolated aortitis) 

and noninflammatory aneurysms.20 Similarly, monocytes/macrophages in blood did not 

exhibit gene expression differences in MMP12 between patients with GCA and healthy 

individuals.21 Our results, therefore, suggest that the plasma protein MMP12 may warrant 

experimental validation as an indicator of the remission state of GCA.

We acknowledge several limitations of our study that could influence the scope and 

applicability of our results. First and foremost, the patients who participated in this study 

were not treatment-naïve. As the rapid systemic effects of glucocorticoids can impact the 

plasma proteome profile, disease state comparisons should ideally be conducted on patients 

who have not undergone therapy. Furthermore, the remaining effects of prior treatments 

and the different nature of GCA relapses compared with GCA at first presentation need 

further investigation. However, enrolling untreated patients in our longitudinal database is 

logistically challenging because suspected GCA patients require immediate treatment to 

prevent complications such as blindness, even before a confirmed diagnosis. Additionally, 

only patients with a confirmed diagnosis were enrolled on the longitudinal VCRC study 

to ensure accurate disease characterisation. Second, while we used cross-validation to 

assess the performance of our random forest classifiers, the ideal scenario would involve 

testing the classifiers on an external set to validate the generalisability and robustness 

of our classification model. Third, the modest sample size curtails our ability to fully 

encapsulate the diversity of patients with GCA. A larger and more heterogeneous cohort 
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size would allow for a broader characterisation of the GCA patient population. Fourth, 

potential confounding factors may have influenced our results, such as geographical or 

cultural biases specific to our cohorts. The inclusion of predominantly white participants 

from the Midwest region of the USA narrows the generalisability of our findings. Fifth, we 

chose not to use multiple hypothesis correction methods on our nominal p values because 

we observed a large loss of significant results after applying the Benjamini-Hochberg 

correction procedure. The resulting absence may reflect the lack of stark differences in 

blood proteins between study groups; the modest sample size of our exploratory pilot study; 

the high dimensionality of the number of proteins being tested (many of which will not 

be relevant to autoimmune disease); and the lack of independence among individual tests 

(a key assumption in the Bonferroni and Benjamini-Hochberg procedures). Although we 

acknowledge that multiple hypothesis correction is crucial for reducing false positives, we 

opted to avoid possibly overlooking true (yet subtle) differences. Instead, we took steps 

to minimise potential confounders by carefully selecting our cohorts and adjusting for 

demographic and medication effects in our statistical models. Sixth, while validating the 

elevated plasma proteins in GCA would significantly strengthen our work, the experimental 

confirmation of our key findings falls outside the scope of this investigation. Our primary 

focus was to establish ‘molecular signatures’,22 or algorithm-based, multiplex biomarkers, 

in GCA using comprehensive plasma proteome profiling and machine-learning. Validation 

using common bench techniques (eg, ELISA) would be necessary to make specific claims 

about individual proteins (eg, identifying novel disease mechanisms or a single definitive 

clinical marker); however, this is not aligned with our study’s broad, high-throughput 

approach to identify disease-specific, proteomic patterns which could later be developed 

into a blood proteomic panel for GCA. Additionally, while both SomaLogic’s platform and 

ELISA measure protein abundance, they use fundamentally different methodologies, leading 

to challenges in directly comparing results. Seventh, our study lacks a disease control 

group, hindering the differentiation of GCA from non-GCA inflammatory conditions. 

Future studies will aim to identify blood proteins for distinguishing GCA from other 

inflammatory mimics. Eighth, the low classification accuracy in distinguishing between 

active and inactive GCA suggests that the complexity and subtlety of proteomic changes in 

GCA may require more sophisticated machine-learning methods or the integration of other 

omics technologies to improve classification performance. Last, our analysis was conducted 

without comprehensive data on comorbid conditions within our patient cohort, including 

prevalent conditions in older adults such as type 2 diabetes and cardiovascular disease. This 

omission limits our ability to fully understand how these comorbidities may have influenced 

the plasma proteomic landscape in GCA.

Despite its limitations, this investigation reflects ongoing efforts to comprehensively 

characterise the blood proteome of patients with GCA. We anticipate that the exploration of 

GCA proteomic signatures and their validation in larger patient cohorts holds significant 

promise for deepening our understanding of the disease, developing new diagnostic 

approaches and identifying new therapeutic targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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WHAT IS ALREADY KNOWN ON THIS TOPIC

• Acute phase inflammatory response markers such as C reactive protein (CRP) 

and erythrocyte sedimentation rate have been used to evaluate patients with 

giant cell arteritis (GCA) for both diagnosis and disease monitoring, although 

with limited specificity. Blood proteins have emerged as a potential source of 

novel biomarkers for GCA.

WHAT THIS STUDY ADDS

• This study provides an extensive examination of plasma proteins in both 

active and inactive GCA compared with non-disease individuals.We identified 

plasma proteins newly associated with GCA, as well as those correlated with 

disease activity and blood CRP levels. Additionally, we identified a machine-

learning strategy that uses plasma proteome profiles to differentiate patients 

with GCA from controls with high sensitivity and specificity.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

• This study used plasma proteome profiling as a promising approach for 

multiplex biomarker discovery in GCA. The findings support the need for 

further validation in larger patient cohorts and with disease controls to 

solidify its clinical applicability.
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Figure 1. 
Analysis of plasma proteome profiles in patients with giant cell arteritis (GCA) and controls. 

(A) Study design overview: Plasma samples were collected from patients with GCA in two 

instances: during an active disease state (active GCA group, n=30) and while in clinical 

remission (inactive GCA group, n=30). Concurrently, plasma samples from controls (n=30) 

were also collected. Proteome profiling of 7289 proteins in all 90 samples was performed 

using the SomaScan Assay version 4 (SomaLogic), and these profiles were subsequently 

used in downstream statistical analyses. (B) Principal component analysis (PCA) on the 

plasma proteome profiles, where each point on the scatter plot represents an individual 

sample. Box-and-whisker plots displayed on the top and to the right of the plot represent 

the distribution of principal component 1 (PC1) and principal component 2 (PC2) values, 

respectively. (C) Clinical and demographic factors associated with PC1 values. Bar height 

represents the –log10 transformation of the p value of the association, with the significance 

threshold indicated in blue (p=0.05). Additionally, the size of the data points on the plot 
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corresponds to the R2 value from each linear regression model. BMI, body mass index; 

PGA, physician global assessment; CRP, C reactive protein.
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Figure 2. 
Differentially abundant plasma proteins between study groups. (A, B) Of the 7289 measured 

plasma proteins, 984 showed differential abundance between GCA groups (ie, active or 

inactive GCA) and controls. In active GCA, the abundance of 202 and 335 proteins were 

higher and lower compared with controls, respectively. Conversely, in inactive GCA, the 

abundance of 331 and 450 proteins were higher and lower than in controls, respectively. 

Heatmaps showing the Z-score-normalised relative fluorescence unit (RFU) abundances of 

differentially abundant proteins between (C) active GCA and controls (537 proteins); (D) 

inactive GCA and controls (781 proteins) and (E) active and inactive GCA (10 proteins). 

In each heatmap, the columns represent study participants while the rows correspond to 

proteins. Demographic variables (BMI, age, smoking status, and sex) of each study subject 

are shown at the top of each heatmap. BMI, body mass index; GCA, giant cell arteritis.
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Figure 3. 
Gene ontology (GO) enrichment analysis of differentially abundant plasma proteins in giant 

cell arteritis. (A, B) Top 20 enriched GO biological processes of proteins with significantly 

higher abundance in active (or inactive) GCA compared with controls. Proteins with higher 

abundance in either GCA group are mostly linked to immune processes. (C, D) Top 20 

enriched biological processes of proteins with significantly lower abundance in active (or 

inactive) GCA than in controls. Most of these proteins were enriched in functions related 

to metabolism, cell signalling and transport. GO biological processes (located to the left 

of each bar graph) are arranged in descending order based on significance, represented by 

the –log10 of the p values obtained from a modified one-tailed Fisher’s exact test. Longer 

bars indicate greater significance while shading illustrates fold-enrichment. GCA, giant cell 

arteritis.
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Figure 4. 
Plasma protein correlations with physician global assessment (PGA) and C reactive protein 

(CRP) in patients with active giant cell arteritis. (A) Five proteins displayed positive 

correlations with PGA scores (Spearman’s ρ>0.4 and p<0.05 in MLRMs), whereas 11 

proteins exhibited negative correlations (Spearman’s ρ<−0.4 and p<0.05 in MLRMs). (B) 

10 proteins were positively correlated with blood CRP levels (measured in mg/dL) while 11 

proteins showed negative correlations. MLRMs, multiple linear regression models.
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Figure 5. 
Classification accuracy of random forest classifiers with varying sizes of input feature 

sets. Pink bars indicate the accuracy in classifying active giant cell arteritis (GCA) versus 

controls, and grey represent accuracy in classifying inactive GCA versus controls. This 

process involved preselecting a specified number of input plasma protein features. Different 

numbers of top-selected features were chosen in each training set fold, ranging from 10 to 

250. These selected features were then applied in a random forest classifier, with accuracy 

assessed on the test set across all ten folds of cross-validation.
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Table 1

Demographic and clinical characteristics of study participants

Characteristic
Active GCA
(n=30)

Inactive GCA
(n=30)

Non-disease
controls (n=30)

Age (years)

 Mean±SD 70.5±9.3 70.9±9.3 70.0±7.8

 IQR† (Q1, Q3) (63.7, 77.2) (64.1, 70.9) (65.3, 72.8)

Sex

 Female, n (%) 23 (76.7) 23 (76.7) 23 (76.7)

 Male, n (%) 7 (23.3) 7 (23.3) 7 (23.3)

Race

 White, n (%) 29 (96.7) 29 (96.7) 30 (100.0)

 Asian, n (%) 1 (3.3) 1 (3.3) 0 (0.0)

Smokers, n (%) 17 (56.7) 17 (56.7) 10 (33.3)

 Unknown, n 0 0 1

Body mass index

 Mean±SD 27.2±5.6 27.6±6.0 24.2±5.2

 IQR (Q1, Q3) (23.1, 31.0) (22.7, 31.1) (20.6, 27.5)

 Unknown, n 4 5 1

C reactive protein (mg/dL)

 Mean±SD 3.2±2.6 0.5±0.3 N/A

 IQR (Q1, Q3) (1.4, 3.7) (0.3, 0.8)

Disease stage in active GCA group

 Early disease course§, n (%) 24 (80)

 Disease duration (months) N/A N/A

  Mean±SD 7.6±11.9

  IQR (Q1, Q3) (0.4, 10.8)

 Flare history, n (%) 9 (27.3)

Physician global assessment

 Mean±SD 4.4±2.1 0.0±0.0 N/A

Treatment

 Prednisone, n (%) 22 (73.3) 21 (70.0) N/A

 Prednisone dose (mg/day)

  Median 10 10

  IQR (2.75–26) (8.75–10.0)

  Unknown, n 11 9

 Aspirin/clopidogrel, n (%) 19 (63.3) 17 (56.7)

 Aspirin low dose (mg/day) 325.0 325.0

 Abatacept/lefluomide/ methotrexate, n (%) 5 (16.7) 9 (30.0)

 Statin, n (%) 4 (13.3) 5 (16.7)
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Characteristic
Active GCA
(n=30)

Inactive GCA
(n=30)

Non-disease
controls (n=30)

 Oestrogen, n (%) 1 (3.3) 0 (0.0)

†
IQR, interquartile range.

§
Within 1 year of initial GCA diagnosis.

GCA, giant cell arteritis; N/A, not applicable.
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