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A B S T R A C T

Objectives: This study aims to analyse the geographical co-occurrence of cancers and their individual and shared 
risk factors in a highly deprived area of the North West of England to aid the identification of potential 
interventions.
Study design: An ecological study design was employed and applied at postcode sector level in the Morecambe 
Bay region.
Methods: A novel spatial joint modelling framework designed to account for large frequencies of left-censored 
cancer data was employed. Nine cancer types (breast, colorectal, gynaecology, haematology, head and neck, 
lung, skin, upper gastrointestinal, urology) alongside demographic, behavioural factors and socio-economic 
variables were included in the model. Explanatory factors were selected by employing an accelerated failure 
model with lognormal distribution. Post-processing included principal components analysis and hierarchical 
clustering to delineate geographic areas with similar spatial risk patterns of different cancer types.
Results: 15,506 cancers were diagnosed from 2017 to 2022, with the highest incidence in skin, breast and urology 
cancers. Factors such as age, ethnicity, frailty and comorbidities were associated with cancer risk for most of the 
cancer types. A positive geographical association was found mostly between the colorectal, haematology, upper 
GI, urology and head and neck cancer types. That is, these cancers had their largest risk in the same areas, 
similarly to their lowest risk values. The spatial distribution of the risk and cumulative risk of the cancer types 
revealed regional variations, with five clusters identified based on cancer type risk, demographic and socio- 
economic characteristics. Rural areas were the least affected by cancer and the urban area of Barrow-in- 
Furness was the area with the highest cancer risk, three times greater than the risk in the surrounding rural areas.
Conclusions: This study emphasizes the utility of joint disease mapping by geographically identifying common or 
shared factors that, if targeted, could lead to reduced risk of multiple cancers simultaneously. The findings 
suggest the need for tailored public health interventions, considering specific risk factors and socio-economic 
disparities. Policymakers can utilize the spatial patterns identified to allocate resources effectively and imple-
ment targeted cancer prevention programmes.

1. Introduction

Geographic mapping of disease is an essential public health tool. It 
can be used to identify spatial patterns of disease risk, incidence, 

prevalence and survival as well as differences in disease diagnosis, 
burden and mortality across one or more regions [1]. Moreover, maps 
can be used for prevention and control programmes, prioritisation of 
intervention and services management, for example, by targeting high 
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risk communities, but also to investigate the aetiology of a disease [2].
The advantages of disease mapping can be enhanced by employing 

syndemic frameworks where multiple diseases within a population that 
share common risk factors are modelled and mapped jointly [1]. A 
geographic syndemic framework is composed of two or more 
geographically co-occurring diseases that interact with each other and 
the environment (in the ecological sense) [3]. This framework requires 
shared risk factors or common components such as those defining the 
spatial variation of the diseases, and allows other risk factors or com-
ponents to exist at the individual disease level (further details on syn-
demic joint modelling frameworks are provided in Supplementary 
Information S1).

Providing accurate and advanced public health tools and informa-
tion to tackle cancer morbidity and mortality are particularly needed in 
the areas at most risk for cancer occurrence. The North West of England 
is one of these areas. Historically, in the scientific literature, the North 
West has been identified as one of the regions most affected by cancer in 
England (Supplementary Information S2). Within the North West, 
Morecambe Bay and South Cumbria, the focus of the present study, have 
been recognized as priority areas for public health initiatives due to poor 
health outcomes for some portions of their populations. Morecambe, a 
town of almost 33,000 inhabitants within the Morecambe Bay and South 
Cumbria area, was a case study in a recent report on coastal towns [4]. 
The research found that 20 % of people smoke in Morecambe (16.6 % 
nationally). Further, residents have high rates of hospital admission for 
alcohol-related harm, and are more likely to have hypertension or 
depression than the national average, with a quarter having a limiting, 
long-term illness or disability, significantly greater than the national 
average. In addition, Morecambe has worse values for all emergency 
hospital admission indicators, and higher standardised mortality ratios 
for all ages. According to the same study, rates for lung cancer, pe-
ripheral artery disease, COPD, dementia, stroke, coronary heart disease, 
kidney disease, epilepsy and diabetes are greater than the national av-
erages. Finally, deprivation rates are significantly worse than the En-
gland average.

Given the above context, the research questions that we aimed to 
answer were. 

(i) What are the most important cancers, in terms of incidence, in the 
Morecambe Bay region?

(ii) What are the most prevalent risk factors?
(iii) How do cancers cluster geographically and associate to each 

other?
(iv) How can the identification of risk from geographically co- 

occurrent cancers inform cancer interventions?

To answer these questions, we applied an ecological study design and 
geospatial methods to analyse cancer incidence from the Morecambe 
Bay Region for the 2017–2022 period.

2. Methods

2.1. Study area

The study area is Morecambe Bay in the North West of England. The 
Morecambe Bay study area was defined using the limits of the Mor-
ecambe Bay ex Clinical Commissioning Group (CCG, Fig. 1, red border) 
to simplify data acquisition and homogenisation. CCGs formed the 
lowest level of the health geography hierarchy in England which was 
introduced by the Health and Social Care Act 2012, but abolished by the 
Health and Care Act 2022 (hence, use of the prefix ‘ex’). Since patients 
were recruited from a larger region (Fig. 1, black border), the study area 
was extended to include these patients.

In 2012, Morecambe Bay ex CCG had a population of 334,287. The 
Index of Multiple Deprivation of 2019 ranked Morecambe Bay as CCG 
99th out of 191, but 53rd for its proportion of Lower Super Output Areas 
(LSOAs) in the 10 % most deprived LSOAs in England (https://www. 
gov.uk/government/statistics/english-indices-of-deprivation-2019). A 
lower super output area typically contains between 400 and 1200 
households and a resident population of between 1000 and 3000 resi-
dents (https://www.ons.gov.uk/methodology/geography/ukgeograph 
ies/censusgeographies/census2021geographies).

The age distribution of Morecambe Bay ex CCG is reported in Sup-
plementary Fig. S1.

Fig. 1. Morecambe Bay ex CCG (red border) and study area (black border). Basemap from openstreetmap under the Open Database licence (https://www.openstree 
tmap.org/copyright), Microsoft, Facebook Inc and its affiliates, and Esri Community Maps contributors. Map layer by Esri. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.)
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2.2. Study design and data collection

An ecological study design was used for this research. The primary 
outcome is the 6-months new cancer diagnosis count by cancer type 
from January 2017 to December 2022 (for a total of 12 temporal mea-
surements). The data were extracted in August 2023. The geographic 
unit of analysis is the postcode sector which includes the first part of the 
postcode (postcode district or outward code), the single space, and the 
first character of the second part of the postcode (inward code) (https 
://www.ons.gov.uk/methodology/geography/ukgeographies/postalge 
ography), for a total of 75 postcode sectors. The same data were also 
provided at Local Authority district level, for a total of 13 districts. The 
data were provided by the University Hospitals of Morecambe Bay Trust 
for the Morecambe Bay ex CCG extended study area (Fig. 1). The pa-
tients included were those that were referred to the trust through the 
Somerset Cancer Registry (SCR), maintained at the Taunton and Som-
erset NHS Foundation Trust, Crown Industrial Estate, Taunton, Somer-
set, UK (https://www.somersetft.nhs.uk/somerset-cancer-register/).

Cancers were classified into different types by their anatomic loca-
tion (site) [5]. Nine cancer types were considered in this study: lung, 
skin, breast, colorectal, haematology, upper gastrointestinal (upper GI), 
urology, head and neck and gynaecology (a brief overview on these 
cancers is provided in Supplementary Information S3). Sarcoma, brain 
and central nervous system cancers were excluded because they were 
fully censored, and imputation of values was not possible with the sta-
tistical model used here. The ICD10 Codes used to identify each cancer 
by its tumour site are reported in Supplementary Table S1.

2.3. Censored cancers

The postcode sector and Local Authority district count data used 
here, of cancer new diagnosis by type, were censored, with values less 
than or equal to 5 but greater than 0 replaced by the words ‘less than or 
equal to 5’, for confidentiality reasons. Therefore, the number of people 
with a specific cancer type was known in each postcode sector and local 
authority and set to a range when below or equal to 5 and greater than 0, 
to remove patients’ identifiability. The level of censoring for each cancer 
type is provided in Supplementary Table S2. Censoring was reduced by 
integration of postcode sector and Local Authority data, as described in 
Supplementary Information S4. The remaining censored locations were 
inputted during the inferential process by making statistical assumptions 
on the distribution of the missing data (see Inference and prediction 
section below).

2.4. Exposure and predictor variables

Demographic, socio-economic and behavioural factors aggregated 
by postcode sector and provided as counts of patients by cancer type 
were obtained from the University Hospital of Morecambe Bay Trust. 
Additional variables from public datasets and available at postcode (i.e. 
crime), Local Authority (i.e. UK Census 2011) and LSOA (i.e. the Place- 
Based Longitudinal Data resource) were geographically merged with the 
cancer dataset. The full list of the 783 variables included in the analyses 
is available in Supplementary Table S3, and additional information 
about them is provided in Supplementary Information S5. We do not 
assume causation between any of these 783 variables and cancer types, 
but rather evaluate associations that are significant for mapping the 
individual and joint cancer risk. All the variables considered in this 
analysis have been linked to deprivation and/or cancers by other studies 
(e.g. Ref. [6]). In addition, we decided to use granular, fine ethnicity 
groups to account for potential differences in risk factor prevalence 
among ethnic minority groups that can be informative for targeted in-
terventions [7].

2.5. Descriptive statistics

Due to the high proportion of censoring in the cancer data, it was not 
possible to provide statistics to describe the demographic (age, sex, 
ethnicity), socio-economic and clinical characteristics (comorbidities 
and frailty) of the real study population. Post-analyses statistics were 
provided as crude cancer rates by cancer type, and age-adjusted rates 
(age-specific incidence rate) averaged by postcode sector and 6 months 
period. We considered two age groups, 0–50 and 50+ because the level 
of censoring did not support creating multiple age thresholds. A single 
age threshold was used in other cancer research [8,9]. The standard 
errors of the incidence and age-adjusted incidence rates were calculated 
using the Poisson approximation method [10].

2.6. Variable selection

Using a Bayesian joint model for variables selection would have 
required exceptionally lengthy computations. For example, a single 
model with 20 predictors and 10,000 MCMC iterations requires around 
200 h of computation. During variable selection, thousands of models 
need to be tested with different numbers of variables (potentially 
modelling all 783 variables) and this would have caused millions of 
hours of computation using a Xubuntu system 16GiB system memory, 
and Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz. For this reason, we 
employed a deterministic method that can account for censored and 
clustered data within the entire cancer dataset. The stepwise selection 
method applied to an accelerated failure model with lognormal distri-
bution [11] is described in Supplementary Information S5.

2.7. Inference and prediction

The joint modelling of two or more cancers allows the identification 
of shared and divergent trends among the cancers in terms of geographic 
patterns and risk factors. Rather than treating a cancer as a proxy for 
unmeasured risk factors affecting another cancer, the proposed model 
treats the different cancer types symmetrically and assumes that the 
area-specific relative risks of each cancer depend on a shared latent 
component plus additional latent components specific to one or other 
cancer types [12,13]. The joint model employed in this study is, thus the 
shared component model [14] for Poisson distributed data. The shared 
component is represented by the spatial covariance (i.e. a function 
representing the variation in the cancer types in space) which is assumed 
to vary independently from the risk factors considered in the model. 
During the maximum likelihood estimation process the joint model in-
puts values to the censored records within the estimated censored ranges 
(which can differ among postcode sectors, see Supplementary Table S2) 
and observed cancer counts are modelled simultaneously with the 
censored data. A full description of the model is provided in Supple-
mentary Information S6.

Inference and predictions were made at the LSOA level. The outcome 
variables were the nine censored cancers and the predictors were the 
selected important variables that represent the frequency of that con-
dition or characteristic in the cancer diagnosis in each LSOA unit. The 
joint modelling outputs mapped at LSOA level were. 

1) cancer risk by type for all ages, over 50 years old and 50 years old or 
under;

2) cancer cumulative risk by number of cancers for all ages;
3) geographical correlation (co-regionalisation) between pairs of can-

cer types;
4) geographic clusters of cancers.

All the outcomes are given in terms of model posterior means [15]. 
Uncertainty is represented by the posterior standard deviation of the 
outcome or parameter of interest, with smaller values indicating greater 
certainty in the inference of the parameter or the prediction of the 
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outcome. To facilitate comparisons, all maps are shown on the same 
scale [16]. Finally, we conducted a mediational analysis [17] to examine 
the effects of including each of the potential mediating variables in the 
individual-level cancer type generalised linear models on the odds ratios 
associated to each selected variable.

2.8. Model performance and validation

Model performance was assessed for each individual cancer type 
through the mean error and mean squared error difference between the 
observed and predicted outcomes. To account for the complex param-
eterisation of the joint model and to evaluate the global and individual 
(i.e. the individual models for each cancer type of the joint model) 
predictive accuracy we used two information criteria: Deviance Infor-
mation Criterion (DIC) and Watanabe-Akaike Information Criterion 
(WAIC). Both measures are designed for Bayesian analyses. However, 
the WAIC averages over the posterior distribution rather than condi-
tioning on a point estimate as in the DIC [18]. The WAIC often produces 
values with small differences between models with similar structure. 
Therefore, we decided to report both the WAIC and DIC estimates to 
provide evidence of consensus between the two statistics.

The joint model was compared with nine independent (one for each 
cancer type) spatial linear models optimised via stochastic approxima-
tion of the expectation-maximization algorithm (SAEM) as proposed in 
Ref. [19]. We used the same variables employed in the joint model as 
predictors. The spatial covariance function for each model (or cancer 
type) was estimated through manual fitting [20]. To evaluate the pre-
dictive capability of the independent spatial linear models, we compared 
the errors between the predicted and real total counts of each cancer 
type.

Finally, the robustness of the joint model was assessed using cross- 
validation, by leaving out 10 % of the data for each cancer type. Vali-
dation assessment was undertaken by measuring the Root Mean Square 
Error and the Mean Squared Deviation Ratio [21].

2.9. Clustering

Principal components analysis (PCA) was used to identify co- 
regionalisation between cancers and geographic cancer clusters. PCA 
was employed on the posterior predictions of the latent variable for each 
cancer type. Based on the first two principal components (explaining the 
greatest variability) a centroid hierarchical cluster analysis [22] was 
employed to cluster the LSOAs based on similarity of the cancer 
patterns.

2.10. Software

All the analyses were performed in the R-cran software [23] using 
various packages and the authors’ written codes for model inference, 
predictions, and mapping.

3. Results

Between January 1, 2017 and December 31, 2022, the University 
Hospitals of Morecambe Bay Trust recorded 15,506 cancer diagnoses in 
the Morecambe Bay ex CCG extended area. There were 4599 skin, 2450 
urology, 2076 breast, 1606 colorectal, 1535 lung, 1039 upper GI, 992 
haematology, 670 gynaecology, and 539 head and neck cancers 
(Supplementary Table S4). Male breast cancer was 0.7 % of the breast 
cancer total. Our model predictions were accurate with 15,243 esti-
mated cancers (an error of 1.7 %) (Supplementary Table S4). However, 
the accuracy was reduced for upper GI (9.2 % underestimation) and, to a 
lesser extent, relatively high for lung cancer (2.3 % overestimation). 
Rates for breast, colorectal, haematology and urology cancers were 
larger in Morecambe Bay ex CCG extended area than in the North West 
and England as a whole (Supplementary Table S4).

As expected, all cancer types had a larger value of incidence in the 
over 50 years old group compared to the 50 years old and under group, 
with around a 20-fold difference for lung and upper GI; around 15-fold 
for skin and urology; and 11-fold for colorectal cancers. The largest 
incidence was in skin cancer, followed by urology, breast, colorectal and 
lung (all above 1 new case per 1000 people per postcode sector every 6- 
months) (Supplementary Table S5). Geographically, four postcode sec-
tors experienced all 12 cancer types between 2017 and 2022; 72 % of 
postcode sectors had at least 10 cancer types during the same period 
(Supplementary Table S6).

Variable selection reduced the initial 783 variables to 23. These 
variables can be grouped into four domains: demographic (age, frailty, 
ethnicity and comorbidities), behavioural (smoking status), socio- 
economic (employment) and time. Despite the absence of the gender 
variable and excluding time, all the remaining domains are commonly 
associated with incident diagnoses of cancer [24]. Summary statistics 
for these 22 variables (time excluded) are provided in Supplementary 
Table S7.

Seventeen out of 23 factors were risk factors for one or more cancer 
types, with comorbidities such as ‘chronic kidney disease’ and 
‘COVID19’ being statistically significant factors for six out of nine cancer 
types – associated to higher risk of diagnoses for five and four cancer 
types, respectively (Table 1). ‘Age above 80’, ‘depression’ and ‘conges-
tive heart failure’ were risk factors and protective factors for the same 
number of cancer types; while being ‘fit’ or ‘self employed with one 
parent working’ or ‘northern Irish’ were mostly protective factors.

The odds ratios and relative credible intervals of the statistically 
significant variables for each cancer type are provided in Supplementary 
Information S7 and further results and analyses in Supplementary In-
formation S8. Credible intervals obtained from Bayesian frameworks 
account for the uncertainty originating from zero-inflated variables and 
their lack of statistical power, in addition to uncertainty deriving from 
model priors and parameterisation [25]. As described in Supplementary 
Information S8, it is likely that some associations are proxies for per-
sonal or areal-related risk factors not captured in this analysis. For 
example, the association between ‘any other black background’ and skin 
cancer is likely to represent the characteristics of areas where this group 
lives than a larger incidence of skin cancer in this minority group [26].

Risk and co-regionalisation maps are shown in Supplementary In-
formation S9 and S10. Guidance on interpretation of these maps is 
provided in Supplementary Information S12. In Supplementary Infor-
mation S9, the maps for risk of a cancer type in the Morecambe Bay ex 
CCG extended study area and more specifically for three regions (Mor-
ecambe and Lancaster, Barrow in Furness and Kendal) are presented 
alongside their uncertainties. In these maps, areas indicated with low 
uncertainty risk are those for which the prediction is more accurate. 
LSOAs without colour are those where cancers were not recorded during 
2017–2022. For all cancer types, the North Cumbria and Forest of 
Bowland areas were generally at low risk, apart from Bentham (in the 
latter) although this area was associated with large uncertainty. Locally, 
Morecambe and Barrow-in-Furness suffer the highest incidence of can-
cers, especially in areas such as Vickerstown (Barrow) and Torrisholme 
(Morecambe), which had all cancer types in the top ten of the areas 
ranked risks.

When adjusted by age (Supplementary Information S10), one LSOA 
(located in Westgate/White Lund in Morecambe) was in the top ten 
LSOAs for the risk of six of the cancer types in the under 50 years old 
group. For the over 50 years old group, two LSOA areas were consis-
tently in the top ten LSOAs for the risk of nine cancer types: Bowerham 
south and Freehold West in Lancaster.

Fig. 2 presents the cumulative risk for the number of cancer types, 
with the maximum found in urban areas. Areas such as the Forest of 
Bowland, Yorkshire borders and Windermere West exhibit the presence 
of most cancer types, but with low cumulative risk (less than or equal to 
10 % or, in lay terms, one in ten people was likely to get one of the nine 
cancer types during the 2017–2022 period). With the same number of 
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cancer types, some areas in Morecambe, Lancaster and Barrow-in- 
Furness had up to six times more cumulative risk than Windemere 
West, Burton in Lonsdale or Quernmore.

In terms of co-regionalisation, lung and skin cancer types were 
negatively correlated (spatial patterns not coincident) between them-
selves and between each of them and the rest of the cancer types (Fig. 3). 
Apart from the negative associations with the lung and skin cancer 
types, breast cancer had no significant associations with any other 
cancer type. A positive association was mostly found between the 
colorectal, haematology, upper GI, urology and head and neck cancer 
types.

Spatially, most of the associations were homogeneous over the re-
gion, but not all. For example, between the colorectal, haematology, 
head and neck, gynaecology, upper GI and urology cancer types some 
areas exhibited no association (e.g. Windemere), while being contiguous 
with areas with positive association (e.g. Windemere West) 
(Supplementary Information S11).

As described in the methods section, the first two principal compo-
nents from the PCA of the posteriors for the nine cancer types were 
employed in conjunction with a centroid hierarchical clustering to 
cluster the LSOAs in the Morecambe Bay ex CCG extended area. The first 

two principal components explained 91 % of the variance (64 % PC1 and 
27 % PC2). The centroid hierarchical clustering identified five clusters 
(Fig. 4). 

• Cluster 1 (rural). Large rural LSOAs with large, but generally younger 
population. Low level of comorbidities and smoking. Generally 
cancer risk is low.

• Cluster 2 (Windemere East to Coniston). Similar to Cluster 1, but 
with an older population and larger proportion of British ethnic 
group individuals compared to other clusters. High number of can-
cers with low-to-moderate risk.

• Cluster 3 (Morecambe and Lancaster). This urban cluster is charac-
terised by a high level of unemployment, and a high proportion of 
chronic diseases and mental health conditions. High number of 
cancers with moderate-to-high risk.

• Cluster 4 (Dalton-in-Furness). This isolated cluster presents a high 
level of comorbidities in a generally younger population than the 
study area as a whole. High number of cancers with moderate risk.

• Cluster 5 (Barrow-in-Furness). This is the cluster with the highest 
cancer incidence. The local population is affected by a high level of 

Table 1 
Summary of the number of associations between selected variables and cancer types (comorbidities 
in blue, ethnicity in yellow, behavioural in orange, and age and frailty in green). Note that the term 
‘Protective factor’ does not have a biological or medical meaning, but rather is an epidemiological 
term to represent a negative association between the factor and the likelihood to be diagnosed with 
cancer. Time accounts for the presence of temporal trends. When Time is a risk factor, it means that 
from 2017 to 2022 there was an increase in cancer risk for those cancers that had time as important 
factor (breast, colorectal and urology).
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comorbidities, lower population density and a high level of smoking. 
High number of cancers with moderate-to-high risk.

Model validation results indicate a precise joint model with a mean 
squared error ranging from around 10 cases for lung cancer type to 30 
cases for upper GI cancer type, over the six years’ time period 
(Supplementary Information S13). In comparison with individual in-
dependent spatial linear models, the joint cancer count predictions were 
in general more accurate than in the independent models, but not for 
skin cancer where the independent model error was only 4 % (7 % in the 
joint model) (Supplementary Table S4). It is important to highlight that 
the largest accuracy in the independent models was achieved for the 
cancers in the dataset with the largest availability of data (and, there-
fore, the smallest number of censored records).

4. Discussion

This is the first population-based study to investigate spatial patterns 
in multiple cancers in the Morecambe Bay area and quantify how the 
different cancers contribute to the cumulative risk in its geographic unit.

What are the most important cancers, in terms of incidence, in the Mor-
ecambe Bay region?

The rates for the breast, colorectal and urology cancer types in the 
Morecambe Bay ex CCG extended area were above the rates for England 
and the North West for the 2017 and 2016–2018 periods, respectively 
(however, see ‘Limitations’ for potential screening effects). The major 
difference was in urology cancer type with 14 new cases per 100,000 
people per year more than in the North West and 24 new cases more 
than in England. In contrast, the rates for the lung, skin and upper GI 
cancer types were generally below the North West and England rates. 
Between these, skin cancer had 25 new cases per 100,000 people per 
year fewer than the rest of the North West. The incidence rates were 
driven by the over 50 years old population since the incidence rates for 
the general population and those for the over 50s had the same ranking 
of cancer types. In the under 50 years old population, skin cancer type 
remained the most common cancer followed by breast cancer instead of 
urology, the second cancer for incidence in the over 50s. Also, in the 
under 50 group the least common cancer type was upper GI instead of 
head and neck cancer whose incidence was the lowest in the over 50 
group.

How do cancers cluster geographically and associate to each other?
The nine cancer types considered in this research were co- 

regionalised in three quarters of the Morecambe Bay ex CCG extended 
area for the LSOAs where cancers were found between 2017 and 2022. 
In fact, 19 % of the LSOAs had only one cancer type during the study 
period. Apart from co-occurring, cancers tend to associate geographi-
cally with positive associations (co-occurring with high risk) or negative 
associations (where one cancer has high risk, the other has low risk) 
[27].

Spatial heterogeneity was confirmed by the presence of geographic 
clusters for cancers risk. Although the clustering analysis was affected by 
a level of uncertainty due to the use of only two principal components, a 
clear pattern emerged: the cancer risk for Barrow-in-Furness (identified 
cluster 5) was three times greater than for the surrounding rural areas 
(cluster 1) and higher than Morecambe and Lancaster urban centres 
(cluster 3).

What are the prevalent risk factors?
The use of a large number of candidate factors (783), and the 

Fig. 2. Cumulative risk for the number of cancer types for the Morecambe Bay ex CCG extended area (main) zoomed to (A) Barrow-in-Furness and (B) Morecambe 
and Lancaster. White polygons show no cases of cancer types during 2017–2022. Map created in R (sf and sp packages).

Fig. 3. Median correlation between posterior samples of cancer types in the 
Morecambe Bay ex CCG extended area. Orange ¼ no correlation; green ¼
negative correlation (areas with high incidence in one cancer type have low 
incidence in the other cancer type); and red ¼ positive correlation (both 
cancer types have high incidence in the same area). The correlation threshold is 
arbitrary: negative correlation is lower than − 0.3; positive correlation is above 
0.3 and no correlation (or weak correlation) is between − 0.3 and 0.3. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)
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selection of 23 of them, indicates that individual-level characteristics 
and area-level socio-economic characteristics were far from providing a 
comprehensive explanation for the observed spatial heterogeneities in 
cancer types [28].

Chronic Kidney Disease and COVID19 were the most important 
factors (speculatively, COVID19 may have increased the cancer diag-
nosis rate once people were hospitalised), both being associated to six of 
the nine cancer types, followed by ‘current smoker’ associated to five of 
the nine cancer types included in the joint modelling. Overall, comor-
bidities (seven risk factors) and ethnicities (eight risk factors) were the 
most important factors associated to cancer type counts. Extended dis-
cussion on risk factors is provided in Supplementary Information S14.

How identified syndemic geographic patterns can inform cancer 
interventions?

A positive spatial correlation can support the theory of shared 
environmental aetiology [29], although differences in risk factors 
selected for each individual cancer type suggest that this is not the only 
relevant component [2]. Upper GI and gynaecology, upper GI and head 
and neck, and upper GI and urology correlations were the most wide-
spread positive associations. This is likely attributable to the fact that 
these cancers share risk factors such as alcohol consumption, ethnicity, 
obesity and smoking, but also infectious diseases (https://www.cancerr 
esearchuk.org/about-cancer/type). This reinforces the ‘integrating 
intervention’ paradigm, where interventions are designed to reduce and 
eliminate multiple cancers instead of tackling individual cancers espe-
cially when the common risk factors are identified [30,31]. The latter 
was a designed-in goal of this research, which aimed not only to select 
the risk factors for each cancer type, but also to find areas with corre-
lated residuals (or in other words residual patterns of co-occurrence) 
[32] which are indicative of the presence of factors or biological pro-
cesses associated to both cancers, but not considered in the linear fixed 
effect (or trend) of the model [33].

Policymakers may potentially use our spatial results, as well as the 
joint distribution modelling approach demonstrated here, to aid studies 
and analysis for resource allocation and education in holistic public 
health interventions and programmes targeted to reduce the burden 
from geographically correlated and co-regionalised cancer types [27]. 
The results may aid policymakers to take action on common risk factors, 
deploy further research for hidden common risk factors or prioritise 
cancers that are on the rise (as we found for the breast, colorectal and 
urology cancers) [12]. Some cancer types were found not to be associ-
ated to others or were negatively associated (breast, skin, lung) meaning 
that cancer type-specific interventions may be the most appropriate, and 

have greater impact, for these cancer types.
Most of the factors associated to cancer risk by type were grouped by 

ethnicity and comorbidities, which may help health commissioners and 
policymakers to consider health equality in different geographical re-
gions and reduce health inequities in ethnic minority groups [24], but 
also to potentially include comorbidities in screening programmes [34]. 
This complies with the goals set by the NHS Long Term Plan (htt 
ps://www.longtermplan.nhs.uk/areas-of-work/cancer/#:~:text=Our 
%20NHS%20Long%20Term%20Plan,more%20following%20their%20 
cancer%20diagnosis) which aims by 2028 to reach a target of 55,000 
people each year who will survive for five years or more following their 
cancer diagnosis. The Plan set up the actions to improve and extend 
screening (including lung screening pilots) and reach ethnic minority 
backgrounds. However, focusing only on individual factors may not be 
beneficial if the healthcare system is not improved as well [35] and, in 
this sense, our maps of cumulative risk versus number of cancer types 
may inform on the necessity for expertise and facilities in response to the 
complexity of local cancer type dynamics.

Identifying regional and subregional inequalities is essential for the 
distribution of resources [36]. Some cancers were localised. Therefore, 
while the rates may be low generally, some communities may experi-
ence larger than expected risks. This requires further investigation into 
the causes, and possible interventions. In the long-term, reducing the 
socioeconomic variation in incidence should have a substantial impact 
on the burden of cancer [9] and fulfil the goal of universal health 
coverage by targeting the most vulnerable members of society first [37]. 
Mobile services such as ‘stop smoking services’, ‘drink aware’ and ‘low 
dose CT scan’ (the latter used in US) could be successful in reaching 
hard-to-reach populations and improving their health [38]. These in-
terventions will benefit non-cancer diseases also (such as diabetes and 
heart disease) due to the common risk factors shared between cancers 
and comorbidities. It is also essential to enhance health literacy and 
reduce patients’ misconceptions about cancer screening in high-risk 
areas [39,40].

4.1. Limitations

The following limitations affected the present study. 

• Each cancer type is effectively a collection of different cancers 
(Supplementary Table S1) which may present different detection and 
under-detection rates (e.g., non-melanoma skin cancer versus mel-
anoma skin cancer). For example, prostate cancer has the greatest 

Fig. 4. Cancer type risk clustering by LSOA for the Morecambe Bay ex CCG extended area (main) zoomed to (A) Barrow-in-Furness and (B) Morecambe and 
Lancaster. White polygons were not clustered due to the absence of cases of cancer types during 2017–2022. Map created in R (sf and sp packages).
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incidence of urological cancers, but urothelial cancer may present 
the largest mortality threat.

• Late notification in the cancer registry is a potential issue for any 
cancer database. However, we have not found significant evidence of 
late notifications, as the number of records for the latest period 
(July–December 2022) is comparable to those recorded in the same 
periods of 2017, 2018, 2019, and 2020. The only exception is 2021, 
where there were 17 fewer records in 2022, representing a minor 
difference of 4 %. Generally, late notifications can introduce biases 
by affecting the accuracy of incidence rates and temporal trend 
estimations.

• Data on cancer stage at diagnosis were not available at the time of the 
analyses and therefore, the relative proportion of early-stage cancers 
compared to late-stage cancers is not known in our dataset. This 
means that some incidence differences may be affected by early/late 
diagnosis and screening uptake instead of the other risk factors 
considered in this analysis [41]. The potential effect of inflated rates 
due to cancer screening programmes for breast, cervical and bowel 
cancer (the three cancer screenings active in England) cannot be 
determined. However, regional and national data (Supplementary 
Table S8) suggest no significant difference between and within 
(tested by test of two proportions) England, the North West and 
Lancashire, in cancer rates and the percentage of early stage cancers 
obtained from screening for breast and cervical cancers.

• Undiagnosed levels were not considered, but are likely to be clus-
tered in space [42] and, therefore could have biased the relative 
cancer type geographical pattern.

• Border effects: some patients within the extended portion of the 
Morecambe Bay ex CCG may have chosen to go to a different CCG if 
they lived closer to it. This could have created a potential bias in the 
most peripheral areas of the study region.

• Identification of important factors was carried out for all cancers 
together. While this promotes shared risk factors, it may reduce the 
significance of risk factors for less common cancers.

• Some factors may be affected by reverse causation (e.g., depression 
and cancer) although this analysis focused on new diagnosis instead 
of cancer prevalence, which should have reduced this risk.

• Some maps show high levels of uncertainty (standard errors), often 
based on very small numbers and, therefore, interpretation should be 
done cautiously. As described by Ref. [43], mapping and interpreting 
cancer incidence rates faces three major hurdles: the presence of 
unreliable rates that occur for sparsely populated areas and/or rare 
cancers, the visual bias caused by the aggregation of health data 
within administrative units of widely different sizes and shapes [44], 
and the mismatch of spatial supports for cancer rates and explana-
tory variables that prevent their direct use in correlation analysis 
[45].

• Postcode sector of patient residence is related to the last known 
address and, therefore, local factors may or may not be involved in 
the development of the cancer since cancers have a complex aeti-
ology and long latency [1,46].

Despite the limitations posed by sparse and censored data as detailed 
above, which introduced significant uncertainties in certain areas, these 
uncertainties were largely mitigated by the robust joint model devel-
oped here and designed to reduce them.

5. Conclusions

Striking geographical, socioeconomic, behavioural and demographic 
variations were observed in Morecambe Bay ex CCG extended area in 
relation to nine cancer types during the 2017–2022 period. The joint 
distribution model provided a richer and more accurate perspective on 
spatial variation in disease risk than a standard spatial linear disease 
model by quantifying the different geographic levels of association be-
tween cancers, and between cancers and explanatory factors. 

Importantly, the joint analysis (i) identified three out of nine cancer 
types, namely breast, colorectal and urology, with incidence rates above 
the regional and national rates, (ii) underlined the associations of 
different cancer types with ethnicity, comorbidities and socio-economic 
conditions that are intrinsically dependent on the local geography 
(crime, mental health, demographics) and (iii) highlighted the hetero-
geneity in cancer risk and cancers cumulative risk which resulted in an 
urban-rural divide, with the risk in Barrow in Furness threefold higher 
than the surrounding rural areas or similarly deprived locations such as 
Morecambe. The results illustrate how joint distribution modelling and 
mapping can help to quantify the spatial distribution of the cancer 
burden for different cancers in an area of interest to inform etiologic 
debate about the specific causes of disease, aid policy formulation and 
inform possible resource allocation. For example, the approach 
demonstrated here could be used to help policymakers consider 
comorbidities in screening programmes and/or develop integrated in-
terventions for cancers. As such, this study calls for, and provides the 
roadmap towards, more geographic-specific cancer and multi-cancer 
analyses to better control these diseases within at-risk communities.

Software

The joint modelling analysis was performed using a modified version 
of the MCMC software written by Arnab Hazra available at https://gith 
ub.com/arnabstatswithR/Arsenic-contamination-mapping.
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