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Data-driven risk stratification and precision 
management of pulmonary nodules 
detected on chest computed tomography

Chengdi Wang    1,2,6 , Jun Shao1,6, Yichu He3,6, Jiaojiao Wu3, Xingting Liu1, 
Liuqing Yang1, Ying Wei3, Xiang Sean Zhou4, Yiqiang Zhan4, Feng Shi    3 , 
Dinggang Shen    4,5  & Weimin Li    1,2 

The widespread implementation of low-dose computed tomography (LDCT) 
in lung cancer screening has led to the increasing detection of pulmonary 
nodules. However, precisely evaluating the malignancy risk of pulmonary 
nodules remains a formidable challenge. Here we propose a triage-driven 
Chinese Lung Nodules Reporting and Data System (C-Lung-RADS) utilizing a 
medical checkup cohort of 45,064 cases. The system was operated in a stepwise 
fashion, initially distinguishing low-, mid-, high- and extremely high-risk 
nodules based on their size and density. Subsequently, it progressively 
integrated imaging information, demographic characteristics and follow-up 
data to pinpoint suspicious malignant nodules and refine the risk scale. T he 
m ul tidimensional system achieved a state-of-the-art performance with an area 
under the curve (AUC) of 0.918 (95% confidence interval (CI) 0.918–0.919) on 
the internal testing dataset, outperforming the single-dimensional approach 
(AUC of 0.881, 95% CI 0.880–0.882). Moreover, C-Lung-RADS exhibited a 
superior sensitivity compared with Lung-RADS v2022 (87.1% versus 63.3%) in an 
independent cohort, which was screened using mobile computed tomography 
scanners to broaden screening accessibility in resource-constrained settings. 
With its foundation in precise risk stratification and tailored management, 
this system has minimized unnecessary invasive procedures for low-risk cases 
and recommended prompt intervention for extremely high-risk nodules 
to avert diagnostic delays. This approach has the potential to enhance the 
decision-making paradigm and facilitate a more efficient diagnosis of lung 
cancer during routine checkups as well as screening scenarios.

Pulmonary nodule is one of the most frequently detected abnormali-
ties in chest imaging and the critical aspect of diagnosis is to distin-
guish malignant nodules clinically relevant to lung cancer from benign 
nodules1,2. Despite numerous efforts, lung cancer persists as a pre-
dominant malignant tumor in terms of mortality rate with the highest 
economic burden globally, with a particularly significant impact in 
China3–5. Individuals diagnosed with early-stage diseases are more 

likely to receive curative treatment and experience superior prognosis 
compared with patients diagnosed at advanced stage6. In China, there 
remains a gap in early-stage lung cancer detection rates compared 
with high-income countries (stage I: 17.3% in China versus 25.3% in the 
United States)7,8. This situation underscores the urgent need for wide-
spread lung cancer screening in China to confirm the cases detected 
at an early stage.
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LDCT to avoid missed diagnosis, late diagnosis and unnecessary 
biopsy procedures.

Existing guidelines for nodule management primarily classify 
nodules based on their density and size16–20. According to the density, 
pulmonary nodules are divided into solid and subsolid ones and the 
latter are further categorized into pure ground-glass nodules (pGGNs; 
no solid component) and mixed ground-glass nodules (mGGNs; both 
ground-glass and solid components)21. The size of the nodules would 
also affect the assessment of their properties. As one of the most 
popular guidelines, the Lung CT Screening Reporting and Data Sys-
tem (Lung-RADS) recommends considering solid nodules of 6 mm or 
smaller and pGGNs under 30 mm as benign15,22. Moreover, several risk 
prediction models such as the Mayo Clinic model and Brock University 
model integrate clinical and nodule profiles to evaluate pulmonary 
nodules23,24. However, these models have shown suboptimal perfor-
mance in the Chinese population and require manual assessment, 

Low-dose computed tomography (LDCT) has been confirmed 
as an effective tool for lung cancer screening2,9. Pivotal studies such 
as the National Lung Screening Trial (NLST) and Nederlands–Leu-
vens Longkanker Screenings Onderzoek (NELSON) cohorts have  
demonstrated that LDCT significantly reduced lung cancer 
mortality10,11. In addition, a prospective multicenter cohort study in 
China has indicated that one-off LDCT screening reduced lung can-
cer mortality by 31% in high-risk populations12. With the widespread 
application of LDCT, the detection rate of pulmonary nodules has 
gradually improved13,14. However, at least 95% of pulmonary nodules 
screened are benign, necessitating precise management strategies to 
ensure appropriate intervention1. For instance, only 3.6% of detected 
lung nodules were diagnosed as malignant in the NLST, and the  
baseline false-positive rate (FPR) was as high as 26.6% according 
to original NLST criteria10,15. Therefore, it is crucial to accurately  
estimate the malignancy risk of pulmonary nodules detected on 
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Fig. 1 | Overview of the study design. a, The C-Lung-RADS training and internal 
testing datasets were obtained from the MCC at the health management center 
in West China Hospital of Sichuan University, and the independent testing data 
were obtained from the MSC at multicenter communities in Western China. 
The subset included in the study was determined based on the inclusion and 
exclusion criteria, as shown in Extended Data Fig. 1. b, C-Lung-RADS pipeline 

architecture: phase 1 initially classified the risk of nodules by evaluating nodule 
size and density through decision tree models, phase 2 distinguished suspicious 
malignant nodules through CT images and phase 2+ targeted suspicious 
malignant nodules through multimodal data fusion. c, Management of nodules 
with different risk levels was performed accordingly.
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which is time consuming and labor intensive25,26. Therefore, automated 
risk assessment tools for pulmonary nodules are urgently demanded 
to reduce intergrader variability.

The accelerated advances of artificial intelligence (AI) have 
revolutionized medical processes, which have delivered remarkable 
effects in imaging recognition tasks such as skin cancer subtype clas-
sification, pneumonia differentiation diagnosis and cancer prognosis 
prediction27–31. Several deep learning-based products have been applied 
in the clinical workflow to detect pulmonary nodules32–34. The exploita-
tion of AI technology for malignancy assessment of pulmonary nodules 
is a burgeoning direction35–39. For instance, an end-to-end deep learning 
model was constructed based on computed tomography (CT) volumes 
to predict the probability of malignancy for lung nodules in the NLST 
cohort with an area under the curve (AUC) of 0.944, which slightly 
outperformed professional physicians35. However, considering the low 
proportion of malignant pulmonary nodules, not all require extensive 
computational resources for evaluation. In areas with limited medi-
cal resources, the deployment of AI models could potentially widen 
healthcare disparities40. Furthermore, a comprehensive assessment 

for malignant nodules that integrates multidimensional information 
is necessary to align with clinical scenarios.

In this study, we proposed a triage-driven Chinese Lung Nodules 
Reporting and Data System (C-Lung-RADS) to estimate the malignancy 
risk of lung nodules based on large-scale datasets (Fig. 1a). This sys-
tem operated in two consequent phases with different tasks (Fig. 1b). 
It distinguished low-, mid-, high- and extremely high-risk nodules 
through an automatic acquisition of nodule size and density at the 
initial phase. Furthermore, it integrated multimodal features such as 
imaging, clinical and follow-up data to identify malignant nodules and 
refine the risk scale. Subsequently, the performance of C-Lung-RADS 
was validated in an independent testing cohort acquired with mobile 
CT, and the accessibility of precision management strategies was fur-
ther explored (Fig. 1c).

Results
Dataset characteristics
We recruited 45,064 participants from the medical checkup cohort 
(MCC) at the health management center in West China Hospital of 
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Fig. 2 | Characteristics of the participants and nodules. a, The age distribution 
and corresponding Gaussian fitted curves in different datasets. b, The 
distribution of demographic characteristics. For smoking status, history of 
cancer, family history of cancer, family history of lung cancer and malignancy,  

0 represents no and 1 represents yes. c, The distribution of nodules with different 
risk levels in the primary dataset. d, Histograms of nodule size distribution and 
corresponding Gaussian fitted curves in the primary dataset.
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nodules in phase 1. a, The process of building a multivariate classification tree, in 
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low risk; label 2: mid risk; label 3: high risk; and label 4: extremely high risk). c,d, AUC 
values of the classification tree used for identifying extremely high-risk nodules 
in the internal testing dataset (c) and the independent testing dataset (d). The 
AUC values are shown in box and whisker plots, in which the line and the plus sign 
represent the median and the mean values, respectively. The numbers in the plot 

are the mean AUC values. The whiskers range from the 2.5th to the 97.5th percentile, 
and points below and above the whiskers are drawn as individual dots. The 
stratification performance of the classification tree (C-Lung-RADS) was compared 
with Lung-RADS v2022 (based on intrinsic nodule’s density and size). Statistical 
analyses in c and d were performed using ordinary two-way ANOVA followed 
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were 0.163 and 0.764, respectively. NS, not significant; SC, solid component.

http://www.nature.com/naturemedicine


Nature Medicine | Volume 30 | November 2024 | 3184–3195 3188

Article https://doi.org/10.1038/s41591-024-03211-3

Sichuan University between 2013 and 2022 as the primary dataset, 
and 14,437 participants in a mobile screening cohort (MSC) across 
multiple communities in Western China for independent testing dataset 
between 2019 and 2022 (Extended Data Fig. 1). The median age in both 
the training and internal testing datasets was 47 years, whereas the 
median age of the independent testing dataset was 57 years (Fig. 2a and 
Supplementary Table 1). Additionally, we observed a strong association 
between sex and smoking status, with fewer subjects having a history of 
cancer, family history of cancer or family history of lung cancer (Fig. 2b).

The study utilized our previously published AI detection system 
to identify the largest lung nodules and automatically extract their size 
and density, including solid nodules, mGGNs and pGGNs41. The gold 
standard for malignancy risk of pulmonary nodules was pathological 
finding or clinician ratings (Extended Data Fig. 2 and Supplementary 
Table 2). Nodules confirmed as malignant through pathology were 
directly classified as label 4. Pulmonary nodules with minor longitudi-
nal changes, as those displaying volume doubling time (VDT) exceeding 
600 days during 2-year follow-up, were classified as labels 1–3 by senior 
clinicians. The remaining nodules without pathology and longitudinal 
information were graded by the professional clinicians (labels 1–4).

The initial dataset consisted of 25,129 solid nodules, 2,215 mGGNs 
and 17,720 pGGNs including label 1 (low risk), label 2 (mid risk), label 
3 (high risk) and label 4 (extremely high risk) (Fig. 2c and Supplemen-
tary Table 3). The median length of nodules increased with escalating 
risk levels, measuring 4.68 mm, 6.10 mm, 7.30 mm and 10.22 mm for 
labels 1, 2, 3 and 4, respectively (Fig. 2d and Supplementary Table 4). 
Notably, the solid component in mGGNs were 3.42 mm, 6.62 mm, 

6.70 mm and 9.80 mm for low-, mid-, high- and extremely high-risk 
groups, respectively (Extended Data Fig. 3). In the independent test-
ing dataset, the distribution of nodule size exhibited slight variations 
compared with the primary dataset (Extended Data Fig. 4). Only 1,153 
nodules (2.6%) were pathologically confirmed malignant in the MCC, 
while 139 malignant nodules (1.0%) were present in the MSC (Extended 
Data Figs. 5 and 6). The proportion and size distribution of malignant 
nodules also varied across different risk level groups.

C-Lung-RADS multiphase architecture
The development of the C-Lung-RADS pipeline consisted of two phases, 
in which phase 1 was to preliminarily screen the different risk nod-
ules merely based on size and density and phase 2/2+ was to precisely 
identify the suspicious malignant nodules and refine scale by fusing 
multidimensional information (Methods). During phase 1, a classifi-
cation tree was constructed and utilized to assign a risk level to each 
nodule. Non-low-risk nodules (labels 2, 3 and 4) were advanced to phase 
2 for accurate malignancy identification and risk level refinement. An 
image-level malignant probability was generated through the develop-
ment of a deep convolutional neural network (DCNN). Furthermore, 
a multidimensional regression model was constructed in phase 2+ to 
comprehensively evaluate the likelihood of malignancy of non-low-risk 
nodules. This model incorporated the AI-predicted malignant prob-
ability, clinical information and follow-up characteristics. The output 
probability of malignancy was mapped to a risk level such that nodules 
with a probability of malignancy below 0.5 were predicted to be benign 
and retain their original risk levels. Conversely, nodules with a higher 

Table 1 | C-Lung-RADS assessment categories

C-Lung-RADS Category 
descriptor

Findings Management Risk of 
malignancy

Estimated population 
prevalence

0 Negative Calcifications Continue annual screening with 
LDCT in 12 months

– –

1 Low risk

Solid nodule:
• <6 mm

Continue annual screening with 
LDCT in 12 months 0.3% 78.2%Part-solid nodule (mGGN):

• <6 mm

Non-solid nodule (pGGN):
• <6 mm

2 Mid risk

Solid nodule:
• ≥6 to <10 mm

Six-month CT 3.2% 17.4%
Part-solid nodule (mGGN):
•  ≥6 mm total mean diameter with solid 

component <6 mm

Non-solid nodule (pGGN):
• ≥6 to <20 mm

3 High risk

Solid nodule:
• ≥10 to <18 mm

Three-month CTa 6.2% 2.6%
Part-solid nodule (mGGN):
• ≥6 mm total mean diameter with solid 
component ≥6 to <10 mm

Non-solid nodule (pGGN):
• ≥20 mm

4 Extremely high 
risk

Solid nodule:
• ≥18 mm

Immediate clinical assessmentb 24.3% 1.8%
Part-solid nodule (mGGN):
• Solid component ≥10 mm

Category 2 or 3 nodules with a 
multidimensional model-predicted 
malignant probability ≥0.5

aFor label 3 nodules, high-resolution CT or PET/CT may be considered. bFor label 4 nodules, a comprehensive clinical assessment is warranted, which may include a diagnostic chest CT with 
or without contrast enhancement, PET/CT scanning particularly when there is a solid nodule or solid component measuring 8 mm or larger, tissue sampling such as biopsies, and/or referral for 
additional clinical evaluation. The decision to proceed with these assessments should be based on a careful clinical evaluation, taking into account the patient’s preferences and the estimated 
likelihood of malignancy.
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probability of malignancy were designated as suspicious malignant 
and assigned a risk level of 4.

Evaluation of phase 1 model performance
In phase 1, the density of nodules and the diameter and size of solid com-
ponent in mGGNs were input to the classification tree. A grid research 
strategy was introduced to search for the optimal size splitting nodes of 
the classification tree to achieve the best four-category risk stratifica-
tion (Fig. 3a). The ultimate multivariate classification tree is defined 
in Fig. 3b, in which the optimal size thresholds for risk stratification of 
three types of nodules were determined. For solid nodules, the cutoff 
values were 6, 10 and 18 mm to differentiate among the four risk cat-
egories. For pGGNs, the cutoff values for low, mid and high risk were 
set at 6 and 20 mm. As for mGGNs, the cutoff values were determined 
by considering both the nodule size (6 mm) and the size of the solid 
component (6 and 10 mm).

Compared with Lung-RADS v2022, C-Lung-RADS (classification 
tree in phase 1) showed better classification performance in overall 
nodules (AUC of 0.899, 95% CI 0.898–0.900), especially in pGGNs 
(Fig. 3c and Supplementary Table 5) in the internal testing dataset. 
Similar results were also obtained in the independent testing dataset, 
where AUC values of C-Lung-RADS and Lung-RADS v2022 were 0.912 
(95% CI 0.911–0.913) and 0.820 (95% CI 0.817–0.822) for overall nodules, 
respectively (Fig. 3d). The false-negative rates for the internal and inde-
pendent testing datasets were 7.4% (18/244) and 3.6% (5/139) (Supple-
mentary Table 6). These results confirmed that C-Lung-RADS provided 
excellent risk stratification and was suitable for the initial screening of 
varying risk nodules. The estimated proportion of the low-risk nodule 
population is 78.2% in the primary dataset, whereas the proportion of 
the extremely high-risk nodule population is 1.8% (Table 1). A more 
comprehensive assessment methodology was required for accurate 
stratification.

Evaluation of phase 2/2+ models performance
To obtain a more precise risk level, nodules with pathological results 
or stable follow-up were used for construction of phase 2/2+ mod-
els (Supplementary Table 7). In phase 2, a DCNN was developed to 
generate an image-level malignant probability (Fig. 4a). In phase 2+, 
the DCNN-predicted malignant probability, clinical information and 
follow-up features were incorporated to construct a multidimensional 
regression model to comprehensively assess the probability of malig-
nancy for nodules (Fig. 4b). These single-, dual- and multidimensional 
models were able to achieve benign and malignant differentiation of 
lung nodules with significant differences in their predicted malignancy 
probability (all P < 0.001; Extended Data Fig. 7 and Supplementary 
Table 8).

Better performance was achieved for the model considering 
multidimensional information compared with single-dimensional 
information. For the internal testing dataset, the multidimensional 
model yielded a higher AUC value of 0.918 (95% CI 0.918–0.919) than 

that of single-dimension one (AUC of 0.881, 95% CI 0.880–0.882), and 
its sensitivity greatly improved from 79.6% (95% CI 79.4–79.7%) to 85.1%  
(95% CI 85.0–85.3%) (Fig. 4c,d and Supplementary Table 9). In the 
independent testing dataset, the multidimension model outperformed 
the single-dimension one with an absolute improvement of 21.3% in 
sensitivity from 64.3% (95% CI 63.6–65.1%) to 85.6% (95% CI 85.1–86.1%). 
The AUC value of the multidimension model was 0.927 (95% CI 0.926–
0.928), which was better than that of single-dimension one (AUC 0.924, 
95% CI 0.923–0.926). The validity of multidimensional information 
was also assessed in the independent testing dataset, and the findings 
were consistent with those from the internal testing dataset (Fig. 4e,f). 
On the basis of these results, the overall C-Lung-RADS pipeline for the 
four-category risk stratification of nodules was developed, which inte-
grated the classification tree in phase 1, the DCNN model in phase 2 and 
the gradient-boosting regression (GBR) model in phase 2+, executed 
sequentially to enable the identification of extremely high-risk nodules 
and true malignancies. According to the four-category risk classes, 
corresponding management has also been designed to recommend 
individualized intervention strategy (Table 1).

Estimated performance of realistic programs
Next, the classification performance of the entire C-Lung-RADS pipe-
line for the four-category stratification of lung nodules was compared 
with Lung-RADS v2022 criteria on datasets with malignant and benign 
nodules. In the internal testing dataset, the proportion of high-risk 
populations (with a risk level of 3) detected by C-Lung-RADS and 
Lung-RADS v2022 was 2.9% and 1.4%, respectively, and the proportion of 
the extremely high-risk populations (with a risk level of 4) detected by 
C-Lung-RADS and Lung-RADS v2022 was 19.3% and 13.6%, respectively 
(Fig. 5a and Extended Data Fig. 8). Table 2 summarizes the quantita-
tive results, showing that in the internal testing dataset, C-Lung-RADS 
exhibited a sensitivity of 79.9% (95% CI 74.0–84.8%), significantly higher 
than the 60.3% (95% CI 53.5–66.7%) sensitivity observed for Lung-RADS 
v2022 (P < 0.001). The corresponding FPR for C-Lung-RADS was 8.2% 
(95% CI 6.8–10.0%) compared with 5.1% (95% CI 3.9–6.5%) for Lung-RADS 
v2022 (P = 0.003). These results verified that C-Lung-RADS had a com-
parable risk stratification performance to the clinical diagnosis and 
outperformed Lung-RADS v2022, suggesting that C-Lung-RADS was 
more suitable for risk stratification of lung nodules in the Chinese 
population with a higher true positive value (Fig. 5b).

Additionally, the superior performance of C-Lung-RADS was fur-
ther validated in the independent testing dataset. The proportions of 
high-risk populations detected by C-Lung-RADS and Lung-RADS v2022 
were 4.4% and 1.3%, while the proportions of the suspected malignancy 
(extremely high risk) detected by the these approaches were 11.7% 
and 8.5%, respectively (Fig. 5c,d). In the independent testing dataset, 
the sensitivity for C-Lung-RADS was 87.1% (95% CI 80.5–91.7%) versus 
63.3% (95% CI 55.0–70.9%) for Lung-RADS v2022 (P < 0.001) and the 
associated FPR for C-Lung-RADS was 5.9% (95% CI 4.9–7.1%) versus 4.4% 
(95% CI 3.5–5.4%) for Lung-RADS v2022 (P = 0.035) (Table 2). Therefore, 

Fig. 4 | GBR model incorporating multidimensional information in phase 2 
used to identify the malignant nodules. a, A DCNN was used to differentiate 
malignant nodules from the benign ones. b, The AUC of the GBR model increased 
with algorithm iterations. The GBR model based solely on AI-predicted malignant 
probability was refined with clinical information and follow-up features to 
achieve more precise risk levels. c–f, The discriminatory performance of single-, 
dual- and multidimensional GBR models in the internal testing dataset (c and d) 
and independent testing dataset (e and f) was visualized. ROC curves of the three 
models (c and e), with specified regions zoomed in. Quantitative metrics (d and 
f) of the three models in classifying malignant nodules. All metrics are shown in 
box and whisker plots, in which the line and the plus sign represent the median 
and the mean values, respectively. The numbers in the plot are the mean values. 
The whiskers range from the 2.5th to the 97.5th percentile, and points below and 
above the whiskers are drawn as individual dots. Statistical analyses in d and f 

were performed using ordinary two-way ANOVA followed by Tukey’s multiple 
comparison tests, with n = 100 replicates per condition. The asterisks represent 
two-tailed adjusted P values, with *P < 0.05, **P < 0.01 and ***P < 0.001. The  
P values in d for single-dimension versus dual-dimension, single-dimension 
versus multidimension and dual-dimension versus multidimension were 0.451, 
<0.001 and <0.001 for AUC; <0.001, <0.001 and 0.025 for accuracy; <0.001, 
<0.001 and <0.001 for sensitivity; and <0.001, <0.001 and 1.000 for specificity, 
respectively. The P values in f for single-dimension versus dual-dimension, single-
dimension versus multidimension and dual-dimension versus multidimension 
were 0.876, 0.565 and 0.857 for AUC; 0.067, 0.068 and 1.000 for accuracy; 
<0.001, <0.001 and <0.001 for sensitivity; and 0.012, 0.004 and 0.946 for 
specificity, respectively. Res, residual; Conv, convolution; FC, fully connected; 
BN, batch normalization; ReLU, rectified linear unit.
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Fig. 5 | Performance of the C-Lung-RADS pipeline for the malignancy risk 
stratification and management of lung nodules. a, The distribution of the four 
risk classes identified by C-Lung-RADS and Lung-RADS v2022, and malignancy 
proportion in each category of risk levels in the internal testing dataset. b, The 
detection performance of different methods for lung cancer in the internal 
testing dataset. c, The distribution of the four risk classes and malignancy 
proportion in each category of risk levels identified by C-Lung-RADS and 

Lung-RADS v2022 in the independent testing dataset. For a and c, for clinical 
diagnosis, malignant nodules are confirmed by pathology, and benign nodules 
are confirmed by pathology or stable follow-up. d, The detection performance 
of different methods for lung cancer in the independent testing dataset. e, The 
pulmonary nodules detected on chest CT were assessed through C-Lung-RADS 
and managed according to the appropriate protocol. TP, true positive; TN, true 
negative; FP, false positive; FN, false negative.
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C-Lung-RADS may substantially improve the sensitivity, albeit with an 
increase in FPR. These findings validated the favorable generalizability 
of the C-Lung-RADS pipeline and suggested its anticipated efficacy 
across a broader spectrum of Chinese data.

Precise stratification laid the foundation for personalized man-
agement of nodules (Fig. 5e). Nodules of the low-risk category (label 
1) were advised to undergo annual monitoring. For those at labels 2 
and 3, semi-annual and quarterly follow-ups were recommended. 
Label 4 nodules, deemed to pose an extremely high risk, were neces-
sitated immediate clinical action. The choice of intervention including 
enhanced CT scans, positron emission tomography (PET)/CT imaging, 
biopsies or surgical procedures was carefully considered with regard 
to the safety of the testing, the potential informativeness of additional 
diagnostics and patient preferences. Moreover, the mobile CT units 
and class activation map (CAM) of DCNN have, respectively, enhanced 
the accessibility and interpretability of the C-Lung-RADS (Extended 
Data Fig. 9). Physicians could utilize AI reports with C-Lung-RADS 
to inform their decision-making, thereby striving to minimize the 
chances of overlooking or misjudging diagnoses. These explorations 
demonstrated the clinical potential of C-Lung-RADS and its readiness 
for broader application in clinical scenarios.

Discussion
This study presented the C-Lung-RADS, a system for assessing the 
malignancy risk of pulmonary nodules by applying stepwise to lung 
cancer screening datasets. Employing a multiphase framework, the 
system adeptly identified a substantial number of low-risk pulmonary 
nodules to alleviate patient anxiety. Additionally, it accurately distin-
guished malignant pulmonary nodules by integrating multimodal 
information to optimize healthcare resource allocation. The utilization 
of mobile CT scanners alongside C-Lung-RADS has the potential for 
broader adoption in resource-limited areas.

Based upon large-scale real-world data, C-Lung-RADS identified 
6, 10 and 18 mm as the cutoff values for the four risk types of solid nod-
ules, and 6 and 20 mm as the cutoff values for low-, mid- and high-risk 
pGGNs in phase 1. Notably, C-Lung-RADS systematically classified 

subsolid nodules in detail, highlighting the progression risk associated 
with the solid component42. Under such size thresholds, C-Lung-RADS 
demonstrated significantly superior classification performance in sub-
solid nodules compared with Lung-RADS v2022. Inevitably, this phase 
encountered cases of false negatives. The majority of missed cancers 
in phase 1 exhibited ground-glass density, with an average diameter 
of approximately 6 mm, and the pathology revealed predominantly 
noninvasive adenocarcinoma. Previous studies have corroborated 
that pGGNs are mostly indolent, with patients exhibiting a favorable 
prognosis after surgery and not requiring immediate treatment43,44. The 
size of the solid components correlates with the pathological type, and 
the emergence of solid components may raise suspicions of invasive 
adenocarcinoma45–47. In clinical practice, physicians could swiftly iden-
tify a substantial portion of low-risk nodules by assessing their size and 
density, advising these patients to undergo routine annual checkups 
and alleviating unnecessary concerns.

In terms of high-risk nodules, it is difficult to make an accurate 
assessment based solely on size and density. Therefore, C-Lung-RADS 
incorporated AI-predicted probabilities, demographic factors and 
follow-up change characteristics in phase 2. These medical data of 
different modalities provide patient information from distinct perspec-
tives, with both overlapping and complementary information, and the 
clinical multimodal data features serve as the foundation for precise 
disease diagnosis48–51. In particular, deep learning algorithms have 
effectively identified imaging characteristics associated with the risk 
of pulmonary nodules52,53. A range of clinical factors, such as smoking 
status and age, have been confirmed to be significantly correlated with 
malignant pulmonary nodules54,55. Additionally, the VDT of nodules as 
observed during follow-up is a critically important prognostic indicator 
for predicting malignancy56,57. Multimodal C-Lung-RADS would offer 
healthcare professionals a powerful tool for auxiliary decision-making, 
helping to mitigate delays in the treatment of malignant nodules.

It was reported that the detection rate of pulmonary nodules in 
chest CT scans ranges from 30% to 50%, yet the vast majority of these 
nodules are benign13,14. Numerous previous studies have harnessed 
the power of AI to evaluate the risk of malignancy in pulmonary nod-
ules identified through LDCT35–38. Compared with these one-time 
assessment models that require the collection of comprehensive 
information for all detected nodules, the multiphase system utilized 
as few resources as possible to evaluate nodules in clinical settings. 
The predictive performance of the single-assessment model can be 
compromised once dimensional information is missing48. Initially, 
the first phase identified nodules of different risks based on nodule 
size and density, effectively filtering out the majority of low-risk indi-
viduals. Other non-low-risk nodules accounted for a minority and 
then advanced to the second phase, which involved the collection of 
multimodal information and computation by deep learning models. 
This refined strategy ensures that only the most complex cases require 
intensive resources, thereby enhancing both efficiency and scalability 
in lung nodule management.

C-Lung-RADS was evaluated in an independent testing dataset 
of a screening cohort using mobile CT units. It is reported that the 
uptake rate of LDCT for lung cancer screening in China stands at 33%, 
associated with factors such as structural delays and navigation assis-
tance58. Therefore, we have proposed a screening protocol that com-
bines mobile CT scanners and AI software to maximize lung cancer 
screening participation and minimize structural delays through an 
assessment-to-timely-screening approach in these areas59. Mobile CT 
units break through geographic limitations and have been applied 
in medical programs across Kenya, UK communities and Brazil60–62. 
Furthermore, the proportion of female and non-smoking individuals 
among lung cancer patients is gradually increasing, necessitating 
greater attention63. The hierarchical risk stratification protocol for 
pulmonary nodules requires further validation through randomized 
controlled trials to ascertain its clinical utility.

Table 2 | Sensitivity, false-positive rate, positive predictive 
value and negative predictive value of the C-Lung-RADS 
and Lung-RADS v2022

Variables C-Lung-RADS Lung-RADS P value

Percentage 
(95% CI)

n/N Percentage 
(95% CI)

n/N

Internal testing dataset

 SEN 79.9 
(74.0–84.8)

167/209 60.3 
(53.5–66.7)

126/209 <0.001

 FPR 8.2 (6.8–10.0) 94/1,142 5.1 (3.9–6.5) 58/1,142 0.003

 PPV 64.0 
(58.0–69.6)

167/261 68.5 
(61.5–74.8)

126/184 0.325

 NPV 96.1 
(94.8–97.1)

1,048/1,090 92.9 
(91.3–94.2)

1,084/1,167 <0.001

Independent testing dataset

 SEN 87.1 
(80.5–91.7)

121/139 63.3 
(55.0–70.9)

88/139 <0.001

 FPR 5.9 (4.9–7.1) 107/1,812 4.4 
(3.5–5.4)

79/1,812 0.035

 PPV 53.1 
(46.6–59.4)

121/228 52.7 
(45.2–60.1)

88/167 0.941

 NPV 99.0 
(98.4–99.3)

1,705/1,723 97.1 
(96.3–97.8)

1,733/1,784 <0.001

Statistical analyses were performed using chi-square tests, with two-tailed P values 
presented. SEN, sensitivity; PPV, positive predictive value; NPV, negative predictive value.
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A stratified management strategy was advocated for pulmonary 
nodules based on their risk profiles. Drawing on current guidelines 
and the expertise of professional physicians, annual surveillance is 
recommended for low-risk nodules1. Mid- and high-risk nodules war-
rant more frequent monitoring, with follow-ups scheduled for 6 and 
3 months, respectively, to detect any evolution that may necessitate 
further action64. Immediate intervention is advised for extremely 
high-risk nodules as timely intervention is crucial for the prognosis 
of lung cancer65. The choice of specific clinical intervention, including 
PET/CT scans, biopsy or surgery, should emerge from multidisciplinary 
discussions, taking into account the patient’s individual preferences to 
make a personalized decision66. Furthermore, molecular biomarkers 
play a pivotal role in augmenting the risk stratification of pulmonary 
nodules67–71. A novel model named PulmoSeek Plus combines clinical, 
imaging and cell-free DNA methylation biomarkers to accurately clas-
sify pulmonary nodules, providing better discrimination capacity than 
single radiomic and methylation models, showing clinical application 
potential69. By harnessing the collective power of these diverse modali-
ties, healthcare professionals will be better equipped to manage lung 
nodules, ultimately leading to improved patient outcomes in the early 
detection and treatment of lung cancer.

Several limitations exist for this study. First, the system as a risk 
stratification approach would inevitably produce false negatives. At 
the initial assessment stage, the vast majority of false-negative cases 
were indolent lung cancer, but it is still necessary to explore methods 
such as incorporating molecular biomarkers to improve the accuracy 
of model prediction. Secondly, the existing follow-up intervals were 
categorized into 3, 6 and 12 months, and more precision intervention 
schema for patients with screen-detected pulmonary nodules war-
rant exploration. Furthermore, the system was constructed based on 
a population in Western China and generalization to other regions is 
necessary to broaden the applicability of the model. In the future, we 
are committed to ongoing iteration of C-Lung-RADS to enhance its 
performance and broaden its application scope.

The C-Lung-RADS served as a multiphase approach to assess the 
malignancy risk of pulmonary nodules, enhancing early lung cancer 
detection while optimizing healthcare resources. Further adopting 
multimodal data fusion has enhanced the diagnostic accuracy of 
extremely high-risk nodules. This implemented standardized moni-
toring or intervention strategies for patients with pulmonary nodules 
of varying risk levels, thereby preventing unnecessary invasive proce-
dures and delays in diagnosis. Anticipated to supplement conventional 
screening methods, C-Lung-RADS is set to propel a revolutionary shift 
in the paradigm of lung cancer management.
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Methods
Participant recruitment
The retrospective primary dataset comprised participants from the 
MCC in the West China Hospital of Sichuan University, which included 
subjects aged 18 years and older who underwent a voluntary chest CT 
imaging examination from 2013 to 2022. The independent testing data-
set was derived from the MSC. This cohort was initiated between 2019 
and 2022 in various communities across Sichuan Province, China (clini-
cal trial registration number: ChiCTR1900024623). It was conducted 
at multiple sites, including Longquan District in Chengdu, Pidu District 
in Chengdu, Mianzhu City and Ganzi Tibetan Autonomous Prefecture. 
As an observational study, the lung cancer screening program of the 
MSC enrolled local residents who were 40 years of age or older and 
volunteered to undergo chest CT scans. The study received ethical 
clearance from the Ethics Committee of West China Hospital, Sichuan 
University (no. 2023.2287).

Participants were eligible to be included in the study only if they 
met all the following criteria: (1) pulmonary nodules diagnosed by chest 
CT or LDCT scans; (2) noncalcified and solitary pulmonary nodules 
including solid nodules, mGGNs (both ground-glass and solid com-
ponents) and pGGNs; (3) agreed to finish the clinical questionnaire; 
and (4) agreed to provide written informed consent. Participants were 
excluded from study enrollment if they met any of the following crite-
ria: (1) received any surgical resection of pulmonary nodules before 
enrollment, (2) combined with other serious lung diseases such as 
pulmonary fibrosis or bronchiectasis, and (3) chest CT image quality 
failed to meet the required standards, CT volumes with <50 slices or 
patients with no qualifying volumes.

Gold standard of risk level
The gold standard for determining the malignancy risk of pulmonary 
nodules was established by consistently considering pathological 
findings and clinician ratings, utilizing the rules outlined in Extended 
Data Fig. 2. First, nodules pathological diagnosed as malignancy 
were categorized as extremely high risk (label 4). Then, the nodules 
pathologically confirmed benign or with VDT exceeding 600 days 
during 2-year follow-up were considered benign and classified as 
not extremely high risk (labels 1–3). Finally, the nodules were initially 
assessed by three junior doctors (3–5 years of experience), followed 
by quality control and final review from two senior physicians (over 
10 years of experience).

Clinical information collection
Each participant provided written informed consent and completed 
a questionnaire on risk factors for lung cancer, including age, sex, 
smoking status, history of cancer, family history of cancer and family 
history of lung cancer. The pathological diagnostic outcomes for the 
participants were obtained from the hospital information system or 
acquired through telephone follow-up.

Chest CT images were taken using the following equipment: 
United Imaging Healthcare uCT 960+, uCT 780, uCT 528 (UNICOM 
vehicle-mounted CT), Siemens Somatom Sensation 16 spiral CT, 
Somatom Definition Flash dual-source CT, Somatom Sensation AS128 
CT, GE Optima CT680, etc. CT image scanning and reconstruction 
parameters: tube voltage ~100–120 kV, tube current 120 mAs, col-
limator 128 × 0.6 mm, pitch 0.6, matrix 512 × 512, scan time ~4–5 s, 
scan layer thickness ~1–5 mm, lung window width ~1,500–1,800 HU 
and window level ~−500 to −600 HU, mediastinal window width 
~250–350 HU and window level ~40–50–HU. CT images stored 
in digital imaging and communications in medicine (DICOM)  
format were interpreted by radiological physicians. A panel of three 
radiologists, including two junior radiologists and one senior radi-
ologist with substantial expertise, collaboratively performed the 
Lung-RADS v2022 grading for the pulmonary nodules of enrolled 
participants.

Data preprocessing
Image resampling strategy. The images were resampled to a target 
spacing of 1 × 1 × 1 mm3 to obtain local structural information using 
an interpolation strategy. Linear and nearest-neighbor interpolation 
methods were applied for isotropic and anisotropic images, respec-
tively, to suppress resampling artifacts.

Intensity normalization. Images were normalized with lung window 
(window width: 1,500 HU and window level: −600 HU) using the z-score 
standardization method, and the normalized intensity values were 
clipped to (−1, 1) to achieve fast convergence of the model.

Handling imbalanced data. Imbalanced data distribution occurred in 
the lung cancer screening data, where the majority of the data (~98%) 
were benign, while the minority were malignant. To address this chal-
lenge, we calculated weights for each class based on the inverse fre-
quency of the class in the dataset. This means that classes with fewer 
samples receive higher weights, making them more influential in the 
learning process72.

Details in AI detection model. A convolutional neural network was 
used for the intelligent detection of each pulmonary nodule, resulting 
in a patch with a size of 96 × 96 × 96, as detailed previously41. The result-
ing patches were then used as inputs to develop the risk stratification 
model.

Model development
The development of the C-Lung-RADS pipeline comprised two phases: 
phase 1 for initial risk classification and phase 2/2+ for identifying the 
suspicious malignant nodules.

Phase 1: initial risk classification of nodules by a classification 
tree
A classification tree model was developed to identify various risks 
of nodules considering nodal intrinsic properties (that is, density 
and size). A grid search was applied to define optimal thresholds for 
four-category risk stratification.

Construction of the classification tree. In phase 1 training, a clas-
sification tree was constructed with 36,052 pulmonary nodules from 
as many participants, where the inputs were nodule’s density, size and 
solid component’s size in mGGNs, and the output was the risk level 
(~1–4). A grid search approach was introduced to determine the optimal 
splitting nodes of the classification tree for effective four-category 
discrimination. The process involved three steps:

First, all the continuous variables were discretized to establish 
the classification rules.

Second, for each density type of nodule, a univariate classification 
tree was trained using nodule size as the sole feature. Rules such as 
maximum depth, minimum samples for node splitting and class weight 
were recorded. Size splitting points between adjacent risk levels and 
their neighbor size were considered as alternative thresholds. A grid 
search identified top-performing threshold combinations for risk 
stratification, resulting in N threshold candidates for each nodule type.

Finally, for all density types of nodules, a multivariate classifica-
tion tree was trained. Based on the threshold candidates of three types 
of nodules, grid research was conducted to create comprehensive 
combinations. The performance was calculated for each combina-
tion, with the best-performing one regarded as the final rule for risk 
stratification in phase 1.

Evaluation metrics. The performance of the risk stratification rule 
was evaluated by classification tree loss, receiver operating charac-
teristic (ROC) curve, the area under the ROC curve (AUC) and infor-
mation value (IV). The ROC curve reflected the trade-off between 
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the sensitivity and specificity of the model, with a higher AUC repre-
senting better performance. IV measured the predictive ability of a 
categorical variable x to the target binary outcome. The computation 
of IV depended on the weight of evidence (WOE), which could reflect 
the difference in the positive–negative ratio between the current 
group and the overall sample. Detailed definitions of WOE and IV 
are as follows:

WOEi = ln
#Pi
#P − ln#Ni

#N , (1)

IVi = (#Pi
#P − #Ni

#N ) ×WOEi = (#Pi
#P − #Ni

#N ) × (ln#Pi
#P − ln#Ni

#N ) , (2)

IV = ∑
i∈X
IVi, (3)

where X  is the group of categorical variables from 1 to 4, i is the current 
category, # denotes the number, P  refers to overall positives, Pi refers 
to the positives in the ith category, N  refers to overall negatives and Ni 
refers to the negatives in the ith category. A reasonable classification 
scheme entailed WOEi increasing with i, indicating a higher malignancy 
proportion with escalating risk levels. Therefore, the initial four- 
category risk stratification rule was achieved in phase 1, with 1 repre-
senting low risk, 2 representing mid risk, 3 representing high risk and 
4 representing extremely high risk, used for screening of non-low- 
risk nodules.

Phase 2: malignancy evaluation by a deep learning model
Deep learning algorithms have indeed shown promising results in iden-
tifying malignancies, differentiating cancer subtypes and predicting 
tumor invasiveness73–75. In phase 2, a DCNN model was developed to 
generate image-level malignant probabilities of nodules.

Construction of the DCNN model. During the training process of 
phase 2, a DCNN model was developed using 5,452 pulmonary nod-
ules from as many participants. Nodule images were input to predict 
malignancy probability, aiming to differentiate malignant nodules 
from benign ones.

The DCNN architecture included an input block, four continuous 
down-sampling blocks and an output block, referring to a prior publica-
tion76. Briefly, (1) the input block was a three-dimensional convolutional 
layer for converting images into semantic representations, (2) the four 
down-sampling blocks included four convolutional layers for generat-
ing feature maps, (3) a global average pooling (GAP) layer regularized 
the network to prevent overfitting and (4) a fully connected layer as 
the output block was adopted to generate the malignancy probability 
for nodules, which was further translated into a malignant or benign 
classification. Notably, the CAM served as the attention map to guide 
the network to focus on the nodule region with visual interpretability. 
To improve the classification performance of the DCNN, a loss function 
ℒ was calculated, composed of cross-entropy loss (ℒCE) and CAM loss 
(ℒCAM), as defined below:

ℒ = αℒCAM + ℒCE, (4)

ℒCAM = 1
H ×W∑

x,y
‖nodule_mask′(x, y) − CAM′

i (x, y)‖l1 , (5)

ℒCE = − log e(zi)
∑je(zi)

, (6)

zi =
1

H ×W ∑
x,y
CAMi (x, y) , (7)

where α denotes the combined ratio; ℒCAM measures the Dice similarity 
coefficient between nodule_mask and CAMi, driving the network to 
learn more spatially discriminative feature representations and to focus 
on nodule regions; nodule_mask′ and CAM′

i are the minimum–maximum 
normalization of nodule_mask and CAM, respectively; CAMi is defined 
as the CAM for class i; and CAMi(x, y) indicates the importance of the 
activation at (x, y), leading to an image belonging to class i. H and W 
denote the height and width of the nodule mask, respectively; l1 is the 
L1 norm, a type of norm used in mathematics to measure the size of a 
vector; e is Euler’s number, a mathematical constant approximately 
equal to 2.71828; zi represents the activation value of class i in the CAM; 
and j is an index variable used in the softmax function to represent 
different classes or categories.

During the training process, other parameters were carefully set. 
The learning rate used to refine the network was reduced from a large 
initial value (1 × 10−3) to a small value (1 × 10−5). The Adam optimizer was 
set to betas of (0.9, 0.999) and epsilon of 1 × 10−8. Data augmentation 
techniques such as shifting, scaling, flipping, cropping, rotating and 
adding noise were employed to improve model robustness.

Model calibration. The output of malignancy probability was 
calibrated by Platt scaling and temperature scaling in the train-
ing stage. By adjusting the scaling and intercept parameters of the  
logistic regression model, the calibrated probabilities could better 
reflect the true likelihood of each class. Temperature scaling involved 
adjusting the temperature parameter in softmax function to scale 
down or up the predicted probabilities of the classes. With these 
strategies, the output probabilities of the DCNN model could be 
well calibrated and interpreted as reliable estimates of confidence 
in its predictions.

Inference configuration. The DCNN was implemented in PyTorch with 
one Nvidia Tesla V100 graphics processing unit. We randomly selected 
20% of the primary dataset as an internal testing dataset, with its loss 
computed at the end of each training epoch. The training process was 
considered converged if the loss stopped decreasing within ten epochs.

Phase 2+: multidimensional diagnosis by GBR
To better identify malignant nodules, a multivariable regression model 
was constructed integrating multidimensional information from imag-
ing, clinical and follow-up features.

Construction of the GBR model. In phase 2+ training, a GBR model 
was developed to predict the final risk level of nodules by integrat-
ing multidimensional information. Specifically, the imaging feature 
referred to AI-predicted malignant probability from phase 2, and clini-
cal features included lung cancer risk factors (that is, age, sex, smoking 
status, history of cancer, family history of cancer and family history of 
lung cancer). Follow-up features consisted of the specific growth rate 
(SGR) and VDT, calculated from follow-up pair CT images77:

SGR = ln(V2/V1)
ΔT , (8)

VDT = ln2
SGR = ln2 × ΔT

ln(V2/V1)
, (9)

where V1 and V2 are the nodule volumes of a follow-up pair of images 
quantified from AI-based segmentation results78 and ΔT  represents 
the time interval between scans. SGR was decomposed into its positive 
(SGR+) and negative (SGR−) components. This strategy enabled the 
model to independently evaluate the trends of growth and reduction 
in nodule volume changes. Multidimensional features were fused as 
input for the GBR model to output malignant probability and corre-
sponding risk level. The GBR model was trained on 15,290 CT 
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examinations (including follow-up scans) from 5,452 participants and 
represented as follows:

G (x) = Sigmoid( gAI (I ) + gC (xC) + gF (xF)), (10)

where G (x) is the output malignancy probability of the GBR model, gAI 
is the DCNN and the input i is the CT nodal patch to generate the logits 
of malignancy probability. xC and gC represent the clinical features and 
coefficients, while xF and gF represent the nodule follow-up features 
and coefficients. Three items in the formula served as weak prediction 
models, trained sequentially to compensate the weakness of their 
predecessor and assembled together to become the ultimate trained 
model. The least absolute shrinkage and selection operator (LASSO) 
algorithm was used to select the most important features and generate 
optimal coefficients. Logistic loss was used as the classification loss 
function. Finally, the GBR model was represented as follows:

Sigmoid (1 × AI prediction + 0.11 × sex (female) + 3.00 × 10−4 × age

+0.07 × smoking + 0.19 × history of cancer + 0.09

× family history of cancer + 185 × SGR+) .
(11)

First, continuous variables were normalized to 0–1. Fivefold 
cross-validation was applied to avoid grouping bias and model overfitting.

Second, a GBR algorithm started creating a single leaf based on 
the imaging model (Sigmoid(gAI (I))), with the error between the output 
and label y serving as the learning target for the second model.

Third, when training the second model, LASSO regression was 
used to select the most important clinical features (xC) and generate 
the optimal coefficients ( gC). To eliminate the strong correlation 
between sex and smoking, clinical features were fitted in two steps. 
First, sex was balanced through subsampling to fit the regression model 
for other clinical features. This step was repeated 50 times, using a 
bagging strategy to create an ensemble of multiple models. Second, a 
gradient-boosting strategy was employed for univariate regression on 
the sex dimension. This updated the model Sigmoid(gAI (I) + gC (xC)), and 
the error between the output and label y served as the learning target 
for the third model.

Fourth, LASSO regression was used in training the third model to 
select critical follow-up features (xF) and optimize coefficients (gF).

Finally, a more robust multidimensional model was generated 
(Sigmoid( gAI (I ) + gC (xC) + gF (xF)) ) to distinguish malignant nodules 
effectively compared with single- and dual-dimensional models. The 
output provided the malignancy probability for each nodule. Nodules 
with a probability of malignancy below 0.5 were predicted to be benign 
and retained their original risk levels, while those with a higher prob-
ability of malignancy were predicted to be malignant and assigned a 
risk level of 4. Therefore, the C-Lung-RADS criteria for four-category 
risk stratification for pulmonary nodules were finalized.

Model validation
Internal testing of models. For phase 1, the internal testing dataset 
included 9,012 nodules from 9,012 participants, which were screened 
by the classification tree to identify the initial risk level of nodules. For 
phases 2 and 2+, the internal testing dataset included 1,351 nodules 
from 1,351 participants, first graded by the DCNN to generate malignant 
probability, which combined with clinical and follow-up features as the 
input of the GBR model to determine the final risk level.

Independent testing of models. In phase 1, a total of 16,375 CT exami-
nations from 14,437 participants were decided by the classification tree. 
In phase 2, the CT images of 1,951 nodules (from 3,327 examinations) 
were fed into DCNN model to generate malignancy probability. This, 
along with clinical and follow-up features, served as input for the GBR 
model to determine the final risk level.

Evaluation metrics. A variety of metrics were assessed including ROC 
curves and corresponding AUC values, accuracy, sensitivity, specificity, 
FPR, positive predictive value and negative predictive value.

Statistical analysis
Shapiro–Wilk tests were used to check the normal distribution of 
continuous variables. Continuous variables that were approximately 
normally distributed were represented as mean ± s.d. Continuous 
variables with asymmetrical distributions were represented as median 
(25th, 75th percentiles). Categorical variables were expressed as counts 
and percentages and compared using chi-square tests. The perfor-
mance of the classification tree was compared with Lung-RADS v2022  
using ordinary two-way analysis of variance (ANOVA) followed by 
Sidak’s multiple comparison tests. To quantitatively compare  
the size of the solid component between the four different risk nod-
ules, statistical analyses were performed using Kruskal–Wallis H 
tests followed by Dunnett’s multiple comparison tests. In addition,  
Mann–Whitney U tests were used to compare the malignancy prob-
ability and SGR+ distribution between the benign and the malignant 
nodules. To compare the malignancy probability among three models  
(single-, dual- and multidimension models), Friedman tests followed 
by Dunnett’s multiple comparison tests were applied. Two-tailed  
adjusted P values were obtained and represented by asterisks, with 
*P < 0.05, **P < 0.01 and ***P < 0.001. All statistical analyses were  
implemented using IBM SPSS 26.0. All plots were drawn by Graph-
Pad Prism 9 and Origin 2021. All figures were created by Adobe  
Illustrator 2023.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The clinical data for this study were collected with the approval of the 
ethics committee and are subject to restrictions for this research. No 
publicly available datasets were used in this study. De-identified tabular 
data are strictly for noncommercial academic research and necessitate 
a formal agreement on data usage. Al requests complying with legal 
and ethical requirements for data use will be granted. Data requests 
may be made to the corresponding author (Weimin Li, weimi003@
scu.edu.cn). Requests will be processed within 2 months.

Code availability
The code is available on Github (https://github.com/simonsf/ 
C-Lung-RADS).
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Extended Data Fig. 1 | Preprocessing and filtering of lung cancer screening datasets. Diagram describing the inclusion and exclusion in this study.
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Extended Data Fig. 2 | The ground truth for determining the risk of 
malignancy in pulmonary nodules. a, The flowchart of evaluation of the 
pulmonary nodules. b, The ground truth of the malignancy risk of pulmonary 

nodules annotated by clinicians. c, Purposes and ground truth of the two phases 
of C-Lung-RADS system. Phase 1 aimed to classify initial risk of nodules; Phase 2/2+ 
aimed to identify suspicious malignant nodules and refine risk level of nodules.
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Extended Data Fig. 3 | Size distribution of solid components of mGGNs in 
the primary dataset and independent testing dataset. a, d, Size distribution 
of solid component in all mGGNs in the primary dataset and independent 
testing dataset, respectively (gray line, Gaussian fitting curve). b, e, Size of 
solid components of mGGNs with different ratings in the primary dataset 
and independent testing dataset, respectively. The lines and plus signs in the 
box-and-whisker plots represent the median and mean values, respectively. 
The whiskers range from 25th percentile minus 1.5 times interquartile range 
(IQR) to 75th percentile plus 1.5 times IQR, and outliers below and above the 
whiskers are drawn as individual dots. The number of mGGNs with different 

ratings in the primary dataset and independent testing dataset could be 
referred to Supplementary Table 3. Statistical analyses were performed among 
four categories using Kruskal-Wallis H tests followed by Dunnett’s multiple 
comparison tests. Asterisks represent two-tailed adjusted P value, with  
* indicating P < 0.05, ** indicating P < 0.01, and *** indicating P < 0.001. The P values 
in (b) for the size of solid component between Label 2 and Label 3 was 0.999. The 
P values in (e) in Label 1 vs. Label 2, Label 1 vs. Label 3, Label 1 vs. Label 4, Label 2 vs. 
Label 3¸ Label 2 vs. Label 4¸ Label 3 vs. Label 4 were 0.929, < 0.001, < 0.001, 0.005, 
< 0.001, 0.999, respectively. c, f, Size distribution of the solid component of the 
malignancy in mGGNs, respectively (purple line, Gaussian fitting curve).
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Extended Data Fig. 4 | Risk and size distribution of nodules in the independent testing dataset. a, Four-category risk distribution of all nodules, solid nodules, 
mGGNs, and pGGNs. b, Size distribution of nodules with different risk ratings.
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Extended Data Fig. 5 | Proportion and size of malignant nodules in the primary dataset. a, The proportion of malignancy in all nodules, solid nodules, mGGNs, and 
pGGNs. b, The proportion of malignant nodules in different groups labeled 4. c, Size distribution of the malignant nodules in different groups including all nodules, 
solid nodules, mGGNs, and pGGNs.
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Extended Data Fig. 6 | Proportion and size of malignant nodules in the independent testing dataset. a, The proportion of malignancy in all nodules, solid nodules, 
mGGNs, and pGGNs. b, The proportion of malignant nodules in different groups labeled 4. c, Size distribution of the malignant nodules in different groups including 
all nodules, solid nodules, mGGNs, and pGGNs.
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Extended Data Fig. 7 | The malignancy probability and SGR+ distribution 
of the benign and malignant nodules in the three datasets predicted with 
single-, dual-, and multidimensional features. The distribution of the benign 
and malignant nodules in the training dataset (a, b); internal testing dataset  
(c, d); independent testing dataset (e, f). The malignancy probability predicted 
by three models are visualized in scatter plots (a, c, e) with distribution (median 
with interquartile range). Statistical analyses in (a, c, e) were performed using 
Mann-Whitney U tests to compare the benign and the malignant for the same 
model, and using Friedman tests followed by Dunnett’s multiple comparison 

tests to compare the single-, dual-, and multidimension models. Asterisks 
represent two-tailed adjusted P value, with ** indicating P < 0.01 and *** indicating 
P < 0.001. The P values in (e) for malignancy probabilities of the malignant in 
single-dimension vs. dual-dimension and dual-dimension vs. multidimension 
were 0.002 and 0.771, respectively. SGR+ distributions are plotted as floating bars 
with min to max (b, d, f), where the line is the mean. Statistical analyses in (b, d, f) 
were performed using Mann-Whitney U tests to compare the SGR+ of the benign 
and the malignant used in the multidimension model. Asterisks represent two-
tailed P value, with *** indicating P < 0.001. The P value in (f) was 0.141.
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Extended Data Fig. 8 | The distribution of nodules with four risk classes identified by C-Lung-RADS and Lung-RADS V2022. a,b, The proportion of nodules at 
different risk levels in the internal testing dataset (a) and the independent testing dataset (b).
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Extended Data Fig. 9 | The application of C-Lung-RADS. a, The detail of mobile CT unit equipment. b, CAM diagram of deep learning model. c, The AI report with 
C-Lung-RADS generated corresponding imaging analysis and assessed pulmonary nodules. d, Examples of C-Lung-RADS to reduce misdiagnosed and missed cases. 
CAM, class activation map.
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