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Abstract

Network approaches to psychopathology have become increasingly common in

mental health research, with many theoretical and methodological developments

quickly gaining traction. This article illustrates contemporary practices in applying

network analytical tools, bridging the gap between network concepts and their

empirical applications. We explain how we can use graphs to construct networks

representing complex associations among observable psychological variables. We

then discuss key network models, including dynamic networks, time‐varying net-

works, network models derived from panel data, network intervention analysis,

latent networks, and moderated models. In addition, we discuss Bayesian networks

and their role in causal inference with a focus on cross‐sectional data. After
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presenting the different methods, we discuss how network models and psychopa-

thology theories can meaningfully inform each other. We conclude with a discussion

that summarizes the insights each technique can provide in mental health research.

K E YWORD S

network analysis, network modeling, network psychometrics, network psychopathology

1 | INTRODUCTION

The contemporary landscape of mental health research increasingly

recognizes the intricate complexity of mental disorders as bio-

psychosocial systems (Davies & Roache, 2017). This recognition re-

flects a significant shift from traditional models, acknowledging that

mental health issues cannot be fully understood through isolated

symptoms or singular causal pathways; instead, they are products of

complex interactions among biological, psychological, and social fac-

tors (Freedman, 1995; Fried, 2022). This systems perspective un-

derscores the dynamic nature of mental health, where each

component influences and is influenced by others in a constantly

evolving network (Borsboom, 2017a).

Network approaches have highlighted a critical gap in traditional

methods in clinical research. Historically, clinical approaches have

often considered mental health through a more reductionist lens,

which has its merits in some contexts but tends to oversimplify the

multifaceted and interconnected nature of mental disorders (Kendler

et al., 2011). The need for methodologies that can holistically address

the complexity of these systems has become increasingly apparent,

driving innovation and paradigmatic shifts in mental health research

(Borsboom, Deserno, et al., 2021).

Network models have emerged as a fitting response to this need,

offering a methodological framework that naturally accommodates

the complexity of mental health disorders (Borsboom, 2017b; Ebra-

himi, 2023; Fried et al., 2017). Network models not only serve as

descriptive tools but also stand on their own as valuable tools for

hypothesis generation. The ability to generate hypotheses about

influential pathways within the network opens up new avenues for

understanding how changes in one aspect of the system might ripple

through and impact the overall mental health of an individual

(Borsboom & Cramer, 2013; McNally, 2016). This has led to a

growing interest in network psychometrics, which aims to model

correlational patterns in psychological phenomena—such as symp-

toms, traits, affects, behaviors, cognitions, desires, abilities, and

environments—in terms of interactions among their basic constitu-

ents (Borsboom, Deserno, et al., 2021). Over the last few decades,

several psychological phenomena, including intelligence (Van Der

Maas et al., 2006), personality (Cramer et al., 2012), psychopathology

(Borsboom & Cramer, 2013), and attitudes (Dalege et al., 2016), have

been reconceptualized as networks. This shift has necessitated the

development of innovative methodologies to explore their properties

under this new lens, further advancing our understanding of mental

health in its full complexity.

The evolution of statistical methods in network psychometrics

has significantly enriched the psychometrician's toolbox, providing a

diverse array of tools that can be used in many scenarios. A few

examples of such tools include network models for cross‐sectional
(Briganti et al., 2023; Epskamp, Waldorp, et al., 2018; Marsman &

Haslbeck, 2023; Van Borkulo et al., 2014) and panel data

(Epskamp, 2020), community detection and dimensionality reduction

tools (Christensen et al., 2023; Golino & Epskamp, 2017), and infer-

ence measures (Huth, de Ron, et al., 2023; Jones, Ma, &

McNally, 2021; Williams & Mulder, 2020).

In this article, we offer a comprehensive overview of the current

landscape of network analysis in mental health research, bridging

theoretical network constructs and their empirical applications in the

field. First, we briefly introduce the most commonly used framework:

undirected network estimation in cross‐sectional data using fre-

quentist estimation techniques. We elected to keep the introduction

on these methods brief as other introductory texts already discuss

these methods in detail (e.g., Borsboom, Deserno, et al., 2021;

Epskamp & Fried, 2018; Isvoranu et al., 2022). Following this intro-

duction, we elaborate on new lines of research that are currently

growing prominently in the field of network analysis in mental health

research: psychometric network modeling, Bayesian estimation

techniques, causal inference, and longitudinal data analysis. Finally,

we discuss how network models can effectively enhance the

description, prediction, comprehension, and treatment of mental

health disorders, thereby enriching the field of psychopathology with

nuanced insights and methods.

2 | THE ELEMENTS OF A NETWORK

A network consists of a set of nodes and a set of edges connecting

the nodes. In a statistical network model, such as the types we

discuss below, nodes represent variables, and edges represent sta-

tistical relationships between these variables, such as log‐linear re-

lationships, (partial) correlation coefficients or regression coefficients

(Borsboom, van der Maas, et al., 2021; Burger, Isvoranu, et al., 2022).

Network science typically starts by observing nodes and edges rep-

resenting a system (e.g., social connections, the Internet, the World

Wide Web, or transportation networks, to name a few examples) and

then focuses on examining their properties. Psychometric networks,

however, involve an additional challenge: they cannot be simply

observed but must be inferred from the available data (Bringmann

et al., 2019; Epskamp, Borsboom, & Fried, 2018). Nodes can define
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variables at different levels of abstraction, such as symptoms versus

disorders and personality facets versus traits. The most informative

abstraction level depends on the research question at hand. Different

abstraction levels can also provide different perspectives on the

same psychological phenomenon (Costantini & Perugini, 2012).

Edges can be undirected or directed, indicating symmetrical re-

lationships among nodes or asymmetrical relationships. Edges can be

weighted, but typically, special attention is also placed on whether or

not edge weights are exactly equal to 0 (indicating that an edge is not

included in the network). Several methods have been developed for

estimating the network structure (including edges) and the edge

weights (parameters associated with edges), with different ap-

proaches offering different perspectives on specific types of data

(Borsboom, van der Maas, et al., 2021; Briganti et al., 2023; Cos-

tantini et al., 2015; Epskamp, Waldorp, et al., 2018; Isvoranu

et al., 2022).

Most of the methods described here belong to two broad fam-

ilies: Pairwise Markov Random Fields (PMRFs) and Directed Acyclic

Graphs (DAGs) (Ryan et al., 2022). Both represent relationships be-

tween variables but differ in their underlying structure, the types of

relationships they can capture, and the assumptions they impose on

the data. In PMRFs, (the absence of) undirected edges are used to

represent conditional (in)dependencies between pairs of variables

and are modeled using local conditional probability distributions. The

presence of an edge indicates that two nodes are conditionally

dependent given the others, whereas its absence indicates that they

are conditionally independent. In DAGs, directed edges can also

represent causal relationships between variables, with each edge

pointing from a cause (or parent node) to an effect (or child node).

DAGs are acyclic, meaning they contain no loops or cycles.

A DAG is a network that indicates causal relationships, and it is

not necessarily tied to a statistical representation. Different statis-

tical representations that utilize a DAG structure can be used, and

the exact parameters of such a statistical DAG depend on the sta-

tistical representation chosen. The most famous statistical repre-

sentation of a DAG is the Structural Equation Model (SEM), which

can be used in the case data are Gaussian and in which the param-

eters equate to linear regression coefficients (Pearl, 1998). A

parameter of zero indicates no causal effect. The larger structure of

the DAG imposes several constraints on conditional independence

relationships. For example, the DAG A → B → C indicates that A and C

are conditionally independent given B. Note: this DAG is equivalent

to the DAGs A ← B → C and A ← B ← C.

A PMRF uses an undirected network instead to encode condi-

tional independence relationships. Continuing the example, the

PMRF A — B — C also indicates that A and C are conditionally in-

dependent given B, but has no equivalent models (without intro-

ducing latent variables). The parameterization of the edges depends

on the distribution of the variables, but usually takes the form of

partial correlation coefficients (for Gaussian data) or (log)‐linear
regression coefficients (possibly standardized or averaged) for other

types of data. Epskamp, Haslbeck, et al. (2022) discuss several ways

in which the parameters of a PMRF can be interpreted, ranging from

descriptive (modeling pairwise interactions in a sparse manner) to

predictive (showing which variables would predict each other in

multiple regression models) and causal (hypothesis generating due to

a close connection with causal models such as DAGs, but a PMRF can

also be a causal model by itself, such as the Ising model).

While PMRFs can capture statistical associations between vari-

ables and are closely related to DAGs (Epskamp, Waldorp,

et al., 2018), they do not explicitly model causal relationships:

inference about causal effects requires additional assumptions or

interventions beyond the statistical associations represented by the

model. Conversely, DAGs are designed specifically for causal

modeling and inference but cannot capture mutual causation or

causal loops that may characterize some psychological phenomena

without being reformulated as temporal networks (Briganti

et al., 2023; Epskamp, Waldorp, et al., 2018; Haslbeck et al., 2022).

PMRFs are uniquely identified (no equivalent models) and easily

parameterized (allowing for weighted networks), whereas a DAG may

have many equivalent models and may be harder to parameterize.

PRMFs also rely on fewer assumptions than DAGs. DAGs, on the

other hand, allow for stronger causal interpretations. Below, we

discuss PMRFs and DAGs separately in more detail.

3 | PAIRWISE MARKOV RANDOM FIELDS

3.1 | The GGM, the Ising model, and the MGM

Different models can be used to define PMRFs for different types of

cross‐sectional data (Epskamp, Haslbeck, et al., 2022). When data are

Gaussian, the most appropriate model to use is the Gaussian graphical

model (GGM; Epskamp, Waldorp, et al., 2018; Lauritzen, 1996), which,

like commonly used models in factor analysis, is a model for the

variance‐covariance structure of the data (Epskamp, Rhemtulla, &

Borsboom, 2017):

varðxÞ ¼ ΔðI − ΩÞ−1Δ:

Here, x represents a set of random Gaussian responses (e.g., ques-

tionnaire responses of a random person), Δ represents a diagonal

scaling matrix that controls the variance of each variable, I represents

an identity matrix, and Ω represents a matrix of partial correlation

coefficients typically visualized and analyzed as a network structure.

When data are binary, the most appropriate model to use is termed

the Ising model (Marsman & Haslbeck, 2023; Van Borkulo

et al., 2014), which models the probability of obtaining a particular

set of responses:

PrðxÞ ¼
1
Z
exp

 
X

i

τixi þ
X

<i;j>
ωijxixj

!

:

Here, Z represents a normalizing constant, τi a threshold parameter

(intercept), and ωij a log‐linear relationship that quantifies the asso-

ciation between variables i and j after controlling for all other
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variables in the model. Again, a matrix Ω can be formed using the

individual ωij elements, typically visualized and analyzed as a network

structure. For data that contains a mixture of categorical (e.g., bi-

nary), continuous and count variables, the most appropriate model to

use is the Mixed Graphical Model (MGM; Haslbeck & Wal-

dorp, 2020), which we do not detail here.

3.2 | Estimating PMRFs

Several estimation methods have been proposed and evaluated to

estimate the parameters (especially the network parameters encoded

in the Ω matrices) models in psychological data (Blanken et al., 2022;

Huth, de Ron, et al., 2023; Isvoranu & Epskamp, 2022; Marsman &

Haslbeck, 2023). The most commonly used estimation methods rely

on frequentist estimates, meaning that they aim to find parameters

that maximize the (pseudo/penalized) likelihood function. In

maximum likelihood estimation, the parameters are chosen as the set

of parameters under which the data was the most likely. Analytic

standard errors can usually be obtained and used to threshold non‐
significant edges or to perform more complicated model search al-

gorithms (Blanken et al., 2022). In the case of the Ising model and the

MGM, however, joint maximum likelihood estimation is usually not

feasible due to the need to estimate the normalizing constant Z

(which is a sum over all possible outcomes). To this end, routines that

aim to estimate the Ising model or MGM models usually rely on the

pseudolikelihood instead (Keetelaar et al., 2024). Pseudolikelihood

estimators split the problem by estimating first a multiple (logistic)

regression model per variable and subsequently combining the esti-

mated regression parameters into a single matrix used to draw a

network. Finally, many researchers make use of “LASSO regulariza-

tion” which uses shrinkage to estimate network parameters that

perform better in predicting new responses and follow a sparse

structure (Epskamp & Fried, 2018; Tibshirani, 1996). The use of

LASSO regularization, however, is not uncontroversial, and it de-

pends on the dataset and research question if its use is warranted

(Blanken et al., 2022; Isvoranu & Epskamp, 2022; Williams &

Rast, 2020).

3.3 | Analyzing a network structure

Once nodes are defined and network edges are estimated, further

insights about network properties can be obtained. Some local

indices describe the properties of individual nodes. Centrality indices,

originally developed to determine the importance of individuals in

social networks, have been adapted and extended to psychometric

networks (Briganti et al., 2018; Costantini et al., 2015; Robinaugh

et al., 2016). However, they are difficult to interpret when applied to

networks involving random variables as nodes (Bringmann

et al., 2019). Other local indices have been developed specifically to

represent node‐level properties in psychometric networks. For

example, predictability quantifies the amount of variance that a node

shares with the rest of the network (Haslbeck & Waldorp, 2018).

Global metrics that summarize structures as a whole, such as density,

transitivity, and small‐worldness, have also been proposed (Cos-

tantini et al., 2015). Finally, community‐detection algorithms can be

applied to identify groups of densely connected nodes (For-

tunato, 2010), and bridge‐centrality metrics can determine the cen-

trality of nodes acting as bridges between different communities

(Jones, Ma, & McNally, 2021).

3.4 | Stability and accuracy of results

Since psychometric networks are estimated from data, it is important

to inspect whether the parameters of interest are estimated with

sufficient accuracy before drawing inferences from the properties of

a network's structure. Bootstrap and permutation‐based methods

have been developed to test the accuracy of network edge and

centrality estimates and other features such as communities

and group differences. We refer the reader to several tutorials and

introductory texts that exist on these methods (Borsboom, Deserno,

et al., 2021; Christensen & Golino, 2021; Epskamp, Borsboom, &

Fried, 2018; Fried et al., 2022; Van Borkulo et al., 2022).

4 | NETWORK PSYCHOMETRICS

4.1 | Network models and factor models

While network modeling has been proposed as an alternative to

latent variable modeling techniques commonly used in psychomet-

rics, interestingly, in some cases, there can be a full correspondence

between some networks and some latent variable models, including

factor and item response theory (IRT) models (Epskamp et al., 2021;

Epskamp, Kruis, & Marsman, 2017; Kruis & Maris, 2016; Marsman

et al., 2018; van Bork et al., 2021; Waldorp & Marsman, 2022). To

this end, in general, it is impossible to determine from on observa-

tional data whether a network or a latent variable model has

unambiguously generated the data at hand. If a latent variable model

underlies the data, an equivalent network model would generally be

highly clustered (Golino & Epskamp, 2017; Marsman et al., 2018). As

such, we cannot determine from the model fit alone if a clustered

network model or a latent variable model generated the data; a

combination of theoretical considerations and experimental in-

terventions is typically required (Costantini & Perugini, 2018;

Epskamp, Kruis, & Marsman, 2017).

The close relationship between latent variable modeling and

network modeling, however, does allow for these frameworks to be

closer linked than might be thought at first glance. For example, since

latent variables would emerge as clusters in an estimated network

structure, community‐detection algorithms applied on networks can

be used to explore the potential number of underlying latent vari-

ables (Christensen et al., 2023; Golino & Epskamp, 2017); a technique

termed Exploratory Graph Analysis (EGA). In addition, the close link
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readily allows for metrics and methods from factor analysis to be

applicable in network psychometrics, such as measurement invari-

ance testing, fit measures and meta‐analytic methods (Epskamp,

Isvoranu, & Cheung, 2022; Kan et al., 2020). These methods have

been implemented in the software package psychonetrics, which can

be used for network psychometrics and structural equation

modeling (SEM).

4.2 | Confirmatory network modeling

The close links between GGM networks and SEM and between Ising

models and IRT allow for techniques commonly used in latent vari-

able modeling to be applied in network modeling. One example of

such techniques is the ability to perform a confirmatory fit of a pre‐
defined network structure using confirmatory network modeling

(Epskamp, Isvoranu, & Cheung, 2022; Epskamp, Rhemtulla, & Bors-

boom, 2017; Kan et al., 2020). Just like how in factor modeling,

exploratory factor analysis (EFA) can be used to explore a factor

structure and confirmatory factor analysis (CFA) can be used to fit a

pre‐defined factor structure (in a new dataset), exploratory network

estimation algorithms can be used to estimate a network structure,

which can then be fit in a new dataset using CFA. This allows one, for

example, to test if a network structure replicates (Fried et al., 2022),

and for a fair comparison between (simple) factor models and

(sparse) network models (Kan et al., 2020).

4.3 | Latent network modeling

Many network studies include each questionnaire item as a separate

node. However, there are two problems with this approach. First, the

nodes in a network are treated as observed, and measurement error

is not considered. Particularly at the item level, measurement error is

likely to be present and may lead to spurious edges while attenuating

the edge weights of truly present edges. Second, because many

questionnaires focus on measuring broad constructs (e.g., a mental

disorder rather than individual symptoms), there are likely to be

semantically overlapping items (Fried & Cramer, 2017). In this case,

the nodes in the network are no longer separate entities, making it

difficult to accurately interpret the relationships between variables.

Latent network modeling (LNM; Epskamp, Rhemtulla, & Bors-

boom, 2017) has been developed to address these points. LNM es-

timates a network based on the implied latent variance‐covariance
structure of the data. This allows researchers to model conditional

independence relationships between latent variables without making

assumptions about directionality, as in SEM, or acyclicity, as in DAGs.

An advantage of LNM over estimating factor scores for each latent

variable and then fitting a network on the obtained factor scores is

that it avoids factor indeterminacy (Acito & Anderson, 1986; de Ron

et al., 2022). The residual network model (RNM) builds on the LNM

by formulating a network structure of the relationships between

variables that remain after fitting an LNM (Epskamp, Rhemtulla, &

Borsboom, 2017). These interactions can be interpreted as causal

influences or partial overlaps between items after accounting for the

latent variables in the network model. Both methods are imple-

mented in the lrnm function of the psychonetrics R package

(Epskamp, 2020).

Thus, LNM allows network analysis while accounting for mea-

surement error, and RNM allows one to estimate a network when

nodes are partially influenced by latent variables. However, one

needs to estimate a larger number of parameters in a network with

10 latent nodes than in a network model with ten (observed) nodes,

and this thus requires a larger amount of data. In situations where

the sample size relative to the number of parameters is limited, a

potential solution for combining items into a single node in the

network is taking the mean or sum score, although this approach

addresses the issue of semantically overlapping items it does not take

measurement error into account.

4.4 | Multi‐group and meta‐analytic network
modeling

In addition to confirmatory and latent network modeling, a final

range of methods from the factor analysis literature that can be

applied to network models concern methods that investigate homo-

geneity and heterogeneity across multiple datasets (Epskamp,

Isvoranu, & Cheung, 2022). These methods can be divided into two

classes: multi‐group models and meta‐analytic models. In multi‐group
modeling, multi‐group network models can be formed and used in a

way that is very similar to testing for measurement invariance in

factor analysis (Maassen et al., 2023; Meredith & Teresi, 2006;

Millsap, 2012). These methods can, therefore, be used to perform a

statistical test on whether or not a homogenous network structure

can underlie responses on two (or more) datasets (Fried et al., 2022;

Hoekstra et al., 2024). For a larger number of datasets, meta‐analytic
Gaussian network aggregation (MAGNA; Epskamp, Isvoranu, &

Cheung, 2022)—which is derived from meta‐analytic SEM

(Cheung, 2015; Cheung & Chan, 2005)—can be applied to estimate

one common network structure in addition to the extent of cross‐
study heterogeneity. While the nascent field of network psycho-

metrics and the large data requirements for individual network

studies make it hard to obtain a sufficiently large enough number of

studies to apply MAGNA, it has so far successfully been applied in the

study of post‐traumatic stress‐disorder (PTSD; Isvoranu et al., 2021),

a field in which the application of network modeling has been popular

in the past decade.

5 | THE BAYESIAN APPROACH TO NETWORK
ANALYSIS

Estimating a network from data involves two fundamental questions.

First, is there an edge between two nodes (i.e., an edge connecting

variables A and B?)? Second, if there is an edge, how strong is the
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effect (i.e., the edge weight)? The first question concerns testing,

while the second concerns estimation. Although a Bayesian approach

can be used to answer both questions, the primary focus in this

section is on whether an edge is present or absent.

The literature on the network analysis of psychological data has

mostly focused on estimation, whereas hypothesis testing of whether

anedge exists remains underdeveloped.Networksoften lack several of

their potential connections. This can be due to two reasons: the con-

nections are missing because their effect is absent (the two variables

are conditionally independent) or because there is too little informa-

tion to conclude its presence. Fortunately, a test can distinguish be-

tween the evidence for edge absence and the absence of evidence: the

inclusionBayes factor. This sectionwill provide ageneral overviewof the

Bayesian approach to network analysis, discuss Bayesian hypothesis

testing using the inclusion Bayes factor, and finally offer a discussion of

BayesianNetwork (BN) estimation. TheBayesianmethods for network

analysis described here are implemented in the user‐friendly package

easybgm (Huth, Keetelaar, et al., 2023).

5.1 | Basics of Bayesian inference

The Bayesian approach to evaluating or testing a network structure

begins with assessing how well the network structure can predict

newly observed data, P(data∣structure s). Considering a network with

three nodes and edges without direction, there are eight possible

structures (Figure 1). The problem lies in determining which of these

possible structures will produce the data that has not yet been seen.

To solve this problem, a Bayesian assigns prior weights (i.e., proba-

bilities) to each possible structure to reflect the ignorance about the

exact network structure that would produce the data, P(structure s).

Typically, a default choice of prior ignorance is considered, and an

equal prior probability is assigned to each possible structure. That is,

each of the eight structures in Figure 1 receives a prior weight of 1/8.

In practice, these prior probabilities can be assigned in different

ways.1

Regardless of how the prior probability was specified, Bayes' rule

can be used to update prior probabilities to posterior probabilities

once the data are observed:

Pðstructure s j dataÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Posterior Probability

¼
Pðdata j structure sÞ

PðdataÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Predictive

Update Factor

� Pðstructure sÞ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
Prior Probability

The predictive update factor considers how well structure s predicted

the observed data relative to how well all possible network struc-

tures predicted that data. Structures that predicted the data well

receive an increase in plausibility, while structures that predicted the

data poorly receive a decrease in plausibility. The posterior proba-

bility resulting from this update represents all the information

available about the structure after seeing the data. It conveys how

plausible it was that this particular structure produced the data at

hand. Figure 1 shows the posterior probability for each structure of

our imaginary three‐node network.

One can imagine that with more variables, there are more po-

tential network structures. Therefore, the posterior probability has

to be divided over more potential structures, indicating less certainty

that a particular structure generated the data at hand. Indeed, in

practice, it may be highly uncertain which structure generated the

data at hand (see, for example, the empirical analyses in Marsman &

Haslbeck, 2023; Marsman et al., 2022). Fortunately, the Bayesian

approach can express this uncertainty in terms of posterior proba-

bilities, which is impossible with other approaches. If this uncertainty

is ignored, researchers risk overconfidence in uncertain results

(Hinne et al., 2020; Hoeting et al., 1999). This issue has received

much attention in the recent network analysis literature (e.g., see

Fried et al., 2018; Jones, Williams, & McNally, 2021; Marsman &

Rhemtulla, 2022, for recent discussions). By acknowledging this un-

certainty, the Bayesian approach allows for inference that general-

izes better and is more transferable (Sekulovski, Keetelaar, Huth,

et al., 2023; Williams & Mulder, 2020).

F I GUR E 1 The eight possible structures for a three‐node network with their prior and posterior probabilities.
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5.2 | A Bayesian test for the presence or absence of
edges

The structure probabilities above can be used to answer the first

question of edge presence or absence in a network. There are two

possible hypotheses2 for the edge between nodes A and B:

� H1: There is an edge between the variables A and B;

� H0: There is no edge between the variables A and B.

It is necessary to evaluate which hypothesis is more plausible for

the data at hand, that is, whether network structures with a partic-

ular edge are better at predicting the observed data than network

structures without the edge. Since no assumption is made about the

rest of the network in the evaluation (i.e., whether there is an edge

between variables A and C or not), all possible structures are

considered simultaneously. To do this, the prior (posterior) proba-

bilities of all structures where the edge A — B is present (shown with

a solid frame in Figure 1) and of all structures where the edge A — B is

absent (shown with a dashed frame) are summed to obtain the prior

(posterior) probabilities for the two hypotheses. In our example in

Figure 1, the prior edge inclusion probability is obtained with

PðH1Þ ¼ Pðstructure 2Þ þ Pðstructure 5Þ þ Pðstructure 6Þ

þ Pðstructure 8Þ ¼ 0:5

and the posterior edge inclusion probability with

PðH1 j dataÞ ¼ Pðstructure 2 j dataÞ þ Pðstructure 5 j dataÞ

þ Pðstructure 6 j dataÞ þ Pðstructure 8 j dataÞ ¼ 0:82:

Conversely, the prior edge exclusion probability is obtained with

PðH0Þ ¼ Pðstructure 1Þ þ Pðstructure 3Þ þ Pðstructure 4Þ

þ Pðstructure 7Þ ¼ 0:5

and posterior exclusion probability with

PðH1 j dataÞ ¼ Pðstructure 1 j dataÞ þ Pðstructure 3 j dataÞ

þ Pðstructure 4 j dataÞ þ Pðstructure 7 j dataÞ ¼ 0:18:

The next step is to pit the competing hypotheses against each other

to determine which is better at predicting the observed data. To do

this, the posterior probability of inclusion is compared to the pos-

terior probability of exclusion:

PðH1 j dataÞ
PðH0 j dataÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

posterior
inclusion odds

¼ BF10|ffl{zffl}
Bayes
factor

�
PðH1Þ

PðH0Þ
|fflfflffl{zfflfflffl}

prior
inclusion odds

:

As before, the predictive update factor can be used to update the prior

beliefs to posterior beliefs. In this case, the prior odds are updated by

contrasting two hypotheses to the corresponding posterior odds using

the Bayes factor, which is the primary Bayesian tool for comparing

models or hypotheses (Kass & Raftery, 1995; Wagenmakers

et al., 2016). The Bayes factor compares how likely the observed data

are under the hypothesis that the edge A — B is included (i.e.,H1) with

how likely the data are under the hypothesis that this edge is excluded

(i.e., H0). This is called the inclusion Bayes factor (Huth, de Ron,

et al., 2023; Marsman et al., 2022; Marsman & Haslbeck, 2023; Seku-

lovski, Keetelaar, Huth, et al., 2023). In the example, the inclusion

Bayes factor is BF10 ¼ 0:82
:18 =

0:5
0:5¼ 4:56, which means that the data are

approximately five times more likely to come from a network with the

A−B edge than fromanetworkwithout it (i.e., evidence for conditional

dependence). Conversely, evidence for edge exclusion can be obtained

by acquiring the reciprocal of the Bayes factorBF01 ¼ 1
BF10

(the change is

noted in the subscript). A Bayes factor of 1 indicates equal evidence for

both hypotheses and a Bayes factor BF10 less than one indicates evi-

dence for exclusion (i.e., conditional independence). Bayes factors are

continuous measures of evidence, but categorizations have been

introduced to classify them. A Bayes factor of up to three is often

considered weak evidence, up to 10 is considered moderate evidence,

andmore than 10 is considered strong evidence (Jeffreys, 1961). Thus,

in the example, the conclusion is that moderate but not compelling

evidence exists for an edge between nodes A and B.

5.3 | The Bayesian approach to parameter
estimation

The previous section focused on answering the question of whether

there is an effect of one variable on another in the network, more

specifically, on whether a direct relationship between the two

variables exists. However, the Bayesian approach can also answer

the second question of this section and estimate network parame-

ters such as edge weights. Suppose that structure five in Figure 1 is

the most likely structure for the data, such that an edge likely exists

between variables A and B in the example. The corresponding edge

weight is denoted by the symbol θAB. As with the structures, it is

essential to consider how well this parameter predicts the data at

hand. Since it is a priori unknown which values generate the yet

unseen data, prior plausibilities must be specified for the different

values the parameter could take in the form of a continuous

probability distribution, denoted p(θAB). Considering, for instance,

the bell‐shaped curve of a normal distribution with a mean of 0 and

a variance of 1 as the prior probability distribution, the value 0 is

the most plausible value the parameter could take because it is at

the top of the distribution. Moving away from this value in either

direction, increasingly fewer beliefs are assigned to the corre-

sponding parameter values. The Bayes' rule can be used to update

our prior probability distribution into a posterior probability

distribution:

pðθAB j data; structure 5Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Posterior Distribution

¼
Pðdata j θABÞ

PðdataÞ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

Predictive

Update Factor

� pðθAB j structure 5Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Prior Distribution

:
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After the data is obtained, the posterior probability distribution

resulting from this prediction update is all information known about

the parameter at the current moment.

6 | NETWORKS FROM LONGITUDINAL DATA

In psychology, understanding how processes unfold over time is often

crucial and hardly possible when relying solely on cross‐sectional data
(Epskamp, Hoekstra, et al., 2022). Similar to cross‐sectional networks,

numerous estimation techniques are available for longitudinal data

(Blanchard et al., 2023; Burger, Hoekstra, et al., 2022). If longitudinal

data are available, network edges can encode different types of in-

formation. Some network models, such as the multilevel graphical

vector‐autoregressive network (GVAR; Epskamp, 2020; Epskamp,

Waldorp, et al., 2018), provide three types of model outputs. In tem-

poral networks, directed edges encode information about how within‐
person deviations of a node at some time point relate to within‐person
deviations in itself or another node's states in the future. Contempo-

raneous networks, on the other hand, contain undirected edges and

encode symmetric relationships among different nodes' states,

encoding within‐person relationships within the same window of

measurement (after controlling for temporal effects). In between‐
person networks, undirected edges represent symmetric relation-

ships between a person's typical levels of each node across time—

individual differences in stable averages. Whereas the temporal and

contemporaneous networks can also be estimated on a single person's

longitudinal data, the between‐person network can only be estimated

if longitudinal data of multiple individuals are available (Costantini

et al., 2019). Network models also differ in their idiographic versus

nomothetic focus. Some models focus solely on person‐specific re-

lationships (Haslbeck & Ryan, 2022), while others integrate within‐
person and between‐person phenomena, for instance, using a multi-

level framework (Bringmann et al., 2013). Finally, a third class of

models does not encompass inter‐individual differences in processes

(Epskamp & Fried, 2018). In this section, we provide an overview of

different approaches to modeling network structures in longitudinal

data.

6.1 | Vector autoregressive network models

In the parlance of network psychometrics, a temporal network is one

where the edges represent relationships between variables over

time. This definition is contrasted with the previously described

cross‐sectional networks, where the edges represent some measure

of contemporaneous association. There are many different kinds of

temporal network models used in network psychometric research

today (Blanchard et al., 2023), and most are extensions or elabora-

tions of the vector autoregressive model (VAR; Lütkepohl, 1991), such

as the commonly used GVAR model mentioned above. The VAR

model is the simplest of temporal models as it poses the temporal

relations between variables as being (a) linear and (b) only at a given

time lag (typically at a lag of 1, though the VAR framework does allow

for arbitrary lag values). A VAR model of lag 1 has the following

standard form:

xt ¼ μþ Bðxt−1 − μÞ þ εt;

In which xt is the vector of observed variables at timepoint t, μ is a

vector of (person‐wise) means, B is a matrix of regression co-

efficients that relate the values of xt to xt þ 1, and ɛt is the inno-

vation vector. The B matrix, also termed the temporal network, is of

interest because it represents how the variables in the psycho-

metric network are related to one another over time. In addition to

B, researchers are typically also interested in modeling the

variance‐covariance structure of ɛt as a network (in which case the

VAR model becomes a GVAR model), termed the contemporaneous

network, to model relationships in the same window of measure-

ment. The temporal and contemporaneous networks can be used in

a graph‐theoretic sense, and various network statistics can be

calculated. The above is a simple VAR and can be modified to

include time trends (gradual increases or decreases in the vari-

ables), seasonal effects (cyclical changes, such as positive mood

increasing during weekends), and exogenous predictors (trait level

characteristics and demographics).

While VAR models, at their simplest, are useful exploratory tools

capable of identifying possible dynamical relations between variables

over time, caution must be taken in interpreting them as complete

descriptions of a psychological process for one core reason: the

standard VAR model is a stationary model. A stationary model or

system is one in which the properties of the model do not change

with respect to time. In the case of the standard VAR model, this

results in a system where neither the relations between variables nor

their expected values can ever change. Theoretically, this is a difficult

set of assumptions to impose on a psychological system, as it says

that no amount of disturbance, no intervention of any strength, can

result in permanent change. Stationarity also implies that we cannot

model behavior we are often intersted in, that is, no sudden transi-

tions, or emergent behavior that characterize psychological phe-

nomena (Borsboom, 2017b; Olthof et al., 2023; Wichers et al., 2019).

Indeed, reducing the means and variances of symptom measures is

precisely the aim of clinical treatment. Due to this property of sta-

tionarity, simple VAR models are not as useful for the identification

of intervention targets via control theory (Henry et al., 2021) or for

predictive modeling as a more elaborate nonstationary formal model

might be (see, for instance Robinaugh, Haslbeck, Waldorp, Kossa-

kowski, Fried, Millner, McNally, et al., 2019; Wang et al., 2023).

Instead, VAR models can be used to uncover broad patterns of

temporal relations in the same way an exploratory factor model can

be used to explore the structure of a given construct. The VAR

modeling framework has been extended in several ways that

radically improve its usefulness for exploring the dynamics of

psychopathology.
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6.2 | Time‐varying network models

The temporal networks discussed thus far have all been time‐
invariant, meaning their parameters do not change over time. How-

ever, from a clinical perspective, change in a network is often pre-

cisely what researchers, patients, and therapists are interested in. A

core idea of the network approach is that a network represents a

system of symptoms or a system underlying symptoms

(Borsboom, 2017a; Cramer et al., 2016; Haslbeck et al., 2022).

Therefore, it could be expected that the network changes when the

symptoms of the disorder change. This might be the case in purely

observational studies, where changes in networks may be used as

early warning signals for transitions to a more problematic state

(Bringmann et al. (2023), van de Leemput et al. (2014), and Wichers

et al. (2016, 2019, 2020), but also see Dablander et al. (2022)).

However, it could also be interesting to track the impact of a given

treatment by investigating how the network model changes in

response to the treatment (van der Wal et al., 2022). At this time, this

field of research needs models that can identify alterations in the

network edges to detect such changes when moving from a healthy

to a depressed network or vice versa. In other words, time‐varying
models are necessary to capture changes in networks over time

(Haslbeck et al., 2022).

When estimating a time‐varying (network) model, ideally, a

separate “version” of the model of interest will be obtained at every

time point in the measured time interval. For example, considering

measures during a 2‐week interval, the model could be determined,

for example, on day 4 at 11 am, on day 12 at 3 pm, or any other time

point. However, estimating a model at each single time point repre-

sents a complex question. Clearly, the model cannot be estimated

using data only from a given single time point. To make estimation

feasible, close time points could be combined with the desired time

point. This procedure is justified if a version of local stationarity is

satisfied. One common form of local stationarity is that parameters

are smooth functions of time, which implies that the models at time

points that are very close to each other also have very similar pa-

rameters. Under this assumption, different methods can be used to

estimate a time‐varying network model. Bringmann et al. (2017,

2018) proposed a method using Generalized Additive Models (GAMs;

Wood, 2006), in which time serves as moderator of all parameters,

which can take on almost any (smooth) shape thanks to the flexibility

of GAMs. Another approach is to use some version of a moving

window or kernel smoothing approach (Haslbeck & Waldorp, 2015).

A simulation study comparing both methods in settings resembling

typical data from Experience Sampling Methodology (ESM) studies

can be found in Haslbeck et al. (2021).

Although methods based on smooth change are the most widely

employed for estimating time‐varying psychopathological networks,

numerous models exist that model change discretely. The simplest

example of a discretely changing network involves a change point

analysis. For instance, Bringmann et al. (2013) use a multilevel VAR

model to analyze data before and after a treatment program (the

change point). They introduce a dummy variable (with zeros for the

time points before and ones after the treatment) to test parameter

changes after treatment. If the change point (i.e., dummy variable) is

significant, two networks are required—one representing the period

before treatment and another representing the dynamics between

nodes after treatment. Otherwise, if there is no change, one network

representing the entire study period is sufficient, as observed in the

results of Bringmann et al. (2013). Identifying a change point or the

moment of discrete change without knowing its location is also

possible using change point analysis (Cabrieto et al., 2018).

In some cases, the process under study may switch between

different regimes, as seen in bipolar disorders shifting from a

depressive to a manic state and vice versa (Hamaker et al., 2016).

When a system shifts between these different regimes, change point

analysis becomes inadequate because it assumes only a few definitive

changes without considering back‐and‐forth transitions. In such in-

stances, regime‐switching analysis, like threshold autoregressive

modeling, proves more suitable (De Haan‐Rietdijk et al., 2016;

Hamaker et al., 2009). In this variant of a time‐varying VAR model,

the threshold variable is specified by the researcher and included

in the network itself, while the threshold value is estimated based on

the data. Alternatively, when the variable determining the regime‐
switching behavior is unknown, hidden Markov models might be

more appropriate (de Haan‐Rietdijk et al., 2017; Mildiner Moraga &

Aarts, 2023; Zucchini & MacDonald, 2009). Other approaches can

capture repeated changes that address the limitations of changepoint

detection and better scale to many change points in the time series

segmentation literature, for example, a method to estimate piecewise

constant GGMs using a group‐fused lasso (Gibberd & Nelson, 2017).

Furthermore, methods integrating discrete and continuous

changes are viable, such as a time‐varying model based on the

generalized additive framework combined with change point ana-

lyses (Albers & Bringmann, 2020). Another model capable of handling

both continuous and discrete changes is moderated time series

analysis, where changes in the network are related to a moderator

(Adolf et al., 2017; Bringmann et al., 2024; Swanson, 2020). While

most network changes primarily focus on therapeutic goals over

time, it is equally crucial to ascertain if specific contextual factors are

associated with the change rather than solely observing whether the

network changes over time. In such cases, moderation analysis

proves useful (for cross‐sectional moderation networks, see Hasl-

beck, 2022)). Depending on whether the moderation analysis in-

volves a discrete factor (e.g., being alone or with others) or a

continuous variable (e.g., stressful events), the network can change

either continuously or discretely (Bringmann, 2024; Bringmann

et al., 2024).

A topic closely related to the time‐varying models discussed here

is the topic of (non)‐stationarity. There are different definitions of

nonstationarity, which refer to different aspects of the distribution

being the same (stationarity) or not (nonstationarity) across time.

While there can be infinitely many processes generating nonsta-

tionary time series, one typically distinguishes between deterministic

and stochastic nonstationarity processes. The time‐varying models

fall into the category of deterministic nonstationarity since all
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parameters are estimated to be deterministic functions of time.

Similarly, time‐varying means (or trends) are also deterministic forms

of nonstationarity for the same reason. A well‐known example of a

process with stochastic nonstationarity is a random walk. Here, the

parameters do not change over time, but the distribution does

change across time (e.g., the variance goes to ∞ as t → ∞). For an

accessible introduction to the topic of stationary and nonstationary

time series, see Ryan, Haslbeck, and Waldorp (2023).

6.3 | Network models from panel data

Dynamic network models can be constructed from different types of

(intensive) longitudinal data. As different forms of data warrant

distinct analytical approaches, beyond matching the research ques-

tion of the investigator, the network model estimated must match the

type of data to be collected or available to the researcher. Intensive

longitudinal data are often measured through Ecological Momentary

Assessment (Shiffman et al., 2008, EMA) or the Experience Sampling

Method (Telford et al., 2012, ESM). These approaches often yield

repeated‐measurement data with a high measurement frequency,

including assessments that are frequently conducted hourly (e.g.,

every 3 h) or daily (e.g., diary studies). In contrast, more traditional

longitudinal or panel data often involve fewer (frequent) measure-

ments per person and a longer timespan between each subsequent

assessment, usually measured on a weekly, monthly, or yearly time-

scale. Such panel datasets often include a much larger sample size

(number of people) than typical in high‐intensity EMA/ESM studies.

The GVAR model has been generalized to apply to panel data-

sets (Epskamp, 2020) through the panelGVAR framework. This

model allows for the estimation of networks based on observed

variables, which may, for example, include nodes that are single

items or sum scores. The panelGVAR model can further be gener-

alized to incorporate a measurement model and, thus, latent vari-

ables as nodes in the network. Like SEM, the latent variable

panelGVAR model allows nodes to be measured by multiple in-

dicators to represent nodes as latent variables, thereby being able

to address measurement error (Epskamp, 2020).

The panelGVAR is technically a GVAR model with random means

(intercepts) across individuals but not random networks (slopes). As

panel data both includes multiple individuals (N > 1) in addition to

repeated measurements per person, network models from panel data

enable the disaggregation of within‐person from between‐person
effects (Curran & Bauer, 2011; Epskamp, 2020; Hamaker

et al., 2015). Combined with the autoregressive and cross‐lagged
effects, the VAR model enables the estimation of temporal parame-

ters, contemporaneous effects, and between‐person effects. Similar

to other dynamic network models, such as the multilevel vector

autoregressive model (Bringmann et al., 2013; Epskamp, Waldorp,

et al., 2018), dynamic network models from panel data result in a

temporal, contemporaneous, and between‐subject network.

The directed edges in the temporal network must be interpreted

in accordance with the longitudinal assessment window of the study

(Borsboom, Deserno, et al., 2021). For example, suppose a study has

measured depressive symptoms every month (e.g., across three or

four longitudinal assessment waves). In that case, the edges of this

temporal symptom network provide information on the extent to

which within‐person fluctuations in the current levels of one symp-

tom (e.g., feelings of worthlessness) predict within‐person fluctua-

tions in another symptom (e.g., depressed mood) a month later.

Correspondingly, if a study involves five (or another number of)

longitudinal assessment waves with 1 week between each assess-

ment, the directed edges in the temporal network reflect the pre-

dictive effect of one node on another a week later.

Similarly, edges in the contemporaneous network require

awareness of the time distance between the assessment waves of the

longitudinal study. Generally, the undirected edges in the contem-

poraneous network are described to reflect associations between

nodes that occur within the same measurement window (i.e. occur-

ring in a shorter temporal resolution than captured by the temporal

network; Epskamp, van Borkulo, et al., 2018). Following the previous

example with a weekly time lag, a positive edge between sleep dif-

ficulties and fatigue in the contemporaneous network reflects how

greater sleep problems than one's average are associated with more

fatigue within a weekly time window. Notably, both the temporal and

contemporaneous networks embody average within‐person effects,

reflecting within‐person effects that regularly occur across the sample

of individuals.

Finally, the panelGVAR model further yields a between‐subject
network based on person‐specific means over the study period

(Epskamp, 2020). As this person‐specific mean provides information

about the stable level of a variable over the study period, these nodes

can be thought to represent trait‐like variables, with the association

between nodes in the between‐subject network reflecting how higher

levels of a variable from the mean (e.g. physical activity) compared to

other individuals is associatedwithhigher or lower level from themean

of another variable (e.g. fatigue) compared to other individuals.

As network models estimated from panel data often include

longer‐term distances between assessments (e.g., weeks or months)

and are usually accompanied by self‐reported measurements

assessing a longer retrospective period (e.g., depressive symptoms

during the past month), these network models from panel data are

often suitable for addressing questions about the interplay between

longer‐term symptom relationship patterns, periodic tendencies, or

longer‐term habitual or behavioral patterns. Accordingly, network

models from panel data provide rich sources of information on the

dynamic interplay between symptoms occurring across longer pe-

riods and are suitable for a wide range of research questions across

psychological domains (e.g. clinical and developmental psychology;

Freichel et al., 2023; Hoffart et al., 2023).

6.4 | Idiographic network comparison

In recent years, there has been a growing interest in applying VAR

models to time‐series data to explore symptom dynamics at an
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individual level (Bringmann, 2021). This surge in interest is partly due

to the aim of uncovering individual differences in symptom dynamics.

However, the comparison of idiographic network structures to

identify the presence of heterogeneity is a challenging endeavor in

many applied settings. The applications of idiographic network

analysis utilize different approaches to estimate, inspect, and inter-

pret person‐specific network structures. Methods such as visual in-

spection, correlation computation, and multilevel data analysis

techniques, such as mlVAR, have been employed to discover indi-

vidual differences between idiographic network structures. However,

these approaches cannot directly test for (in)equalities between

idiographic network structures, leaving the door open to interpreting

all variability in the data in terms of individual differences. However,

not all variability directly results from individual differences (Hoek-

stra et al., 2023). Hoekstra et al. (2023) revealed that these tools

might erroneously indicate heterogeneity in instances where the

underlying network structures are homogenous. Such mis-

interpretations inflate the perceived extent of individual differences.

To address this challenge, the Idiographic Network Intervention

Test (INIT) has been introduced as a novel methodology for

comparing estimated idiographic network models (Hoekstra

et al., 2024). INIT accommodates the comparison of idiographic

network structures to determine the presence of heterogeneity, that

is, individual differences between idiographic network structures, by

contrasting a model assuming network equality against one that al-

lows for heterogeneity. This methodological advance extends com-

mon model comparison practices to idiographic network estimation,

providing a more rigorous testing framework to ascertain whether

the observed differences between idiographic network structures are

plausible given the data. By assuming homogeneity rather than het-

erogeneity as its null model, INIT contrasts with previous methods

that used heterogeneity as the starting assumption. This shift toward

a more conservative approach ensures that variance within the data

is attributed to individual differences only when sufficient evidence is

present. Such a cautious stance enhances the reliability of conclu-

sions drawn from idiographic network analysis, reducing the likeli-

hood of misattributing general variability found in time‐series data as

meaningful individual differences.

The INIT methodology offers a versatile tool for analyzing the

heterogeneity in idiographic network models across different con-

texts. In addition to enabling researchers to identify heterogeneity

between the idiographic network structures of two unique in-

dividuals, INIT can be applied to examine a change in the idiographic

network structure of a single individual across separate instances of

time‐series data. This application allows for assessing whether an

individual's network structure exhibits changes over time, providing

insights into the temporal stability of idiographic network structures.

Employing INIT, van der Tuin et al. (2023) have linked the sta-

bility of symptom networks over a year to changes in psychopa-

thology severity by examining individuals along the psychosis

severity continuum. Most individuals displayed stable symptom net-

works alongside a decrease in psychopathological severity, indicating

no direct correlation between network stability and severity change.

These findings challenge the idea that psychopathology severity and

idiographic networks are closely intertwined. Moreover, INIT's

broader application was demonstrated by Ebrahimi et al. (2024).

Investigating heterogeneity in idiographic depression symptom net-

works, Ebrahimi et al. (2024) found distinct symptom dynamics in a

large portion of individuals (63%) with similar symptom severity.

Their results highlight the nuanced and individualized nature of

psychopathological experiences beyond mere severity quantification

and underscore the importance of personalized approaches in un-

derstanding mental health.

6.5 | Rate of change network models

Most dynamic network models use previous time points to assess

how symptoms predict each other from one time point to the next.

Rate‐of‐change network models offer a different perspective on

symptom dynamics. Rate of change measures, such as the derivatives

of each symptom's time series, provide insight into how symptoms

are changing together over time—that is, whether the increases and

decreases in the activation in one symptom are associated (inversely)

with the increases (decreases) and decreases (increases) of other

symptoms in the system. The first‐order derivatives, often referred

to as velocity, can be used to estimate the rate of change and provide

insight into linear and nonlinear changes in symptom activations. To

estimate these derivatives, the generalized linear local approxima-

tion (GLLA; Deboeck et al., 2009) approach uses time delay em-

beddings or bins of time points in sequential “windows” of time

Equation (1).

0

B
B
@

xt¼1 xt¼2 xt¼3 xt¼4 xt¼5
xt¼2 xt¼3 xt¼4 xt¼5 xt¼6

⋮ ⋮ ⋮ ⋮ ⋮
xt¼T−4 xt¼T−3 xt¼T−2 xt¼T−1 xt¼T

1

C
C
A ð1Þ

The first‐order derivatives are then computed over each

sequence of time for each variable using GLLA to derive how vari-

ables change over time. One surprising feature of this approach is

that it is relatively robust to missing measurement points. Boker

et al., 2018 demonstrated that an error introduced by a missing

measurement point cancels itself out with enough time points before

and after it. Consequently, GLLA can capture continuous dynamics

across time at different intervals and remain robust to missing

measurement points.

Another feature of using derivatives to capture the dynamics of

symptoms is that nonlinear relationships can be captured. Consid-

ering two variables, one with an increasing stepwise linear time

pattern and the other with a U‐shaped pattern, most linear ap-

proaches estimate this relationship as zero, given that at different

time points, the U‐shaped pattern decreases and later increases

when the other time series is strictly increasing. The first‐order
derivative reveals that the rate of change is increasing similarly

for both and, therefore, captures the (nonlinear) relationship be-

tween these two symptoms across time.

BRIGANTI ET AL. - 11 of 24



A network model can then be estimated using the derivatives

of each symptom to establish the conditional relationships between

symptoms as they change across time (Golino et al., 2022). These

relationships can be interpreted as the extent to which two

symptoms change together across time. Using each person's de-

rivatives, networks can be estimated at the sample, group, and

individual levels (with enough time points). At the individual level, a

person's symptom interactions can be monitored throughout an

intervention to determine the specific effects the intervention has

on the individual. The group‐ and sample‐level dynamics can be

used to determine the course of multiple interventions and the

overall effect of an intervention (respectively).

6.6 | Network intervention analysis

Network intervention analysis (NIA) was introduced in 2019 as a

methodology to combine network analyses with experimental

research (Blanken et al., 2019). With the introduction of mixed

graphical models (Haslbeck & Waldorp, 2020), it became possible to

incorporatedifferent variable types into a singlemodel. Leveraging this

possibility, NIA incorporates a treatment allocation variable into the

network. As such, theNIA allows the investigation of symptom‐specific
treatment effects within a network analytical context. The upside of

investigating these symptom‐specific relations using network analysis

is that the interrelations between the symptoms themselves are taken

into account, allowing us to differentiate between direct and indirect

treatment effects.

A particular strength of combining network analysis with a

randomized controlled trial is that the randomization process en-

sures that treatment can influence the symptoms and not vice

versa. Therefore, even though the links in the network are undi-

rected, the NIA identifies the symptoms that are directly affected

by treatment.

More recently, NIA has been applied to contrast active treat-

ment conditions. In these analyses, any identified link between the

treatment allocation variable and a particular symptom reflects

treatment differences. Interestingly, when applied to contrast cogni-

tive and behavioral treatments for insomnia, it was shown that while

both active treatments are indistinguishable at the overall severity

level (i.e., as reflected in sum scores), NIA could reveal that the

treatments showed unique patterns in the symptoms they were

targeting (Blanken et al., 2021; Lancee et al., 2022). These unique

effects are in line with their theoretical underpinnings and could offer

opportunities for precision medicine. Accordingly, using network

analyses in combination with RCTs may provide new ways to inves-

tigate treatment mechanisms.

The way NIA was introduced is only one specific example of

how network analysis and experimental research designs could be

combined. For each dimension (i.e., the number of assessments,

type of manipulation, included variables, model type), NIA could be

adapted. First, NIA can be applied to test pre‐post differences (e.g.,

Boschloo, Bekhuis, et al., 2019; Boschloo, Cuijpers, et al., 2019), or

to reflect sequential differences throughout the treatment (e.g.,

Bernstein et al., 2023). Second, the framework can be generalized

to incorporate any experimental condition into the networks; this

approach is not restricted to RCTs. Third, the variables that are

included in the networks can be varied, for example, to reflect

treatment processes rather than symptoms (e.g., Lancee

et al., 2022). Finally, rather than evaluating the effect of treat-

ments on symptoms, we can model the effect of treatments on

their links through moderated network models (Fishbein

et al., 2023).

7 | CAUSAL INFERENCE AND BAYESIAN
NETWORKS

Similar to other graphical models, BNs associate a probability distri-

bution with a graph: in this case, a DAG G = (V, E) where V is a set of

nodes representing the random variables X1, X2, …, Xn, and E is a set of

directed edges indicating conditional dependencies (Briganti

et al., 2023). If two nodes are separated in the graph, the corresponding

variables are independent in probability. The graphical separation

criterion is called d‐separation in BNs and is defined as follows: two

nodes Xi and Xj are d‐separated by some other node(s) S if along every

path between Xi and Xj there is a node that belongs to S or, instead,

there is a node that is part of an unshielded collider but does not belong

to S nor do its descendants. A collider is defined as the pattern of edges

Xj → Xi ← Xk; if there is no edge between Xj and Xk, it is called an

unshielded collider or v‐structure; if Xj and Xk are connected by an

edge, it is called a shielded collider.

This definition has three important implications. First, each nodeXi
in a BN is conditionally independent of its nondescendants given its

parents Pa(Xi). The joint probability distribution of the network can

then be expressed as

PðX1;X2;…;XnÞ ¼∏
n

i¼1
PðXi j PaðXiÞÞ: ð2Þ

As a result, BNs are computationally efficient, and the behavior of

specific symptoms from their local distributions can easily be studied.

Second, the subset of symptoms that completely explains the behavior

of Xi directly from the DAG can be read: it comprises the parents, the

children and the spouses of Xi. Third, d‐separation bridges from

probability to causality by identifying v‐structures as a pattern of

causal effects that has the unique probabilistic behavior shown in

Figure 2, which makes it identifiable by purely statistical means. A

practical example involving six symptoms (“Anxiety”, “Insomnia”,

“Depression”, “Fatigue”, “Withdrawal” and “Irritability”) is shown for

illustration in Figure 3. Overall, BNs are the original artificial intelli-

gence model: their construction allows them to be learned automati-

cally and to provide a working model of pathology that can be used for

automated reasoning, as discussed below.
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7.1 | Principles of causal inference with Bayesian
networks

Causal inference in BNs treats edges as causal relationships rather

than just as statistical correlations. On the one hand, the correlation is

symmetric: if X is correlated with Y, then Y is correlated with X. On the

other hand, if X causes Y, an intervention on X should change the dis-

tribution of Y, but an intervention on X should not change the distri-

bution of Y. Their semantics are very different, but we rely on d‐
separation to identify whether either type of relationship exists

F I GUR E 3 An example of a Bayesian network representing potential causal relationships in psychopathology. The directed edges illustrate
hypothesized causal influences among various symptoms, such as “Anxiety” leading to “Insomnia” and “Depression” influencing “Withdrawal”.

The Markov blanket of “Depression”, consisting of “Anxiety” (parent node), “Insomnia” (spouse), “Fatigue” and “Withdrawal” (children), is
highlighted in gray. The local distributions defined in Equation (2) take the form shown below the network.

F I GUR E 2 Directed and undirected
graphical separation, illustrated using all

possible patterns of three nodes connected by
two edges.
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between two variables in the DAG. In the words of Pearl, 1988: “It

seems that if conditional independence judgments are byproducts of

stored causal relationships, then tapping and representing those re-

lationships directly would be a more natural and more reliable way of

expressingwhatwe knowor believe about theworld. This is indeed the

philosophy behind causal BNs.”

As discussed above, v‐structures represent a configuration in

BNs where two or more variables converge on a common effect,

forming a V‐shaped structure. This configuration is particularly

challenging in causal inference because it can introduce spurious

associations between the converging variables when conditioning

on the collider. Specifically, conditioning on a collider can open a

previously closed path in the network, potentially leading to

biased estimates and false causal interpretations (Rohrer, 2018).

Despite these challenges, collider structures can be useful in hy-

pothesis testing and model specification. They allow researchers

to explore and control for potential sources of bias, enhancing the

robustness of causal conclusions drawn from BNs (Lipsky &

Greenland, 2022).

Using BNs as causal network models requires careful consider-

ation of several essential conditions. First, the structure of theBNmust

accurately reflect the underlying causal relationships among the vari-

ables and that there are no cyclic relations between them. We should

leverage domain knowledge available from experts and from the

literature to validate the directed edges as plausible causal relation-

ships. Second, the data used to construct the network should be

representative of the population we would like to study, sufficient in

quantity, and free of sampling bias and systematic patterns of missing

values. Third, we should critically examine the theoretical assumptions

underlying causal inference in BNs: the faithfulness condition and the

absence of hidden confounders. The faithfulness condition requires

that the observed probabilistic dependencies are entirely due to the

causal structure of the network. The lack of hidden confounders,

defined as unobserved variables that are parents of at least two

observed variables, avoids the risk of edges representing spurious

causal effects.

Violations of these assumptions can lead to incorrect causal in-

terpretations. However, even if they are satisfied, causal in-

terpretations are inherently limitedwhenusing observational data and

often require supplementary experimental or longitudinal data for

validation.

7.2 | Estimation of Bayesian networks

The estimation of BNs integrates observed data with prior beliefs,

using Bayesian inference to determine which edges are supported by

the information available and to estimate the values of network pa-

rameters. To estimate the structure of the network, the constraint‐
based algorithms can be employed, such as the PC algorithm

(Colombo & Maathuis, 2014), which use conditional independence

tests to establish conditional independencies and are designed

explicitly for causal discovery; score‐based algorithms, which are

general‐purpose optimization algorithms that use scoring methods

for network models; and hybrid algorithms, which combine both in-

dependence tests and scoring methods for improved accuracy. These

algorithms automate the model selection process in the spirit of

machine learning. An overview of the algorithm, scoring methods and

conditional independence tests available from the literature are

described in (Kitson et al., 2023; Scutari et al., 2019). After the

network structure is available, estimating the parameters of the local

distributions from Equation (2) is an application of classical Bayesian

statistics.

7.3 | Bayesian inference in BNs

BN inference is the process of drawing conclusions from the

network through belief updating or causal reasoning. These con-

clusions take the form of conditional independence statements or

posterior probabilities and densities, and they can provide signifi-

cant insights into the dependence and causal structure of the

symptoms. BNs are constructed to provide a working model of

reality that can be used for automated reasoning, either by

replacing clinical investigations with simulation experiments

(approximate inference) or by combining graphical manipulations and

local computations (exact inference). In both cases, the BN repre-

sents a working model of the world that a computer can under-

stand, and inference is automated by computer algorithms that can

produce the desired conclusions, given only an event of interest and

evidence on the patient's current state. Two examples of exact

inference algorithms are variable elimination and junction trees, and

two examples of approximate inference algorithms are logic sam-

pling and likelihood weighting. An approachable introduction to this

topic is available in (Scutari & Denis, 2021). These algorithms pre-

sent computational and probabilistic challenges, especially in large

networks or when dealing with rare events. They are only feasible

for sparse networks or simple structures such as trees and poly-

trees: their computational complexity can become exponential as

the number of variables increases, as is often the case in psycho-

pathological networks.

Furthermore, exact and approximate algorithms can also be used

for causal inference methods such as interventions and counterfactuals

that manipulate the graphical structure of the BN (Pearl et al., 2016).

Interventions simulate a clinical treatment by removing the parents

of a symptom and replacing its distribution with the one that would

result from the treatment. Counterfactuals augment the graphical

structure with additional nodes to represent additional outcomes

that have not been observed in reality to study them together with

those that have.

These tools allow BNs to play a crucial role in generating hy-

potheses in psychopathology, especially in retrospective or cross‐
sectional studies where rigorous causal analysis might not be

feasible. Their ability to identify potential causal directions among

variables facilitates the formulation of research hypotheses for

future experimental validation.
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7.4 | Limitations and considerations

The use of BNs in psychopathology enhances the ability to address

the complexity of mental disorders and generate hypotheses for

future research despite their limitations.

The assumptions necessary for rigorous causal inference, such as

the absence of latent confounding variables, are often challenging to

meet in usual psychopathological data. In addition, low sample sizes

can further reduce the statistical accuracy of the BN estimation

process. Although progress has been made on several fronts (Ber-

nasconi et al., 2023), resampling methods such as bootstrapping (and

re‐estimating the network model multiple times) remain the most

common tool for selecting only the most stable connections.

Moreover, BNs can be understood as a form of “white‐box”
artificial intelligence, offering transparency in complexity investiga-

tion or hypothesis generation. Unlike other approaches such as factor

analysis (Watkins, 2018), the nodes in BNs represent observed var-

iables, such as psychopathological symptoms, facilitating the identi-

fication and investigation of potential causal relationships and

avoiding the arbitrary choices required to model latent factors. BNs

also build to a great extent on classical statistical models and practice

and, therefore, can benefit from decades of established best practices

for model estimation and validation (Scutari & Denis, 2021).

8 | NETWORK MODELS AND THEORIES ABOUT
PSYCHOPATHOLOGY

The previous sections introduced various network models and pro-

vided guidance on how to apply them in empirical research. This

section is dedicated to zooming out and reflecting on how re-

searchers can leverage these models to develop better theories of

psychopathology, which in turn improves our understanding and

treatment of mental health problems. Three core use cases are

considered: (1) using network models as theories, (2) using network

models to make inferences to theories, and (3) using network models to

establish phenomena and develop theories (see also Haslbeck

et al., 2022). We describe each in turn.

8.1 | Using network models as theories

One direct way in which network models can be useful is if they serve

as theories of psychopathology. Theories can be seen as representing

a “target system” — the part of the real world that gives rise to

something we care about (e.g., Elliott‐Graves, 2014). Considering the

study of panic disorder, the target system would be the set of

behavioral, cognitive, physical and social components underlying

panic disorder and the relations between them (Robinaugh, Haslbeck,

Waldorp, Kossakowski, Fried, Millner, McNally, et al., 2019). If a

theory is a good representation of the target system, it can be used to

reason about the world and predict how it evolves and behaves when

intervening on it. For example, physics theories allow to put people

on the moon, epidemiological models allow to predict the impact of

certain public health measures, and a surgeon uses biophysical

models to operate on a brain. In the case of panic disorder, a good

theory would be handy because it allows us to understand the causes

of mental health problems and help improve treatments (Ryan,

Haslbeck, & Robinaugh, 2023).

Treating network models as theories raises the question of

whether they, in fact, are good representations of the target system.

This may be the case for some network models. For example, an Ising

model representing a network of symptoms together with a dynamic

to run on the model could, in principle, be a good theory for direct

causal interactions between symptoms because it can produce a rich

set of behaviors, including getting “stuck” in a state with high

symptom activation, sudden transitions, and hysteresis (Cramer

et al., 2016; Finnemann et al., 2021; Lunansky et al., 2021). This idea

can be investigated by simulation from such a model to see if the

generated data fit real‐world data, which is the case for well‐
established theories in other sciences (Borsboom et al., 2022;

Epstein, 2008; Smaldino, 2017).

However, at least three situations come to mind in which current

network models may provide poor representations of target systems

and thus make for poor theories. First, network models struggle

when there is a mismatch between the data used to estimate the

network model and the phenomena theories seek to explain — for

instance, when we estimate a network model on cross‐sectional data,
but our theory is about dynamic interactions within an individual. It is

possible to bridge such levels, but this requires strong assumptions

(Hamaker, 2012; Molenaar, 2004). Second, network models show

poor representation when they cannot produce phenomena of in-

terest. Suppose that mental disorders involve multiple stable states

(e.g., “healthy” and “unhealthy”), sudden transitions between states,

hysteresis, feedback loops and processes evolving at different time

scales (e.g., short‐term benefit vs. long‐term harm). In that case, a

network model should be able to produce these phenomena (e.g., in a

simulation), which is not the case for many popular network models

introduced in this manuscript (Haslbeck et al., 2022). However, if

network models cannot investigate features our theories predict to

be present in the data, this raises questions about how to bring our

data to bear on our theories in the first place (Fried, 2020; Haslbeck

et al., 2022). Finally, a network model may represent phenomena at

the right level and be able to produce important characteristics of

our theory, but it may not be directly relevant to psychopathology.

For example, a model may lend itself well to capturing emotion dy-

namics, but this does not mean that it automatically serves as a useful

theory for better understanding and treating mental disorders (Ryan,

Dablander, & Haslbeck, 2023; Wichers et al., 2021).

8.2 | Using network models for informing theories

A second perspective is that network models themselves may not

make for adequate theories of psychopathology, but they can be

useful for informing theories, that is, help with inferences about the
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inner workings of a system under investigation. For example, by

assuming a symptom A causes another symptom B, and that data is

collected on these symptoms and given that the data was generated

by the system of interest, it stands to reason that network models

fitted to those data should recover some information about the sys-

tem, such as the A—B relation. An edge between these two symptoms

can be observed in a cross‐sectional network, which could lead to the

conclusion that symptom A causes symptom B (or vice versa) in a

within‐person process.

However, such inferences can be more problematic than perhaps

expected. The reasons why this type of inference can fail include

mismatches in the data level (e.g., using between‐person data to draw

inferences about within‐person target systems), functional model

misspecification (e.g., assuming linear relations while the target sys-

tem is nonlinear), issues with time scales (e.g., the process evolves at

a faster time scale than the frequency of measurements), alternative

reasons for co‐occurrence (e.g., two nodes can be related due to

semantic overlap, a common cause, or a collider structure), or mea-

surement issues (e.g., recall biases or social desirability). Haslbeck

et al. (2022) illustrate this by generating data from the computational

model of panic disorder by Robinaugh, Haslbeck, Waldorp, Kossa-

kowski, Fried, Millner, McNally, et al. (2019) and fitting different

network models to those data. All network models have different sets

of edges, and none correspond to the causal graph of the data‐
generating computational model.

How to move forward? One opportunity is working within a

framework that makes clear assumptions and, based on those, gua-

rantees that certain inferences are valid. For example, causal dis-

covery with DAGs (Peters et al., 2017; Spirtes et al., 2000; Spirtes &

Glymour, 1991) provides such a framework, but it is submitted to

several constraints, as detailed in the section Causal inference and

Bayesian networks. A perhaps more flexible approach is to use

network models to capture phenomena, which are then used for

theory building and testing. This approach will be discussed in the

following section.

8.3 | Using network models to establish phenomena

Phenomena are robust, recurrent patterns in the real world (e.g.,

Haig, 2013). Not all phenomena require scientists or data models to

uncover; for instance, humans have the capacity for language, and

some people suffer from panic attacks. However, in many situations,

phenomena will take the form of statistical patterns such as means,

trends, variances, or—in networks—correlations, conditional corre-

lations or other associations. For example, “symptoms are usually

positively intercorrelated” is a phenomenon established through

correlational analyses, and network modeling in the last decade has

given the field a plethora of information on what these correlations

look like. Theories seek to explain phenomena, and therefore, the

third use case of network models is to establish phenomena that

theories should be able to explain, thereby creating the foundation

for developing and testing theories.

In practice, several guidelines for (formal) theory construction

have recently been proposed (Borsboom, van der Maas, et al., 2021;

Guest, 2024; Haslbeck et al., 2022; van Dongen et al., 2022). One is

the Theory Construction Methodology (Borsboom, van der Maas,

et al., 2021), which consists of five steps. Its first step is to clearly

describe the phenomena a theory aims to explain. This highlights the

value of thorough exploratory work, which, as Daniel Nettle de-

scribes, has been the groundwork for building robust theories in

other sciences: “Biology had hundreds of years of taxonomy and

natural history before it had formal phylogenetic models; geology had

detailed maps of rocks before it accepted plate tectonics; people had

been studying the motion of planets long before Newtonian me-

chanics, and so on”.3 Much of the reform movements in psychology in

the last decades can be seen as efforts to better establish whether

phenomena exist and what shape they take. Network models capture

the first two moments of a probability distribution (means and vari-

ances/covariances) and are, therefore, very well suited to capture

relatively natural phenomena. This work, for example, has led to

some evidence that participants with more severe psychopathology

may have more densely connected networks at the group level (Lee

et al., 2024).

Once a phenomenon is established, it provides clear goalposts

for theory development: a theory must be able to produce the phe-

nomenon of interest to be a viable candidate. Otherwise, the theory

needs to be adapted to produce the phenomenon. Producing phe-

nomena can be performed via formal or computational theories,

which are simulations that generate data. If the theory‐generated
data match the empirical data, the theory gets “money in the bank”

because it provides a putative explanation (Haslbeck et al., 2022;

Robinaugh et al., 2021; van Dongen et al., 2022). For example, the

computational model of panic disorder by Robinaugh, Haslbeck,

Waldorp, Kossakowski, Fried, Millner, McNally, et al. (2019) simu-

lates data from a network theory, and the simulation produces four

phenomena the theory set out to explain (e.g., realistic panic attacks).

However, the simulation does not produce a fifth phenomenon: that

some people with panic attacks never develop panic disorder,

requiring further iterations of the theory.

9 | DISCUSSION

The network framework has highlighted a critical gap in traditional

clinical research methods, which have often taken a more reduc-

tionist view. While useful in some contexts, reductionist approaches

can oversimplify the multifaceted nature of mental disorders.

Network models have emerged as a fitting response and have

offered a methodological framework that accommodates the

complexity of mental health disorders (Borsboom et al., 2022). These

models serve not only as descriptive tools but also as valuable tools

for hypothesis generation, identifying influential pathways within the

network, and opening new avenues for understanding how changes

in one aspect of the system might impact overall mental health

(Briganti, 2022).
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The evolution of statistical methods in network psychometrics

has significantly enriched the psychometrician's toolbox, providing

tools for cross‐sectional and panel data, community detection,

dimensionality reduction, and inference measures (Isvoranu

et al., 2022). Over the last few several psychological phenomena,

such as intelligence, personality, psychopathology, and attitudes,

have been reconceptualized as networks, necessitating new methods

to explore their properties: as new methods come to enrich this

toolbox, new facets of mental health constructs can be analyzed.

In this paper, we offered an overview of the current landscape of

network analysis in mental health research, bridging theoretical

network models and their empirical applications. We introduced the

most used framework: undirected network estimation in cross‐
sectional data using frequentist estimation techniques. We then

elaborated on new lines of research that are currently growing

prominently in the field: psychometric network modeling, Bayesian

estimation techniques, longitudinal models, and causal inference.

Finally, we discussed how network models can effectively enhance

the description, prediction, comprehension, and treatment of mental

health disorders, thereby enriching the field of psychopathology.

Network modeling has been proposed as an alternative to latent

variable modeling techniques commonly used in psychometrics.

Interestingly, in some cases, there can be a full correspondence be-

tween some networks and some latent variable models, including

factor and IRT models (Epskamp et al., 2021). This close relationship

allows for frameworks to be more closely linked than initially

thought. For example, EGA applied on networks can be used to

investigate the potential number of underlying latent variables

(Golino & Epskamp, 2017). Additionally, the close link readily allows

for metrics and methods from factor analysis to be applicable in

network psychometrics, such as measurement invariance testing, fit

measures, and meta‐analytic methods (Epskamp, Isvoranu, &

Cheung, 2022).

The evolution of network modeling has also seen the develop-

ment of confirmatory network modeling techniques. The ability to

perform a confirmatory fit of a pre‐defined network structure using

confirmatory network modeling allows researchers to test if a

network structure replicates and allows for a fair comparison be-

tween factor models and network models (Epskamp, Isvoranu, &

Cheung, 2022; Epskamp, Rhemtulla, & Borsboom, 2017). Further-

more, latent network modeling has been developed to address issues

such as measurement error and semantically overlapping items,

allowing researchers to model conditional independence relation-

ships between latent variables without making assumptions about

directionality or acyclicity (Epskamp, Rhemtulla, & Borsboom, 2017).

The Bayesian approach to network analysis involves two primary

questions: determining the presence or absence of an edge between

nodes and estimating the strength of the edge if it exists. This method

offers a robust framework for addressing these questions by incor-

porating prior knowledge and updating it with observed data. One

significant advantage of Bayesian methods is their ability to express

uncertainty in terms of posterior probabilities, which enhances the

generalizability and transferability of inferences. Bayesian hypothesis

testing, particularly through the use of the inclusion Bayes factor,

helps distinguish between the absence of an effect and insufficient

evidence (Huth, de Ron, et al., 2023; Marsman & Haslbeck, 2023).

Despite their strengths, Bayesian methods are computationally

intensive and require careful specification of prior distributions.

Understanding how processes unfold over time and within an

individual is central to network theory and is impossible when relying

solely on cross‐sectional data. Longitudinal data allows network

edges to encode different types of information and provide insights

into how variables interact over time (Blanchard et al., 2023). Various

estimation techniques, such as the multilevel graphical vector‐
autoregressive network model, offer three types of model outputs:

temporal networks, contemporaneous networks, and between‐
person networks. Temporal networks encode relationships between

variables over time, contemporaneous networks encode relationships

within the same measurement window, and between‐person net-

works encode relationships between a person's typical levels of each

node across time. Such models are stationary, meaning their prop-

erties do not change over time, which is a strong assumption to

impose on a psychological system. This limitation has led to the

development of time‐varying network models, which can capture

network changes over time, and rate of change network models,

which provide insight into how symptoms change together over time

(Bringmann, 2024).

The comparison of idiographic network structures to identify

individual differences in symptom dynamics is a growing area of in-

terest. However, traditional methods such as visual inspection, cor-

relation computation, and multilevel data analysis techniques like

mlVAR cannot directly test for (in)equalities between idiographic

network structures. This limitation can lead to erroneous conclusions

about individual differences. The Individual Network Invariance Test

(INIT) addresses this by comparing models assuming network

equality against those allowing for heterogeneity, thus providing a

more rigorous testing framework. INIT enhances the reliability of

conclusions by ensuring that variance within data is attributed to

individual differences only when there is sufficient evidence (Hoek-

stra et al., 2024; van der Tuin et al., 2023).

Rate‐of‐change network models assess how symptoms change

together over time, using first‐order derivatives (velocity) to capture

the dynamics. These models are robust to missing data and can

capture nonlinear relationships between symptoms. They offer

valuable insights into the conditional relationships between symp-

toms as they evolve, allowing for monitoring at individual, group, and

sample levels. This approach is particularly useful for understanding

the specific effects of interventions on symptom dynamics over time

(Golino et al., 2022).

NIA combines network analysis with experimental research to

investigate symptom‐specific treatment effects (Bringmann

et al., 2022). By incorporating a treatment allocation variable into the

network, NIA allows for the differentiation between direct and in-

direct treatment effects (Blanken et al., 2019). This methodology has

been applied to contrast active treatment conditions, revealing

unique patterns in symptom targeting that align with theoretical
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underpinnings. NIA offers new ways to investigate treatment mech-

anisms and can be adapted to various experimental designs, vari-

ables, and model types.

Bayesian Networks associate a probability distribution with a

DAG, where nodes represent random variables, and edges indicate

conditional dependencies. BNs are computationally efficient and

allow for studying specific symptoms from their local distributions.

They also bridge from probability to causality by identifying v‐
structures as patterns of causal effects (Briganti et al., 2023). Using

BNs as causal network models requires careful consideration of

several essential conditions, including accurate reflection of under-

lying causal relationships, representative data, and critical examina-

tion of theoretical assumptions. The estimation of BNs integrates

observed data with prior beliefs, using Bayesian inference to deter-

mine which edges are supported by the information available and to

estimate the values of network parameters. BN inference involves

drawing conclusions from the network through belief updating or

causal reasoning, providing significant insights into the dependence

and causal structure of symptoms. Even without a strict causal

interpretation, BNs hold value in terms of hypotheses generation in

psychopathology (Briganti, 2022).

Network models can serve as theories of psychopathology, rep-

resenting the behavioral, cognitive, physical, and social components

underlying mental health issues and their interrelations. The ade-

quacy of network models as theories depends on their ability to

represent the target system accurately. When there is a mismatch

between the data used to estimate the network model and the

phenomena theories seek to explain, or when network models cannot

produce phenomena of interest, they may provide poor representa-

tions of target systems (Fried, 2020). Nevertheless, network models

can inform theories by helping with inferences about the inner

workings of a system (Robinaugh, Haslbeck, Waldorp, Kossakowski,

Fried, Millner, McNally, et al., 2019). They can capture phenomena

that theories should be able to explain, thereby providing clear

goalposts for theory development (Haslbeck et al., 2022). This

approach involves establishing phenomena through thorough

exploratory work and using formal or computational theories to

simulate and match empirical data, thereby iteratively refining the

theory.

The integration of network analysis into mental health research

represents a significant advancement in understanding the

complexity of mental disorders: by moving beyond reductionist ap-

proaches and embracing the interconnected nature of bio-

psychosocial systems, network models offer a robust framework for

exploring, describing, and intervening in mental health. This paper

has highlighted the theoretical foundations, methodological in-

novations, and practical applications of network models in mental

health research. As the field continues to evolve, the ongoing

refinement and validation of these models will be at the methodo-

logical core of advancing our understanding and treatment of mental

health disorders.
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ENDNOTES
1 See, for example, Huth, de Ron, et al., 2023, Huth, Keetelaar,

et al., 2023; Sekulovski, Keetelaar, Haslbeck, and Marsman, 2023 for

more detailed discussions of the different types of network structure

priors that are currently available.

2 In the case of DAGs, three hypotheses can be considered instead (for

A ← B, A → B and no edge).

3 https://leotiokhin.medium.com/theories‐and‐models‐are‐not‐the‐only‐
fruit‐a05c7cf188f6
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