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Abstract 
Cattle manure or its digestate, which often contains antibiotic residues, can be used as an organic fertilizer and copper (Cu) as 
a fungicide in agriculture. Consequently, both antibiotics and Cu are considered soil contaminants. In this work, microcosms 
were performed with soil amended with either manure or digestate with Cu and an antibiotic (sulfamethoxazole, SMX) co-
presence and the planting of Lactuca sativa. After the addition of the organic amendments, a prompt increase in the microbial 
activity and at the same time of the sul1 and intI1 genes was observed, although ARGs generally decreased over time. In the 
amended and spiked microcosms, the microbial community was able to remove more than 99% of SMX in 36 days and the 
antibiotic did not bioaccumulate in the lettuce. Interestingly, where Cu and SMX were co-present, ARGs (particularly sul2) 
increased, showing how copper had a strong effect on resistance persistence in the soil. Copper also had a detrimental effect 
on the plant-microbiome system, affecting plant biomass and microbial activity in all conditions except in a digestate pres-
ence. When adding digestate microbial activity, biodiversity and lettuce biomass increased, with or without copper present. 
Not only did the microbial community favour plant growth, but lettuce also positively influenced its composition by increasing 
bacterial diversity and classes (e.g., Alphaproteobacteria) and genera (e.g., Bacillus), thus indicating a good-quality soil.

Key points
• Cattle digestate promoted the highest microbial activity, diversity, and plant growth
• Cattle digestate counteracted detrimental contaminant effects
• Cu presence promoted antibiotic cross-resistance in soil

Keywords Lettuce · Plant-microbiome system · Antibiotics · Cattle manure · Cattle manure digestate · ARGs

Introduction

Antibiotics (ABs) and heavy metals (HMs) are widely used 
in agriculture for different purposes, such as treating animal 
disease and crop pests, respectively. It has been generally 

recognized that ABs, owing to their incomplete metabolism 
in treated organisms, are excreted through feces and urine 
and can be found as active residues in wastewater, surface 
water, sediment, and soils (Zhang et al. 2018a; Barra Carac-
ciolo et al. 2020b). Consequently, the application of manure 
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or biosolids as organic fertilizers to agricultural soils can 
unintentionally introduce antibiotics, often in mixtures with 
other contaminants such as heavy metals (Kuppusamy et al. 
2018; Bünemann et al. 2024).

AB occurrence in environments represents a significant 
concern for ecosystems and human health, as highlighted by 
the “One Health Concept” (White and Hughes 2019; Prata 
et al. 2022) which states that animal and human health is 
linked to that of their environment. In fact, AB residues in 
ecosystems can promote the spread of antibiotic resistance 
between resistant bacteria and natural microorganisms (Ben 
et al. 2019; Samreen et al. 2021; Narciso et al. 2023a) and 
from them to animal and human microbiomes through con-
taminated water or edible vegetal species (Gudda et al. 2020; 
Soto-Giron et al. 2021; Barra Caracciolo et al. 2022).

ABs are emerging and ubiquitous micropollutants and, 
owing to their biocide properties, they can kill or inhibit 
natural microbial communities involved in key ecosystem 
functioning (Grenni et al. 2018; Cycoń et al. 2019; Sodhi 
et al. 2021; Narciso et al. 2023a). In addition, particularly at 
below minimum inhibitory concentrations, they act as selec-
tive agents which can increase antibiotic-resistant bacteria 
(ARB) and antibiotic resistance genes (ARGs) in natural 
ecosystems (Berendsen et al. 2018; Barra Caracciolo et al. 
2020b, 2022; Singh et al. 2021).

Sulfamethoxazole (SMX) is a sulfonamide antibiotic 
among the most widely used in both human and veteri-
nary medicine, and its residues are frequently detected in 
organic fertilizers and agricultural soils (Conde-Cid et al. 
2020; Vieublé Gonod et al. 2022; Visca et al. 2022; Patyra 
et al. 2024). SMX is not an intrinsically persistent com-
pound (e.g., its halving in soil is ca. 7 days, Rauseo et al. 
2019; Garbini et al. 2022) but its continuous use and release 
determine its pseudo-persistence in water (Patrolecco et al. 
2018) and soil (Wu et al. 2024). Indeed, sulfonamide resist-
ance genes are very common in the environment and for 
this reason are considered resistance determinants in water, 
livestock waste, and manure-amended agricultural soils (Ben 
et al. 2019; He et al. 2020; Radu et al. 2021).

Most antibiotic resistance genes (ARGs), including sul 
genes, are located on mobile genetic elements, such as plas-
mids, which favour their horizontal transfer between differ-
ent species (Pinilla-Redondo et al. 2018; Dimitriu 2022). 
Plasmids can contain gene cassettes, which confer resistance 
not only to ABs but also to other contaminants (e.g., HMs) 
or environmental stresses (Chaturvedi et al. 2021; Huang 
et al. 2021). For this reason, not only ABs but also other 
factors can favour ARG persistence among natural bacterial 
populations (Feng et al. 2021). Indeed, antibiotic resistance 
has been frequently found in metal-tolerant bacteria, and 
this can contribute to a reservoir of transferable antibiotic 
resistance genes in the environment (Nath et al. 2019; Glib-
ota et al. 2019).

Several HMs are essential micronutrients for biota, but 
their occurrence at concentrations higher than the natural 
ones (due to anthropogenic pollution) can exert toxic effects 
(Masmoudi et al. 2013; Ali et al. 2019; Kumar et al. 2021; 
Barra Caracciolo and Terenzi 2021).

As a trace element, Cu is a co-factor in several animal, 
plant, and bacterial enzymes (Hänsch and Mendel 2009; 
Kaur et al. 2023). Cu is also a biocide in the high amounts 
widely applied on vineyards and horticultural crops (up to 
4 kg/ha/y) for preventing fungal attacks and other plant dis-
ease (Fagnano et al. 2020). Cu concentrations in agroeco-
systems can range from 20 up to 800 mg/kg, as, for example, 
in South European agricultural soils impacted by long-term 
fungicide applications (Panagos et al. 2018; Fagnano et al. 
2020; Zamulina et al. 2022; Tamm et al. 2022). The EU Reg. 
1981/2018 limits the use of copper compounds in agriculture 
to an average of 4 kg/ha per year, and an Italian decree (DM 
46/2019) indicates thresholds of 200 mg/kg in soils (Tóth 
et al. 2016).

Recent studies suggest that Cu can increase the toxic 
effects of ABs and/or favour ARB, but the conditions and 
amounts causing this phenomenon need to be investigated 
(Perković et al. 2022). For example, a recent work showed 
that a mixture of copper (3 mg/L) and SMX (0.7 mg/L) dis-
played an additive ecotoxicological effect on the A. fischeri 
bacterium, compared with that obtained from single solu-
tions (with only copper or sulfamethoxazole) (Narciso et al. 
2023b). In another work, Kang et al. (2018) demonstrated 
that ARGs (comprising those involved in sulfonamide 
resistance) and mobile genetic elements (MGEs, as intI1) 
increased significantly in a soil microbial community treated 
with different copper concentrations (from 50 to 1000 mg/
kg).

Microbial community structure (biodiversity) and activ-
ity, including the capability to respond to contamination with 
different strategies (e.g., developing resistance and/or capa-
bility to degrade and remove toxic compounds), depend on 
a plethora of site-specific environmental conditions. Among 
them, temperature is a critical variable modulating microbial 
development and activity (Burman and Bengtsson-Palme 
2021) and affecting contaminant fate and dissipation. For 
example, sulfonamide degradation in the composting of 
chicken manure was found to increase when passing from 
mesophilic (30–40 °C) to thermophilic (50–60 °C) condi-
tions (Lin et al. 2017). Indeed increasing temperatures not 
only influenced microbial community activity and composi-
tion but also favoured AB dissipation by promoting abiotic 
hydrolysis processes (Mitchell et al. 2014; Yang et al. 2021).

Light is another abiotic factor, which can influence AB 
transformation, especially for photosensitive molecules such 
as SMX. Although the primary role of microbial degradation 
in SMX removal has been demonstrated, sulfamethoxazole 
dissipation increases significantly in the presence of light 
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(Lai et al. 2011; Poirier-Larabie et al. 2016; Patrolecco et al. 
2018).

For evaluating AB and ARG environmental fate and per-
sistence, it is therefore necessary to take into consideration 
different abiotic and biotic factors, including possible sud-
den temperature changes, due to ever more frequent extreme 
weather events (Li et al. 2023; Jampani et al. 2024). For 
example, recent studies have reported that, if high tempera-
tures unexpectedly persist, they can both promote the sur-
vival of gut bacterial populations and increase the possibil-
ity of ARG spreading from pathogens to natural bacterial 
populations (MacFadden et al. 2018). On the other hand, 
temperatures higher than the gut bacteria optimal ones (ca. 
37 °C) can select the mesophilic and thermophilic bacteria 
involved in composting and anaerobic digestion processes 
and possibly in AB degradation (Mitchell et al. 2015; Lin 
et al. 2017; Visca et al. 2022).

Another complex aspect to be considered is the rela-
tionships between AB concentrations and their ARGs. For 
example, Selvam et al. (2012b) reported that sulfadiazine 
and chlortetracycline degraded completely, in 3 and 14 days, 
respectively, of composting and this process decreased tet 
genes during the mesophilic stage. On the contrary, sul-
famethoxazole gene (sul1, sul2, dfrA1, dfrA7) abundances 
were not influenced by a sulfadiazine presence (initially 
spiked at 2–20 mg/kg and then completely removed), and 
these genes were still present after its degradation (up to 
21–28 days). The authors hypothesized that the high sul 
persistence might be due to the possible presence of anti-
biotic metabolites or high mobility of these genes among 
bacteria. The authors concluded that temperature is essential 
for reducing ARGs during the thermophilic phase because 
it selects for different microbial populations and resistance 
mechanisms (Selvam et al. 2012a). In a biogas plant, operat-
ing in mesophilic conditions (33–35 °C) and fed with zoot-
echnical waste, it was found that both antibiotics (sulfameth-
oxazole, ciprofloxacin, and enrofloxacin) and their ARGs 
decreased during the 45-day anaerobic digestion process. 
In particular, SMX was removed by up to 100%, ENR up to 
84%, and CIP up to 92%. At the same time, ARGs (including 
sul1, sul2, and intI1) declined significantly (up to 80%) in 
the digestate samples (Visca et al. 2021).

Overall, sulfamethoxazole ARGs (such as sul1 and sul2) 
can be influenced by temperature variations. Some authors 
simulated a biological treatment of dairy lagoon water by 
incubating some samples at 4° and 20 °C in both aerobic 
and anaerobic conditions. In aerobic conditions, sul1 had the 
highest abundance at 20 °C and at day 10 and then decreased 
significantly; on the other hand, sul1 at 4 °C (although with 
lower values) persisted for 100 days. In anaerobic condi-
tions, a similar temperature effect was found, with a general 
lower ARG presence than in aerobic conditions. Interest-
ingly, sul2 increased over time at 20 °C, with the highest 

level at 60 days, in both aerobic and anaerobic conditions. 
This phenomenon was not found at 4 °C in anaerobic condi-
tions (Pei et al. 2007; Lin et al. 2017).

Another key aspect to be considered in environmental 
studies is contaminant bioavailability. In fact, not only ABs 
but also heavy metals (including copper) can have different 
effects on microorganisms depending on their bioavailabil-
ity in a contaminated matrix. Heavy metals can form stable 
complexes with soil organic matter (Kim et al. 2015; Barra 
Caracciolo and Terenzi 2021), and soluble or non-soluble 
fractions of organic carbon (OC) can influence antibiotic-
soil and copper-soil interactions. For example, copper can 
bound strongly to clay minerals and form both insoluble 
and soluble organic complexes with OC (Shao et al. 2020). 
Moreover, in the presence of an external carbon source, 
increases in adsorption and complexation of Cu can occur 
(Bolan et al. 2003). Interestingly, some authors found that 
fulvic acids resulted particularly in decreasing plant uptake 
and toxicity of heavy metals at high concentrations (25 mg/
kg), because of their strong binding affinity (Shahid et al. 
2012; Canellas et al. 2015).

AB and ARG persistence in the environment is a very 
complex issue, which depends on the combination of vari-
ous biotic and abiotic factors, including multicontamina-
tion, which can act as opposite selective forces on natural 
microbial communities. In this context, this work aimed at 
evaluating the possible effects of SMX alone or in a cop-
per co-presence on a natural soil microbial community in 
the presence/absence of organic amendments (manure or 
digestate) and lettuce plants. The soil microbial community 
was assessed in terms of abundance (DAPI counts), activ-
ity (dehydrogenase), structure (NGS), and ARGs (qPCR). 
Moreover, SMX dissipation in the soil and lettuce biomass 
was also evaluated at the end of the experiment (36 days).

Materials and methods

Sampling site and organic amendments

An agricultural sandy-clay-loam (60% sandy, 18% clay, 22% 
loam, USDA 1987) soil was collected from an organic farm 
close to Rome. The samples were collected from the surface 
layer (0–20 cm) using a shovel, and an initial characteriza-
tion for organic carbon, total nitrogen, heavy metals, and 
microbial abundance was performed.

The manure and digestate used as organic amendments 
came from a cattle manure biogas plant located in a livestock 
farm in central Italy, and their characteristics are described 
in detail in previous works (Visca et al. 2021, 2022; Maz-
zurco Miritana et al. 2022). All the parameters analyzed 
showed values which met the European Regulation limits 
for fertilizing products (EU 1009/2019).
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Microcosm set‑up

Soil microcosms (plant pots containing 1-kg soil each) were 
set up with different experimental conditions. The pots 
contained soil spiked with the antibiotic sulfamethoxazole 
(7 mg/kg) and copper sulfate (30 mg/kg) and were amended 
with manure (1% w/w) or digestate (1% w/w). Half of the 
experimental conditions were performed in the presence of 
lettuce plants (Lactuca sativa). Moreover, 36 microcosms 
were performed without the SMX antibiotic (in the pres-
ence/absence of the organic amendments) in order to assess 
the possible influence of copper alone on the soil microbial 
community.

The 18 experimental conditions performed are summa-
rised as follows in Table 1.

Each experimental condition was performed in three 
replicates. The experiment was maintained for 36 days in a 
greenhouse (from 1st May 2022), and each microcosm was 
watered daily to keep the same soil moisture. The initial 
temperature was 23.7 ± 2.8 °C, in line with average spring 
values at this latitude. From day 14, the temperature rapidly 
increased to 30.4 ± 15.5 °C in the following days, reaching 
an average temperature of 32.8 °C with variations between 
a minimum temperature of 22.2 °C and a maximum one of 
43.3 °C, at day 18. The average temperature remained at 
30 ± 2 °C until the end of the experiment (day 36).

Two samplings were performed, at the start (3 h) and at 
the end (36 days) of the experiment.

At the end of the experiment, plant roots developed 
throughout the soil inside each pot, and, consequently, the 
soil results refer to “rhizosphere soil.”

For each condition, destructive samplings were per-
formed in three replicates. Different aliquots of soil were 
collected and used for microbiological analyses or chemical 
determinations.

Soil physicochemical characterization 
and amendment organic carbon analyses

The soil pH and electrical conductivity (EC) were meas-
ured in a water solution (1:2.5 and 1:5 soil to distilled water 
(w/v) ratio, respectively) (Allison and Moodie 1965). The 
soil water content was determined with a gravimetric analy-
sis, following official methods (DM 13/09/1999 and s.m.i.). 
Aliquots of air-dried samples (15–20 mg each) were used 
for the total organic carbon (OC) and nitrogen (N) analyses, 
using an elemental carbon analyser (Carlo Erba NA 1500 
series 2 C/H/N/O/S). Further details are described in previ-
ous works (Barra Caracciolo et al. 2020a).

The water-soluble organic carbon was determined in 
water extracts of 1:10 (w/v) and 1:50 (w/v) of soil samples 
and amendments respectively, after filtration through a syn-
thetic filter with a pore diameter of 0.45 μm, by using an 
automatic analyser for liquid samples (TOC-V CSN Ana-
lyzer, Shimadzu) (Bustamante et al. 2012). The extractable 
organic carbon  (CEX) was determined in organic amend-
ments (manure and digestate) by dissolving sample aliquots 
in 0.1 M NaOH. The fulvic acid–like carbon  (CFA) amount 
after the precipitation of the humic acid–like carbon  (CHA) 
one was found to be pH 2.0 (Sánchez-Monedero et al. 1996). 
The  CHA was calculated by subtracting the  CFA from the 
 CEX.

Chemicals and reagents

Pure solvents (HPLC grade), such as methanol (MeOH), 
acetone (ACT), acetonitrile (ACN), and hydrochloric acid 
(37%, HCl), were purchased from VWR (Radnor, PA, USA). 
Formic acid (98–100%) for LC–MS LiChropur™, used to 
acidify solvents and composing the mobile phase for the 
analytic determinations, was purchased from Sigma-Aldrich 
(Steinheim, Germany). The pH of the mobile phase was 
adjusted with a portable pH meter (HANNA Instruments, 
Woonsocket, RI USA). A Milli-Q Millipore system (Bed-
ford, MA, USA) produced the ultrapure water (18 MΩ/cm 
quality).

SMX vetranal analytical standards were from Merck 
KGaA (Darmstadt, Germany). Deuterated SMX (SMX-d4, 
Clearsynth) was used as the internal standard.

Table 1  Summary of the 18 experimental conditions. Cu copper, 
SMX sulfamethoxazole, P Lactuca sativa, M manure, D digestate

Experimental condition Acronym

Soil + manure + Cu + SMX SMCA
Soil + digestate + Cu + SMX SDCA
Soil + Cu + SMX SCA
Soil + manure + Cu SCM
Soil + digestate + Cu SCD
Soil + Cu SC
Soil + manure SM
Soil + digestate SD
Control soil S
Soil + manure + Cu + SMX + L. sativa SMCA_P
Soil + digestate + Cu + SMX + L. sativa SDCA_P
Soil + Cu + SMX + L. sativa SCA_P
Soil + manure + Cu + L. sativa SCM_P
Soil + digestate + Cu + L. sativa SCD_P
Soil + Cu + L. sativa SC_P
Soil + manure + L. sativa SM_P
Soil + digestate + L. sativa SD_P
Control soil + L. sativa S_P
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CuSO4·5H2O was purchased from Sigma-Aldrich, Ger-
many, and used to prepare a copper solution (30 mg/L) in 
ultrapure water.

An individual stock solution (100 mg/L) was prepared by 
dissolving the AB standard powder in methanol and storing 
it in the dark at − 20 °C. A working standard solution was 
prepared at each sampling time by diluting the stock solution 
with water and then stored at 4 °C.

The mixture of SMX and  CuSO4 was prepared by dissolv-
ing 2.5 mg of SMX in MeOH (50 ml) to obtain a final con-
centration of 50 mg/L and stored at − 20 °C. Daily working 
standard solutions of the antibiotic were obtained by dilution 
of the stock solution with a mixture of ultrapure water: MeOH 
(1:1 v/v) and stored at 4 °C. Waters Oasis Hydrophilic–Lipo-
philic Balance (HLB) cartridges (6 ml, 1 g) were from Waters 
(Milford, MA, USA). The inert material used to fill the extrac-
tion cells was diatomaceous earth (Dionex™ ASE™ Prep DE) 
purchased from Thermo Scientific (Waltham, MA, USA).

Chemical determinations

The antibiotic extraction procedure was performed using a 
SPE (solid-phase extraction) equipped with Oasis Hydro-
philic-Lipophilic Balance (HLB, Waters, Milford, USA) 
cartridges (6 ml, 200 mg), in line with previous work (Spa-
taro et al. 2019). Briefly, the cartridges were activated with 
5 ml of MeOH and 5 ml of ultrapure water (18 MΩ/cm qual-
ity, Millipore, Bedford, USA) passed at a flow rate of 5 ml/
min. Soil water extracts were passed into the cartridges, 
and their elution was performed with a mixture of MeOH, 
acetonitrile (ACN, HPLC grade, VWR-Radnor, USA), and 
acetic acid (Sigma Aldrich, Germany) (40:40:20 v/v/v). The 
samples were then evaporated with a gentle nitrogen stream 
and reconstituted with 0.5 ml of a mixture of ACN and 
ultrapure water (50:50 v/v) acidified with formic acid at pH 
3. SMX analytical determination was performed with high-
performance liquid chromatography (HPLC, column oven 
mod. LC-100, micropump series 200, Perkin Elmer, USA) 
interfaced with a triple quadrupole mass spectrometer (MS/
MS, mod. API 3000, AB Sciex, Germany). The operative 
conditions were as follows: injection loop of 20 μl and the 
chromatographic column was Gemini column (150 × 4.6 mm, 
5 μm RP C 18, Phenomenex, France) (Spataro et al. 2019). 
SMX elution was carried out in gradient mode at a flow rate 
of 0.3 ml/min. The mobile phase was composed of MeOH 
(phase A) and ultrapure water (phase B), both acidified with 
0.1% of formic acid. The gradient profile started with phase A 
at 10%. It then increased from 10 to 90% in 10 min and finally 
returned to 10% in 15 min. The ESI (electrospray ionization) 
operated with 12 units of curtain gas, 14 units of nebulizer 
gas, and source temperature of 400 °C. Nitrogen was both 
collision and drying gas. The AB quantification was based 
on the m/z ion ratios and a comparison of the retention times 

(RTs) of product ions/fragments in the samples with those 
of each standard, considering criteria differences of 0.2 min. 
Two calibration curves (five points) at lower (0.5, 1.0, 2.0, 
2.5, and 5.0 ng/L) and higher (5, 20, 50, 100, and 500 ng/L) 
concentration ranges were considered, indicating the good 
linearity of the method (R2 > 0.98). The SMX recoveries were 
also evaluated using ultrapure water artificially spiked at dif-
ferent concentrations (50, 200, and 500 ng/L) and ranging 
between 82 and 99%. The detection limits (LODs) for SMX 
were calculated following the IUPAC method (Thompson 
et al. 2002) and were 2.1, 5, and 4 ng/L, respectively. Quan-
tification limits were set at three times the LODs.

Copper concentrations were measured using an induc-
tively coupled plasma optical emission spectrometer (ICP-
OES, 5800 Agilent technologies, USA). The quantification 
was performed by interpolation using a calibration curve 
obtained by diluting a 1 g/L stock solution into six standard 
solutions. The wavelengths (nm) used for Cu were 327 and 
395 (Barreto et al. 2021; Iannelli et al. 2022).

Total microbial number, cell viability, 
and dehydrogenase activity

The total microbial number (N. cells/g soil) of each sample 
was analyzed in formaldehyde-fixed soil aliquots (1 g each), 
using the epifluorescence direct count method, which relies 
on DAPI (4′,6-diamidino-2-phenylindole), as the DNA fluo-
rescent intercalant. Samples were processed as detailed in 
previous works (Barra Caracciolo et al. 2005, 2013, Barra 
Caracciolo et al. 2015b).

Cell viability (% live cells/live + dead) was assessed in 
non-fixed soil samples using two fluorescent dyes, SYBR 
Green II and propidium iodide (Sigma-Aldrich Germany), 
to discriminate between viable (green) and dead (red) cells, 
as previously detailed (Grenni et al. 2014).

Both the total microbial cell number and the percentage 
of viable cells were counted under a Leica DM 4000B fluo-
rescence microscope (Leica Microsystems GmbH, Wetzlar, 
Germany).

Finally, the N. of live cell abundance (N. live cells/g soil) 
was obtained by multiplying each total microbial abundance 
datum (N. total cell/g) by the corresponding cell viability 
one (% live cells/live + dead), as reported in other works 
(Amalfitano et al. 2008; Garbini et al. 2022).

Dehydrogenase activity (DHA) was evaluated in 6-g soil 
samples, using a colorimetric method based on the quanti-
fication of 2,3,5-triphenyl formazan (TPF) compound pro-
duced from the reduction of 2,3,5-triphenylte-trazolium-
chloride (Grenni et al. 2009, 2012). The microbial activity 
(expressed as TPF/g soil) was measured using a Multiskan 
Sky Microplate Spectrophotometer (Thermo Scientific, 
Waltham, MA, USA).
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All the microbiological analyses were performed in at 
least three replicates for each experimental condition and 
sampling.

Microbial DNA extraction and quantification 
of ARGs

Total DNA was extracted from each soil sample using a 
DNeasy PowerSoil kit (Qiagen, USA) following the pro-
cedure described by Barra Caracciolo et al. (2022). Fur-
ther details are provided in the Supplementary Information. 
The DNA extracted was used for both the qPCR and NGS 
analyses.

Quantitative PCR was used to quantify two SMX-resist-
ance genes (sul1 and sul2) and the class 1 integron-integrase 
gene (intl1). The 16S rRNA gene copy numbers were deter-
mined for calculating the relative abundance of the resist-
ance genes targeted in the samples. The qPCR procedure 
used is described in detail by Visca et al. (2022). Further 
description of the method is reported in the Supplementary 
Information. The quantitative PCR data were expressed as 
the ratio of ARG or intI1 gene copy number per 16S copy 
number to evaluate the relative abundance of each target 
gene in the bacterial community.

Phylogenetic characterization of the microbial 
community

Aliquots of the DNA extracted (15 ng/μl) from each replicate 
were used for NGS. The V3–V4 region of 16S rRNA genes 
was amplified with the 341F and 805R primers (Table S1, 
Supplementary Information) for the identification of the 
prokaryotic community (Bacteria and Archaea). The method 
used followed the procedure previously described (Callahan 
et al. 2016; Bolyen et al. 2019; Mazzurco Miritana et al. 
2022; Garbini et al. 2023). Further details are provided in 
Supplementary Information. Alpha-diversity indices (Shan-
non, Evenness, and Chao1) were also estimated.

The Illumina Miseq sequencing raw data are deposited in 
the NCBI (National Center for Biotechnology Information) 
database (accession number: PRJNA1153537).

Lettuce biomass

L. sativa plants were sampled at the end of the experi-
ment, washed with sterile MilliQ water to remove any soil 

particles, weighed (aerial parts + roots), and put in an air-
forced oven at 60 °C for 72 h to evaluate the dry biomass.

Statistical analyses

All the statistical analyses were performed using R 
(4.3.1version https:// www.r- proje ct. org).

The microbiological and chemical results are reported 
as average values ± standard errors of at least three repli-
cates and were compared with each other with ANOVA 
using the aov function. More specifically, if the ANOVA 
test indicated the significative difference among results 
obtained from different conditions, the Tukey honestly sig-
nificant difference test (TukeyHSD function) was applied to 
evaluate the paired comparison of experimental condition 
values. A significance threshold of 0.05 was considered 
(p < 0.05). To detect any significant differences between 
the MGE and ARGs in the experimental conditions, a non-
parametric one-way ANOVA (Kruskal–Wallis) was per-
formed using the kruskal.test function combined with the 
pairwise.wilcox.test function as a post hoc test (Benavoli 
et al. 2016). The microbial community alpha diversity was 
analyzed using the Evenness and Shannon diversity indi-
ces, while the Chao1 index (Chao et al. 2005) was used as 
an estimator of potential richness.

The effect of the amendments, SMX and Cu, and Lac-
tuca sativa on the prokaryotic communities in the different 
conditions was evaluated using the principal coordinate 
analysis (PCoA) based on the Bray–Curtis distance esti-
mated using the function vegdist (Vegan package of R, 
https:// doi. org/ 10. 32614/ CRAN. packa ge. vegan).

A multivariate ANOVA with permutations (PER-
MANOVA) was applied to assess significance. Pairwise 
PERMANOVA was performed using the function pair-
wise.perm.manova from the RVAideMemoire package to 
evaluate the significance of ASV changes in the prokary-
otic composition in the different experimental conditions.

Most abundant classes and genera from each experi-
mental condition were selected, and their relative abun-
dance was estimated using the Phyloseq package (https:// 
code. bioco nduct or. org/ browse/ phylo seq/). ASV abun-
dances of the selected genera were normalized by z-score 
and displayed in a heatmap generated by the Complex-
Heatmap package. In the heatmap, genera and experimen-
tal conditions were grouped in accordance with hierarchi-
cal clustering dendrograms.

Network analyses were performed to visualize corre-
lations between ARGs, MGE, SMX, and microbial gen-
era relative abundances. Spearman’s rank correlations 
(ρ > 0.75 and p < 0.01) were used to build a correlation 
matrix on which to base the network analysis (Hmisc r 
package). The network visualization was carried out on 

https://www.r-project.org
https://doi.org/10.32614/CRAN.package.vegan
https://code.bioconductor.org/browse/phyloseq/
https://code.bioconductor.org/browse/phyloseq/
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the interactive “Gephi” platform (Gephi Version 0.10.1, 
https:// gephi. org/).

Results

Manure, digestate, and soil physicochemical 
characterization

Table 2 reports the main characteristics of the manure and 
digestate (e.g., pH, electrical conductivity, total nitrogen 
(N), total organic carbon (OC), water-soluble C, extractable 
C (fulvic and humic acids)) used in this experiment. Both 
organic amendments contained residual concentrations of 
SMX (ca. 0.045 mg/kg).

The agricultural soil used for the experiment had an 
organic carbon content of 1.05% ± 0.05 and nitrogen 
of 0.33% ± 0.00 and a pH of 6.8 (Table S2). The highest 
increase in soil organic carbon and pH was observed in the 
case of digestate-amended soils (SD, SCD, and SDCA) 
(Table S2).

Chemical determinations

The SMX antibiotic almost disappeared over the 36 experi-
mental days in all conditions, from 99.4% in SCA to 99.5% 
in SDCA. Adding plant did not promote any significant fur-
ther antibiotic removal (Table 3).

Cons ide r ing  t he  b ioaccumula t i on  fac to r s 
(BAF =  SMXleaves/SMXsoil3h),  negligible residual 

concentrations of sulfamethoxazole were found in the lettuce 
leaves. The BAF values were always lower than 1, exclud-
ing SMX bioaccumulation in the edible part of the lettuce 
(Table 3).

The initial amount of copper in the soil was 
21.97 ± 1.7 mg/kg; with addition of the copper solution, its 
concentration increased to 30.66 ± 1.8 mg/kg. Interestingly, 
in the planted microcosms, higher amounts (average values 
43.31 ± 0.7 mg/kg) of copper than in the corresponding un-
planted conditions (SCA, SMCA, SDCA) were observed at 
36 days, showing how lettuce, through its roots, concentrated 
it inside its rhizosphere.

Live cell abundance and dehydrogenase activity

Figure 1a shows how amendments promoted live cell abun-
dance (N. of live cells/g soil). However, copper and SMX 
had an initial detrimental effect on cell numbers (p < 0.05, 
Table S3) in all conditions where they were co-present 
(SCA, SMCA, and SDCA). At day 36, microbial abun-
dances were significantly higher than in the control (S) 
in all conditions (p < 0.05), with the highest values in the 
amended rhizosphere. The amendments also promoted over-
all dehydrogenase activity, and this effect was amplified by 
the plant presence (36 days) (Fig. 1b). However, only in the 
digestate planted microcosms (SD_P, SCD_P, and SDCA_P) 
did DHA show values that were always significantly higher 
(p < 0.05, Table S4) than in the corresponding un-planted 
conditions.

Quantification of ARGs

Manure and digestate introduced both intI1 and sul1 genes 
to the amended soils. Overall, when adding manure, a sig-
nificantly higher (Kruskal Wallis p < 0.05, Table S5) ARG 
abundance was found than in digestate-amended condi-
tions. The intI1 gene was initially the most abundant, but 
at 36  days, it had almost disappeared in all conditions 
(Fig. 2). At the same time, a general decrease in sul1 was 
also observed (except in the conditions where copper was 
present), and a positive correlation (p < 0.05) between sul1 
and intI1 was found.

Table 2  Physicochemical and chemical characterization of the cattle 
manure and digestate

Manure Digestate

pH 6.8 ± 0.3 7.6 ± 0.0
Electrical conductivity (µS/cm) 4.5 ± 0.0 1.4 ± 0.0
Total N (%) 1.8 ± 0.1 1.5 ± 0.1
Total organic C (%) 41.3 ± 0.7 32.8 ± 0.3
Water-soluble C (%) 6.7 ± 0.0 1.2 ± 0.4
Humic acid–like C (%) 12.7 ± 0.1 6.7 ± 0.0
Fulvic acid–like C (%) 1.1 ± 0.0 3.5 ± 0.1

Table 3  SMX residues (%) 
in soil (3 h and 36 days) and 
in leaves (36 days) and the 
corresponding bioaccumulation 
factor (BAF)

3 h (mg/kg) Soil 36 days (mg/kg) Leaves 36 days (mg/kg) BAF

SMCA 7.01 ± 0.01 0.0430 ± 0.001 - -
SDCA 7.01 ± 0.03 0.0329 ± 0.00 - -
SCA 7.01 ± 0.01 0.0450 ± 0.001 - -
SMCA_P 7.01 ± 0.01 0.0419 ± 0.0004 0.263 ± 0.000 0.038
SDCA_P 7.01 ± 0.03 0.0377 ± 0.0004 0.096 ± 0.000 0.014
SCA_P 7.01 ± 0.01 0.0425 ± 0.001 0.399 ± 0.000 0.057

https://gephi.org/
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Fig. 1  a Live cell abundance (N. live cells/g dry soil). b Dehydro-
genase activity (µg TPF/ g dry soil). Data are means of three inde-
pendent replicates. The vertical bars represent the standard errors. 

The post hoc tests are reported in detail in Supplementary Material 
(Table S3 and Table S4)



Applied Microbiology and Biotechnology         (2024) 108:516  Page 9 of 21   516 

Indeed, the relative highest values (p < 0.05) of ARGs 
(sul1 + sul2) were with a copper and sulfamethoxazole co-
presence in both the soil (SMCA and SDCA) and rhizos-
phere (SMCA_P, SDCA_P at 36 days). Moreover, compar-
ing to the control soil (S), a higher relative abundance of 
sul1 + sul2 was found where copper was present (SC and 
SCA at 36 days).

Biodiversity and phylogenetic characterization 
of the microbial community

The prokaryotic community was characterized by sequenc-
ing the 16S gene in the various experimental conditions. 
Table  4 reports the diversity (Shannon, Evenness, and 
Chao1) indices, based on ASV abundance.

The Shannon and Evenness values were significantly 
different (p < 0.05) between the SMX and Cu co-presence 
conditions (SCA, SMCA, and SDCA) and the other condi-
tions (S, SC, SM, SMC, SD, SDC) and between the initial 
and the final sampling (p < 0.05). The Evenness values were 
also significantly different (p < 0.05), between the amended 
(manure or digestate) conditions in co-presence of SMX and 
Cu (SMCA and SDCA) and the non-amended ones (SCA).

The Chao1 index values showed a significant differ-
ence between the initial and final sampling (p < 0.05) for 
all conditions. Interestingly, Chao1 was found to be lower 
(p < 0.05) in the SCM condition at 3 h in comparison with 
S and SM at 3 h. At 36 days, the SC value was significantly 
lower than those found in S, SCA, SMCA, SCD, and SDCA.

Finally, the diversity values were generally higher in a 
plant presence (rhizosphere) in all conditions, confirming 
the positive effect of the rhizosphere on microbial com-
munity structure and activity.

The principal coordinate analysis (PCoA) of the ASV 
distribution did not show significant differences between 
the presence and absence of SMX and/or Cu. At 36 days, 
there were significant differences (PERMANOVA, 
p-value < 0.001, R = 0.89, Table S6) between amended and 
un-amended conditions and between plant and un-planted 
ones (PERMANOVA, p-value < 0.001, R = 0.94). In the 
absence of plants, the soil microbial communities were 
significantly different (PERMANOVA, p-value < 0.001, 
R = 0.84, Table  S7) between manure and digestate at 
36 days. In a plant presence, the effect of the amendments 
was not observed (Fig. 3).

As regards the microbial community at class level, Act-
inobacteria (32.4%), Gammaproteobacteria (14.01%), and 
Alphaproteobacteria (11.5%) were predominant in the 
control soil (S at 3 h). Bacteroidia were found to be rela-
tively more abundant in SC (12.2%) and SCA (11.3) than 
in the S microcosms, whereas Bacilli only in SC (11.6%). 
In manure-amended conditions, Bacteroidia were also in a 
relatively high number and in the co-presence of SMX and 
Cu (SMCA) were the dominant group (19%). An overall 
description of the classes (%) in the various conditions can 
be found in Fig. 4 and Table S8.

At 36 days, a general increase in Actinobacteria was 
observed in all experimental conditions (Fig. 4b, c), with 
relative percentages ranging from 27.3% (SM_P) and 
28.5% (SCD_P) in a plant presence to 40.04% (SM) and 
42.7% (SCM). Moreover, a sharp decrease in Bacteroidia, 
with the lowest values in SM and SCA (1.05% and 1.54%, 
respectively), was observed.

At the genus level (Fig. 5), S was initially (3 h) charac-
terized by a high abundance of the Streptomyces (10.53%) 
and Sphingomonas (8.05%) genera; at 36 days, Streptomyces 

Fig. 2  Relative gene abun-
dances (ARGs or MGE/16S) 
in the various experimental 
conditions. The post hoc test is 
reported in detail in Supplemen-
tary Material (Table S5)



 Applied Microbiology and Biotechnology         (2024) 108:516   516  Page 10 of 21

Table 4  Diversity indices 
(Shannon, Evenness, and 
Chao1)

Experimental condition Average values Standard errors

Shannon Evenness Chao1 Shannon Evenness Chao1

3 h Soil S 9.57 0.927 1410.35 0.23 0.00 296.66
SC 9.06 0.895 1166.26 0.41 0.03 98.28
SCA 9.61 0.929 1365.05 0.09 0.00 105.70
SM 9.69 0.929 1409.55 0.03 0.00 45.59
SCM 9.01 0.921 902.75 0.12 0.00 82.25
SMCA 9.51 0.924 1314.21 0.13 0.00 160.84
SD 9.43 0.922 1236.46 0.15 0.00 132.34
SCD 9.61 0.928 1354.93 0.10 0.00 114.90
SDCA 9.55 0.927 1315.32 0.06 0.00 54.66

36 days Soil S 8.54 0.915 675.77 0.19 0.00 93.22
SC 8.07 0.921 443.99 0.07 0.00 24.37
SCA 8.50 0.920 618.61 0.08 0.00 48.30
SM 8.10 0.879 625.98 0.20 0.00 103.74
SCM 8.53 0.909 742.21 0.38 0.00 178.20
SMCA 8.89 0.916 855.74 0.06 0.00 47.48
SD 8.18 0.921 494.19 0.24 0.00 78.30
SCD 8.66 0.906 785.57 0.19 0.00 106.86
SDCA 8.88 0.923 813.74 0.13 0.00 73.76

Rhizosphere S_P 9.42 0.908 1396.23 0.09 0.00 130.58
SC_P 9.29 0.917 1212.35 0.25 0.00 277.56
SCA_P 9.30 0.912 1302.72 0.32 0.00 302.46
SM_P 9.37 0.918 1219.18 0.06 0.00 48.78
SCM_P 9.14 0.897 1240.20 0.19 0.00 196.34
SMCA_P 9.29 0.918 1151.64 0.05 0.00 44.66
SD_P 9.47 0.917 1322.11 0.11 0.00 103.92
SCD_P 9.28 0.911 1203.83 0.12 0.00 154.68
SDCA_P 9.55 0.922 1378.43 0.14 0.00 181.18

Fig. 3  Principal coordinate 
analysis (PCoA) based on the 
Bray–Curtis distance matrix and 
calculated on ASV distribution. 
Red points indicate the diges-
tate-amended conditions, green 
points the manure-amended 
conditions, and blue ones the no 
amended conditions. The circle 
shape indicates no plant pres-
ence. The pink ellipse indicates 
the initial sampling time (3 h) 
and the light blue one the finale 
sampling time (36 days)
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Fig. 4  Class relative abun-
dances (% ASV) with an 
average presence > 1% in each 
experimental condition at 3 h 
(a), soil at 36 days (b), and 
rhizosphere at 36 days (c). Data 
are means of three independent 
replicates
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increased and Sphingomonas decreased in both the soil and 
rhizosphere (S and S_P). Copper spiking (SC) caused a 
prompt increase in Bacillus (Bacilli), Fulvivirga (Bacte-
roidia), and Lactobacillus (Bacilli) and a decrease in Strep-
tomyces and Sphingomonas. In a similar way, an SMX and 
Cu co-presence (SCA) negatively influenced Streptomyces, 
but favoured Sphingomonas.

Adding digestate (SD, SCD, and SDCA at 3 h) induced 
an increase in Fulvivirga (Bacteroidia), but at 36 days, the 
same genus decreased in the same conditions in both the 
rhizosphere and soil (SD, SCD, SDCA, SD_P, SCD_P, and 
SDCA_P). Moreover, the SBR1031 genus, belonging to the 
Anaerolineae class, increased in the presence of digestate at 
3 h and became more abundant at 36 days compared with the 
control soil (S). The same genus also increased in the SMCA 
un-planted condition at 36 days.

On the contrary, adding manure caused a halving of Strep-
tomyces and Sphingomonas compared to S at 3 h. At 36 days, 
a strong increase in Bacillus and Neoasaia was detected in 

the SM condition, as well as a decrease in Sphingomonas. 
On the other hand, in the manured condition (SM_P), the 
relative abundance values of other genera (Sphingomonas, 
Streptomyces, Bacillus, and Neoasaia) turned out to be 
similar to the initial ones. Moreover, a manure presence at 
36 days favoured the Nocardia genus (Alphaproteobacteria 
class) in copper conditions (SCM, SMCA), especially in the 
absence of lettuce.

The principal component analysis (PCA), using overall 
data as variables, explained 47% of the total variance (Sup-
plemental Fig. S1). Dimension 1 was significantly correlated 
(p < 0.05, Table S9) at 3 h with some bacterial genera such 
as Staphylococcus, Streptococcus, and Pseudomonas and 
ARGs (e.g., intI1) and at 36 days with Nocardia, Streptomy-
ces, and Neoasaia, which in turn were positively correlated 
with other parameters such as sul2 and copper. On the other 
hand, other genera (e.g., Arthrobacter and Bacillus) are on 
the opposite side of SMX.

Fig. 5  Heatmap for prokaryotic relative abundances at genus level in 
the different conditions and at the sampling times (3 h and 36 days). 
Genera and conditions were grouped in accordance with a hierarchi-

cal clustering dendrogram, at the top and the left side of the heatmap. 
Data are means of three independent replicates



Applied Microbiology and Biotechnology         (2024) 108:516  Page 13 of 21   516 

The network analysis (including SMX, Cu, and 26 micro-
bial genera) was performed to evaluate the relationships 
between the contaminants and the main bacterial genera in 
the soil and rhizosphere amended with manure or diges-
tate at 36 days. Supplemental Fig. S2 shows how manure 
or digestate differently affected the microbial community. 
For example, in manure conditions, copper was in the same 
cluster as Streptococcus and Staphylococcus and JG36-TzT 
in the same cluster as Stenotrophomonas. In digestate condi-
tions, SMX was linked to Spingomonas and Halomonas and 
ARGs were in the same cluster as copper and Pseudomonas.

Lettuce biomass

When adding copper and an antibiotic, a detrimental effect 
on lettuce biomass was observed, except in the digestate-
amended conditions (Fig. 6). Indeed, the significantly high-
est (p < 0.05, Table S11) biomass values were found in the 
digestate (SD_P, SCD_P, and SDCA_P) conditions, whether 
or not copper or an antibiotic was present.

Discussion

The fact that SMX was dissipated in the soil studied shows 
how microbial community degradative populations were 
already present in the soil. SMX removal from soil has been 
reported in other works. For example, a 90% SMX decrease 
at 60 days (initial concentration 20 mg/kg) in soil amended 
with a cattle manure digestate and maintained at 20 °C was 
found also by Rauseo et al. (2019). A previous work reports 
the disappearance of 85% of SMX in 46 days (at ca. 26°C) 
in soil amended with manure or digestate (initial concentra-
tion 7.5 mg/kg soil) with no differences between bulk soil 
and lettuce rhizosphere (Barra Caracciolo et al. 2022). In our 

case, the higher degradation rate (> 99% in 36 days) com-
pared to other works can be ascribed to the higher experi-
mental temperature and daylight hours occurring in the 
greenhouse in the second part of the experimental period. 
Even if the initial temperature was ca. 22 °C, over time, it 
rose, with a sudden temperature increase (up to 40 °C on 24 
May) and a seasonal increase in daylight hours. The positive 
influence of high temperatures and light on SMX dissipation 
has been reported in other works (Patrolecco et al. 2018; 
Archundia et al. 2021).

The SMX residues found in the lettuce leaves showed how 
it was not bioaccumulated in this edible plant; in fact, its BAF 
values were always lower than one. Comparable results for 
SMX were obtained by Barra Caracciolo et al. (2022). The 
negligible tendency of SMX to be assimilated by plants has 
also been demonstrated by other authors (Mullen et al. 2019; 
Stando et al. 2022). Cheng et al. (2020), in a 49-day experi-
ment, found about 0.08 mg/kg of SMX in cabbage biomass, 
from an initial soil concentration of 5 mg/kg.

When adding digestate, the lowest residual concentrations 
of SMX in both soil and leaves were found, and the rhizos-
phere microbial activity and plant biomass were the highest 
(Figs. 2 and 6), in line with what is reported in other works 
(Rauseo et al. 2019; Rolando et al. 2023; De Carolis et al. 
2024), because organic carbon, nutrients, and microbial popu-
lations were introduced with it (Innangi et al. 2017; Garbini 
et al. 2022, 2023). Moreover, digestate, increasing soil pH, 
presumably decreased copper availability and toxicity and pro-
moted close and positive relationships between the plant and 
its microbiome (Barra Caracciolo et al. 2015a, 2022; Ancona 
et al. 2017; Di Lenola et al. 2018; Adedayo et al. 2022). Indeed, 
with digestate present, the positive and synergic relation-
ships established in the lettuce-microbiome “metaorganism” 
(Berg et al. 2016; Hassani et al. 2018; Compant et al. 2019; 
Schmidt and Saha 2021) were effective in improving overall 

Fig. 6  Total (aerial + root) bio-
mass (dry weight, g) of the let-
tuce plants under experimental 
different conditions at the end 
of the experiment (36 days)
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soil quality and plant productivity. The digestate contained a 
higher amount of fulvic acids than manure, and this can have 
also favoured possible complexation processes between cop-
per and antibiotics and this organic component, as described 
in other works (Qiu et al. 2007; Xu et al. 2017).

Although copper is an essential plant micronutrient, veg-
etal species can be affected by concentrations higher than is 
essential (Barra Caracciolo and Terenzi 2021) and microor-
ganisms are more sensitive to it, even at concentrations of 
a few milligrams (Ochoa-Herrera et al. 2011; Narciso et al. 
2023b). Copper, therefore, affected the rhizosphere micro-
biome (except in the case of digestate), as also demonstrated 
by the lower biodiversity values found in both un-amended 
(S_P, SC_P, and SCA_P) and manure-amended soils (SM_P, 
SCM_P, and SMCA_P).

In line with our results, a recent work reported both a 
negative impact from copper (at concentrations similar to 
ours) and a positive effect from digestate on lettuce growth. 
In particular, the chlorophyll content, leaf numbers, and 
shoot height were higher in all digestate conditions (includ-
ing with copper present) than manure and unamended ones 
(De Carolis et al. 2024).

The effectiveness of the digestate in increasing rhizos-
phere microbial biodiversity and activity even with antibi-
otic presence has been found in other works (Singh et al. 
2007; Buée et al. 2009; Barra Caracciolo et al. 2015a, 2022; 
Garbini et al. 2022).

It was evident that not only the microbial community 
favoured plant growth but also lettuce influenced its over-
all composition (Figs. 3 and 4c). For example, Alphapro-
teobacteria became the second dominant group in all the 
planted conditions and this result was in accordance with 
the presence in this class of several bacteria associated with 
the rhizosphere (e.g., nitrogen-fixing and nitrifying bacte-
ria), in line with other works (Mendes et al. 2013; Barra 
Caracciolo et al. 2015a; Qiao et al. 2017; Di Lenola et al. 
2018; Ling et al. 2022). Moreover, at 36 days, Actinobacte-
ria were always in lower percentages than in the correspond-
ing un-planted conditions and this was in line with a general 
increase in Proteobacteria in the rhizosphere, in particular in 
the amended conditions without copper (SM_P and SD_P). 
A Proteobacteria presence reflects an overall improvement 
in soil characteristics; in fact, they are dominant in good-
quality state soils (Mocali et al. 2013; Godoi et al. 2014; 
Barra Caracciolo et al. 2015a, 2020a; Ancona et al. 2017).

Moreover, whether or not lettuce was present, digestate 
conditions generally favoured an increase in the percentage 
of the chemoorganotrophic Anaerolineae, which are known 
to favour nutrient recycling and soil quality (Xia et al. 2016; 
Freches and Fradinho 2024). On the other hand, the low 
organic carbon content (%) and dominance of Actinobac-
teria in the agricultural soil used in this work show that it 

was degraded, presumably because of its excessive use for 
agricultural purposes.

The analysis of the microbial community structure also 
confirmed that copper and sulfamethoxazole acted as a 
stressor for some microbial groups such as Actinobacteria 
and Bacilli, selecting, at 36 days, inside these classes, anti-
biotic-resistant bacteria and copper-tolerant ones. Indeed, 
Actinobacteria, which comprise not only sensitive bacte-
ria but also several genera are able to resist unfavourable 
habitats and antibiotic and copper tolerant species (Shaw 
et al. 2020; Barra Caracciolo and Terenzi 2021), increased 
at 36 days in SC and SC_P. In particular, Streptomyces, the 
most abundant genus found at 3 h in the control soil (S), 
promptly decreased with the additions of copper, antibiot-
ics, and amendments (SC, SCA SM, SD). Its subsequent 
increase at 36 days was possible thanks to its marked plas-
ticity and capacity to deal with antibiotics and heavy metals 
(Hoff et al. 2018; Brangsch et al. 2022; Sedeek et al. 2023), 
with a selection of resistant strains (Benimeli et al. 2011; 
Fróes et al. 2012; Rammali et al. 2022).

The increase in the Bacillus genus is also in line with 
the presence of several multidrug-resistant species, able 
to counteract various metals, including copper (San et al. 
2015; Tiwari et al. 2016; Barra Caracciolo and Terenzi 2021; 
Damle et al. 2021), and AB toxic effects (Haque et al. 2024).

On the other hand, other microbial groups, such as Bac-
teroidia, were not affected by adding contaminants and 
this was in line with their capacity to resist their toxicity 
(Niestępski et al. 2019b). Indeed, Bacteroidia comprise sev-
eral antibiotic resistant species, including animal and human 
pathogens (Niestępski et al. 2019a).

Interestingly, Alphaproteobacteria not only increased 
with a plant presence, but some genera, e.g., Sphingo-
monas and Neoasaia, were found in higher percentages in 
a copper and antibiotic presence than in the other condi-
tions, in accordance with their capacity to be copper resist-
ant (Altimira et al. 2012; Shen et al. 2021). Although the 
Neoasaia genus (Alphaproteobacteria) has not been widely 
studied so far, its capacity to grow with an acidic pH and in 
degraded soils, developing a variety of resistance mecha-
nisms, has been reported (Wang et al. 2015).

Moreover, Arthrobacter which remained quite stable over 
the experimental time have been reported to resist several 
heavy metals and to degrade a high variety of xenobiotic 
compounds (Pathak et al. 2020; Zhang et al. 2021; Wang 
et al. 2023).

Overall, when adding organic amendments, Bacilli, Gam-
maproteobacteria, Alphaproteobacteria, and Bacteroidia, 
which include bacteria able to resist and degrade sulfona-
mides, increased in accordance with other works (Reis 
et al. 2020; Readyhough et al. 2021; Wang et al. 2021; 
Barra Caracciolo et al. 2022) and with the fact that both the 
manure and digestate contained SMX residues. In particular, 
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Bacillus and Sphingomonas are able to denitrify organic 
compounds and have also been reported to be SMX-resistant 
genera and capable of degrading this antibiotic (Cheng et al. 
2020; Barra Caracciolo et al. 2022). The amendments also 
introduced Fulvivirga (common in gut microbiomes), which 
has been reported to be able to transform complex mole-
cules, including pharmaceuticals (Wardman et al. 2022).

The fact that Nocardia increased at 36 days in SCM and 
SMCA showed how copper and manure favoured a sig-
nificantly higher number of potential resistant pathogenic 
bacteria. Indeed, the Nocardia genus is capable of resisting 
metals and antibiotics (Nouioui et al. 2020) and many spe-
cies are pathogens (e.g., the etiological agent of nocardiosis 
in humans and a variety of animals) (Brown-Elliott et al. 
2006; Yasuike et al. 2017).

The organic amendments introduced not only microorgan-
isms but also antibiotic-resistant bacteria, with a significantly 
higher relative abundance of ARGs in manure than in diges-
tate, as demonstrated in other recent works (Checcucci et al. 
2020; Visca et al. 2022; Barra Caracciolo et al. 2022), and 
this confirms that manure, if used as an organic fertilizer, is 
a potential ARG source (He et al. 2020; Ibekwe et al. 2023).

The overall reduction in intI1 and sul1 in the amended 
conditions at 36 days is in accordance with other works 
and was generally related to an AB decrease (Rauseo et al. 
2019; Yang et al. 2021; Garbini et al. 2022). The intI1 and 
sul1 genes are generally positively related, and this fact is 
ascribable to their location on the same plasmid (Domínguez 
et al. 2019; de los Santos et al. 2021). On the contrary, sul2 
increased at 36 days and particularly in a copper co-pres-
ence, showing how this gene was not strictly linked to SMX 
but also to other stressors (Enne 2004; Bean et al. 2009), 
such as heavy metals (Mazhar et al. 2021; Gao et al. 2022). 
The sul2 gene is generally located on a small plasmid which 
has a broad host range (Enne 2004; Visca et al. 2022; Barra 
Caracciolo et al. 2022) and different genetic mobility mech-
anisms, which confer bacteria several fitness advantages 
(Bean et al. 2009; Zhou et al. 2021). Indeed, Zhang et al. 
(2018b) demonstrated that sub-inhibitory copper concentra-
tions (ranges of 0.005–0.05 mg/kg) can cause an increase in 
ARG horizontal transfers by raising cell membrane perme-
ability and conjugation-related genes.

When adding copper to the soil, the detrimental effects of 
antibiotics on the microbial community were boosted, mak-
ing bacterial populations potentially more sensitive to SMX 
and this result is in line with other authors’ findings (Liu 
et al. 2016; Orta-Rivera et al. 2023). The fact that the highest 
values of sul2 were detected at the end of the experiment in 
an SMX and copper co-presence confirms that Cu can be a 
co-factor contributing to sulfamethoxazole resistance gene 
persistence (cross-resistance), as recognized in other works 
(Glibota et al. 2019; Mazhar et al. 2021; Wu et al. 2022; 
Congilosi et al. 2022).

The network analysis supports the fact that the amend-
ments had a different impact on the overall microbial commu-
nity. In manure conditions, copper was linked to Streptococ-
cus and Staphylococcus because they are both antibiotic- and 
metal-resistant (Price and Boyd 2020; Akbari et al. 2022) 
genera. Moreover, JG36-TzT and Stenotrophomonas were 
found in the same cluster thanks to their capacity to live in 
an acidic soil, with a heavy metal, and to degrade xenobiotics 
(Glibota et al. 2019; Köhler et al. 2021). In digestate condi-
tions, SMX was linked to Sphingomonas and Halomonas, 
presumably because they were able to degrade it (Cheng et al. 
2020; Barra Caracciolo et al. 2022; He et al. 2024). Finally, 
it is very interesting to highlight that copper is in the same 
cluster as the ARGs and Pseudomonas, and this can explain 
the relative increase in sul2 at 36 days with an antibiotic 
co-presence.

On the other hand, if we consider the conditions with 
exclusively manure (SM) or digestate (SD), which repro-
duce real agricultural scenarios, ARGs decreased strongly 
at 36 days, with the lowest values with digestate present and 
comparable to the control soil (S). At the same time, because 
the copper concentrations used in this work were in line with 
those commonly found in agricultural soils, its residues can 
have a serious impact on the spreading of antibiotic resist-
ance genes, confirming both the antibiotic cross-resistance 
phenomenon (Chapman 2003; Zhang et al. 2019) and the 
possible negative effect of copper on plants (De Carolis et al. 
2024).

Our work shows how antibiotic resistance is a dynamic 
and “silent phenomenon,” which can suddenly increase 
among soil microbial populations not only when adding 
organic amendments (which contain ARB and AB residues) 
but also in response to agricultural practices such as the use 
of copper as a fungicide (cross-resistance). Overall, manure 
and digestate had a different microbiological and chemical 
composition, improving soil quality and structure in different 
ways, adding different microbial populations and pathogenic 
genera, and organic matter components, useful nutrients for 
plants, and making copper bioavailable in different ways as 
well as, in the case of the digestate-amended soil, buffering 
toxic contaminant synergic effects. On the other hand, the 
plants in the amended conditions also contributed to increas-
ing soil quality, thanks to synergic interactions with their 
rhizosphere, including a decrease in overall ARGs. Finally, 
cattle digestate was confirmed to be not only a suitable 
organic fertilizer but also a nature-based solution for limit-
ing contaminant effects and ARG spreading.
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