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Abstract

Background and Objective Accurately extrapolating survival beyond trial follow-up is essential in a health technology
assessment where model choice often substantially impacts estimates of clinical and cost effectiveness. Evidence suggests
standard parametric models often provide poor fits to long-term data from immuno-oncology trials. Palmer et al. developed
an algorithm to aid the selection of more flexible survival models for these interventions. We assess the usability of the algo-
rithm, identify areas for improvement and evaluate whether it effectively identifies models capable of accurate extrapolation.
Methods We applied the Palmer algorithm to the CheckMate-649 trial, which investigated nivolumab plus chemotherapy
versus chemotherapy alone in patients with gastroesophageal adenocarcinoma. We evaluated the algorithm’s performance
by comparing survival estimates from identified models using the 12-month data cut to survival observed in the 48-month
data cut.

Results The Palmer algorithm offers a systematic procedure for model selection, encouraging detailed analyses and ensuring
that crucial stages in the selection process are not overlooked. In our study, a range of models were identified as potentially
appropriate for extrapolating survival, but only flexible parametric non-mixture cure models provided extrapolations that
were plausible and accurately predicted subsequently observed survival. The algorithm could be improved with minor addi-
tions around the specification of hazard plots and setting out plausibility criteria.

Conclusions The Palmer algorithm provides a systematic framework for identifying suitable survival models, and for defining
plausibility criteria for extrapolation validity. Using the algorithm ensures that model selection is based on explicit justifica-
tion and evidence, which could reduce discordance in health technology appraisals.

1 Introduction

Accurately estimating the survival benefits associated with
new cancer treatments is essential for health technology
assessment (HTA), to allow appropriate resource alloca-
tion decision making. Clinical trials generally have limited
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follow-up at the time of regulatory approval and HTA sub-
mission, driven by a desire to ensure timely patient access to
new treatments [1]. In the absence of long-term data, extrap-
olation beyond observed trial periods is necessary, to esti-
mate complete survival benefits. The choice of extrapolation
method often substantially impacts estimates of survival and
cost effectiveness, representing a key area of discourse and
uncertainty in technology appraisals (TAs) [2—4]. Recently,
Palmer et al. published an algorithm designed to help ana-
lysts select survival models to inform economic evaluations
of cancer immunotherapies—a setting where extrapolation
is a particular challenge owing to the potential for long-term
survival benefits [5, 6]. In this paper, we present a practical
demonstration and evaluation of this algorithm, henceforth
referred to as the ‘Palmer algorithm’.

The National Institute for Health and Care Excellence
(NICE) Decision Support Unit (DSU) published guidance on
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Key Points for Decision Makers

Survival modelling is particularly challenging for immu-
notherapies, owing to the potential for long-term survival
benefits. Palmer et al. published an algorithm designed
to help analysts select survival models to inform eco-
nomic evaluations of cancer immunotherapies.

We present a practical demonstration of the Palmer algo-
rithm, and evaluate its performance using multiple data
cuts from the CheckMate-649 trial, which investigated
nivolumab plus chemotherapy versus chemotherapy
alone in patients with gastroesophageal adenocarcinoma.

We show that the Palmer algorithm offers a valuable,
systematic procedure for survival model selection: its use
could reduce discourse in health technology assessments,
leading to more efficient decision making. The algorithm
could be improved with minor additions around the
specification of hazard plots, the setting out of plausi-
bility criteria and the inclusion of flexible parametric
non-mixture cure models, which we show are potentially
valuable in the cancer immunotherapy setting.

using parametric survival models in 2011 [7]. These guide-
lines focused on ‘standard’ parametric models, including
exponential, Weibull, Gompertz, log-logistic, log normal
and generalised gamma distributions. Each of these mod-
els makes assumptions about the shape of the hazard func-
tion (the risk of the event of interest [usually death] occur-
ring over time). In particular, the exponential, Weibull and
Gompertz models cannot represent ‘turning points’ in the
hazard function (that is, where hazards that were previously
increasing begin to decrease, or vice-versa), and log-logistic,
log normal and generalised gamma models can only reflect
one turning point. As a result, sometimes these models may
not appropriately represent the expected hazard function.
Treatment of cancer using immunotherapy has been
shown to result in delayed but durable responses, resulting in
hazard functions with complex shapes [5, 8—10]. Typically,
patients recruited into clinical trials are relatively healthy
because of strict eligibility criteria [11, 12]. However, in
trials of treatments for advanced cancers, the hazard of death
is likely to increase in the short term before declining if par-
ticipants respond to treatment. In the long term, hazards may
increase again, due to age-related mortality. This implies
multiple turning points in the hazard function, which none of
the standard parametric survival models can represent. This
was recognised in NICE DSU Technical Support Document
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21, which described flexible methods for survival model-
ling [13]. Palmer et al. built on this document, providing
an algorithm to guide analysts on how to determine when
flexible survival models are needed, and which models to
use, specifically in the context of immunotherapies. Given
the impact of survival model choice on cost-effectiveness
estimates, and regular disagreements around which sur-
vival models are appropriate [4], the algorithm represents a
potentially valuable tool that could be used to harmonise the
survival modelling undertaken for immunotherapy HTAs.
We apply the Palmer algorithm and evaluate its perfor-
mance using multiple data cuts from the CheckMate-649
(CM-649) trial [14]. CM-649 investigated nivolumab plus
chemotherapy versus chemotherapy alone in patients with
advanced gastric, oesophageal adenocarcinoma or gastro-
oesophageal junction cancer. Our methods section describes
the CM-649 data, summarises the Palmer algorithm and
explains our evaluation approach: we apply the algorithm
to an early data cut from CM-649 (as would be typically
available for an HTA) and evaluate its practicality, success in
accurately predicting subsequently observed outcomes and
potential for improvement. Our results section presents out-
comes from our algorithm application and compares model
predictions to later observed survival data. Finally, we dis-
cuss findings and suggest enhancements for the algorithm.

2 Methods
2.1 The CheckMate-649 Study

CM-649, an international, phase III, randomised controlled
trial (RCT), randomised 789 participants to nivolumab
plus chemotherapy and 792 participants to chemotherapy
alone. The study has been reported in detail [14—-16], and
provided the pivotal evidence used in NICE TA857 [17].
Ultimately, NICE recommended nivolumab plus chemo-
therapy as an option for untreated human epidermal
growth factor receptor 2-negative, advanced or metastatic
gastric cancer, gastro-oesophageal junction or oesopha-
geal adenocarcinoma in adults whose tumours express pro-
grammed death-ligand 1 (PD-L1) with a combined posi-
tive score (CPS) of 5 or more [17]. The PD-L1 CPS > 5
subgroup constituted 473 of the participants randomised to
nivolumab plus chemotherapy, and 482 of the participants
randomised to chemotherapy alone.

At the time of submission, data from CM-649 had a
minimum follow-up of 12.1 months (referred to as the
‘12-month’ data cut) [14]. During the appraisal, a second
data cut became available, with a minimum follow-up of
24 months [16]. Subsequently, 36-month and 48-month
minimum follow-up data have become available [15, 18].
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In this paper, we apply the Palmer algorithm to the
12-month data cut from CM-649 and compare model pre-
dictions to data observed in the 48-month data cut, with
all analyses focused on the PD-L1 CPS > 5 subgroup.
Figure 1 presents overall survival data from these two data
cuts. In the 12-month data cut, 70% of the participants had
died, which increased to 86% in the 48-month data cut.
Follow-up is clearly much longer in the 48-month data cut,
the shapes of the survival curves appear more established,
and there is no overlap in confidence intervals (CIs) at the
tails of the curves.

2.2 The Palmer Algorithm

The Palmer algorithm aims to help analysts decide
whether flexible survival models are required to extrapo-
late survival for immunotherapies, and, if so, which mod-
els should be chosen for testing. The algorithm involves 8
Steps (referred to as S1-S8) and four questions (referred
to as Q1-Q4) [see Fig. 2]. Proceeding through these Steps
and questions requires a detailed appraisal of the pivotal
trial data as well as external data and information. Key
elements include identification of relevant external data,
using clinical expert input, and considering observed and
expected hazard functions and the potential for long-term
survival.

2.3 Application and Assessment of the Palmer
Algorithm

In our application of the Palmer algorithm, we utilised the
fact that CM-649 provided the pivotal evidence included in
NICE TA857. Given that NICE appraisals involve detailed
searches and reviews of relevant evidence, we used external
data sources and clinical expert opinion referred to within
the appraisal documents to inform our application of the
algorithm as this represents what was ‘known’ at the time.
In particular, for S1 (review external data, see Fig. 2), we
reviewed all the external data sources mentioned in the
appraisal documents, and supplemented this with informa-
tion on survival in people with cancer of the oesophagus and
cancer of the stomach (diagnosed between 2015 and 2019)
from the National Cancer Registration and Analysis Service,
which collects data on all people living in England who are
diagnosed with cancer [19]. For S3 (elicit expert beliefs),
we reviewed all the expert beliefs mentioned in the appraisal
documents for NICE TA857. It would not be possible to
elicit a priori expert beliefs on the shape of long-term hazard
functions and survival based on the 12-month CM-649 data
cut given that longer term data are now available; it was
therefore logical to base expert beliefs on those included in
the NICE appraisal documents.

We evaluated the hazards observed in the 12-month
data cut, utilising log-cumulative and smoothed hazard
plots, Schoenfeld residuals, and the Grambsch-Therneau
test. Additionally, we considered relevant external data and
expert opinions to inform our assessment of the proportional
hazards assumption (S2), our examination of turning points
in the hazard function (S4), and the potential for a cure (S5).
This allowed us to identify a set of candidate survival models
(S6)—those that could potentially satisfy the hazard func-
tions and survival functions expected for overall survival for
nivolumab plus chemotherapy and chemotherapy alone. In
addition, we defined plausibility criteria that models could
be assessed by once they had been fitted. We then applied
the candidate survival models to the 12-month data cut from
CM-649 (PD-L1 CPS > 5 population) and identified those
that met our plausibility criteria (S7). We present results for
each model (S8a).

To assess model performance, we compared their pre-
dictions to the pre-defined plausibility criteria and to the
survival outcomes observed in the 48-month data cut. We
evaluated predictions by determining whether they satisfied
the plausibility criteria, and whether predicted hazard and
survival functions lay within the 95% CIs of the 48-month
observed data. We did not address S8b of the algorithm (pre-
senting cost-effectiveness results) as our focus was only on
survival predictions. Analyses were conducted in Stata ver-
sion 17. Stpm2 was used to fit flexible parametric models
and non-mixture cure (NMC) models [20], and strsmix to
fit mixture cure models (MCMs) [21].

3 Results

3.1 Application of the Palmer Algorithm:
Plausibility Criteria and Candidate Survival
Models

Table 1 presents a summary of our findings for Steps S1 to
S6 of the algorithm, including plausibility criteria defined
based on these findings, and a set of candidate survival
models considered potentially able to satisfy these crite-
ria. A detailed commentary on the evidence and analyses
underpinning these findings is provided in the Electronic
Supplementary Material (ESM).

Models needed to be capable of depicting a single turn-
ing point in the hazard function over the data period as
the observed hazards exhibited an initial increase, fol-
lowed by a decrease after approximately 1 year. Expo-
nential, Weibull, and Gompertz models could not capture
this turning point in the hazard within the observed data
period, and so were eliminated as candidates. Further-
more, models were required to incorporate an additional
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a) 12-month data cut

1.00
— Nivolumab + chemotherapy

—— Chemotherapy

0.80

0.60

0.40 4

Proportion surviving

0.20

0.00

1 T T 1 T T T 1 T 1 T T T 1 T T T T 1 T T
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78
Time since randomisation (months)
Nivolumab + Chemotherapy
At-risk 473 438 377 313 261 198 149 96 65 33 22 9 1 0
Censored 0 3 9 11 14 39 55 91 110 133 142 155 163 164
Died 0 32 87 149 198 236 269 286 298 307 309 309 309 309
Chemotherapy
At-risk 482 421 350 271 211 138 98 56 34 19 8 2 0 O
Censored 0 10 13 19 21 37 50 78 93 103 113 118 120 120
Died 0 51 119 192 250 307 334 348 355 360 361 362 362 362

b) 48-month data cut

1.00 -
—— Nivolumab + chemotherapy

—— Chemotherapy

0.80

0.60

0.40

Proportion surviving

0.20

0.00 +

1 T 1 T 1T T 1 T 1T T T T T 1 1 1T T 1T T T T 1 T
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78
Time since randomisation (months)
Nivolumab + Chemotherapy
At-risk 473 441 381 317 266 225 189 163 143 120 107 102 96 83 80 76 76 71 60 48 36 22 15 5 2 0 O
Censored 0 0 4 5 6 7 7 8 8 8 10 10 10 11 12 12 12 17 27 38 49 62 69 79 82 84 84
Died 0 32 88 151 201 241 277 302 322 345 356 361 367 374 381 385 385 385 386 387 388 389 389 389 389 389 389
Chemotherapy
At-risk 482 425 354 277 217 156 128 100 87 72 63 53 46 42 40 35 34 27 22 15 10 9 3 0 O 0 O
Censored 0 6 9 12 13 14 15 17 17 17 17 17 18 18 18 19 19 23 28 33 37 38 44 47 47 47 47
Died 0 51 119 193 252 312 339 365 378 393 402 412 418 422 424 428 429 432 432 434 435 435 435 435 435 435 435

Fig.1 CM-649 programmed death-ligand 1 combined positive score >5 overall survival data, 12-month and 48-month data cuts. PD-LI pro-
grammed death-ligand 1
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with potential relevance to the survival

extrapolation of intervention/ comparator.

Evidence to consider:

* Same product, same indication

* Same product, same disease but later
treatment line

* Similar product, same indication

* Same product, different disease

Undertake targeted review for external data

S4. Consider turn
points and data

rity

Consider data maturity and evidence of
turning points in the observed hazard plot
and potential for future turning points
based on (in priority order)

1. External evidence

2. Clinical plausibility

3. (Log-cumulative) hazard plots

4. Mechanism of action

S3. Elicit expert beliefs

Curate and share internal and external data
with clinical experts to elicit a priori beliefs
regarding

A

* The shape of long-term hazard functions
for intervention and comparators

* The potential for substantial survival
heterogeneity between treatment arms
(if applicable)

umption

Assess whether the PH assumption is likely
to hold taking into consideration external
data as well as the following tests on the
observed data:

* (Log-cumulative) hazard plots

« Scaled Schoenfeld residual plots

* Grambsch-Therneau test

* Royston-Parmar augmented log-rank test

Follow published guidelines

Follow survival extrapolation guidance

provided by HTA agency and/or NICE TSD 14

Using insights from steps 1 and 3 and

additional discussions with clinical experts,

select plausible models based on

(in priority order)

1. External evidence

2. Clinical plausibility

3. (Log-cumulative) hazard plots including
comparison with the general population
hazard

4. AIC/BIC goodness-of-fit statistics

{Eeses 1—

Using insights from steps 1, 3, and 4, evaluate

the possibility of a cure considering

(in priority order)

1. Evidence of a plateau in OS

2. Whether cure is clinically plausible for
the target population based on external
evidence

3. Evidence of a plateau in acceptable
intermediate endpoints for OS

4. The mechanism of action of the drug

S5. Evaluate possibility
of a cure

re models

Consider fitting the f ing d
adjusting for background mortality
(in priority order):*

1. Cubic spline models

A

2. Landmark models

(if available evidence justifies their use)
3. Piecewise models
4. Parametric mixture models

=)

Consider fitting mixture and non-mixture
cure fraction models adjusting for
background mortality

A

(29

S8a. Present results of
all plausible models

Present results from all plausible models,
and consider Bayesian model averaging
using external data and/or information
elicited from clinical experts

S8b. Present results of
base-case model
>

Fig.2 The Palmer algorithm. A/C Akaike Information Criterion, BIC
Bayesian Information Criterion, HTA health technology assessment,
NICE TSD National Institute for Health and Care Excellence Techni-
cal Support Document, PH proportional hazards, OS overall survival.

Present results based on the base case
and include other plausible models as
sensitivity analyses

Re-produced with permission from Palmer et al. [5]. This article was

published in Value in Health; 26(2), Palmer S, Borget I, Friede T,
Husereau D, Karnon J, Kearns B, et al. A guide to selecting flexible
survival models to inform economic evaluations of cancer immuno-
therapies, pg. 185-92
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turning point beyond the data period to account for the
eventual age-related rise in mortality risk among a small
proportion of patients expected to survive beyond 10 years
in both treatment groups. In these long-term survivors, it
was expected that hazards would converge to rates remain-
ing above general population levels. For this, the most
appropriate standardised mortality ratio (SMR) to use was
unclear. Within TA857, analyses were presented with an
SMR of 1.5, though without a clear rationale [17]. We
conducted analyses with SMRs of 1.5 and 2.5.

We concluded that candidate survival models included
log-logistic, log normal, generalised gamma, flexible para-
metric models, and mixture and non-mixture cure models.
We determined that models should be fitted independently to
each treatment arm because it was not appropriate to assume
proportional hazards. Therefore, no restriction was placed
on the treatment effect over time. All models were fitted in
a relative survival framework [13, 22], allowing background
mortality rates with an SMR uplift to be included. For flex-
ible parametric models, we tested models with 1-5 knots,
and for MCMs we tested distributions included in stand-
ard software packages (Weibull, log-logistic, generalised
gamma). For NMC models, we used a flexible parametric
framework to ensure that the turning point observed within
the period of the data could be captured [23, 24].

In TA857, treatment effect waning scenarios were con-
sidered, with hazards converging at 5-6.5 years, we took
this into account when assessing extrapolations. Flexible
parametric NMC models allow the ‘cure time-point’ to be
controlled: a boundary knot is chosen, after which hazards
are forced to equal the background population hazard rate
(with or without an SMR applied). To align with the expec-
tation that hazards between treatment arms may converge at
5-6.5 years, we set the boundary knot at 7 years, reflecting
that hazards may fall to background population levels soon
after treatment arm hazards converge. However, we also fit-
ted these models with 10-year and 15-year boundary knots
to reflect uncertainty around this assumption.

3.2 Assessment of Model Predictions

Table 2 presents survival predictions associated with each
of the candidate survival models, as well as values observed
in the 48-month data from CM-649. Varying SMR rates did
not make a substantial difference to model estimates, but
estimates generally satisfied our plausibility criteria more
consistently when an SMR of 2.5 was used, and results
from these models are presented in Table 2. Similarly, vary-
ing the number of knots in the flexible parametric models
and NMC models did not substantially impact model esti-
mates,— though it is notable that models that included a
greater number of knots consistently produced slightly lower
estimates of the incremental life-years gained associated
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with nivolumab plus chemotherapy compared with chem-
otherapy alone. We present results of models with three
internal knots in Table 2, which were those that provided
estimates closest to our pre-defined plausibility criteria.
Complete results for all models are presented in Appendix
D of the ESM.

None of the models fitted to the 12-month data cut pro-
vided estimates of survival proportions at 4, 5 and 6 years
that consistently fell within our pre-specified plausible
range and within the 95% CIs observed in the 48-month
data cut. However, there are mitigating circumstances: for
both treatment arms, the point-estimate for year 4 survival
in the 48-month data lay above our pre-specified plausible
range (chemotherapy plausible range: 3—7%, observed: 7.9%
[95% C15.6-10.6]; nivolumab plus chemotherapy plausible
range: 6-14%, observed: 17.2% [95% CI 13.9-20.7]). This
indicates that our pre-specified plausible range may have
been too pessimistic and makes it difficult for models to
provide estimates that are consistent with both the observed
data and the plausible range.

At the 4-year timepoint, only the NMC models (with
7-year, 10-year and 15-year boundary knots) provided sur-
vival estimates that lay within the 95% CI from the observed
data for both treatment arms. All other models provided esti-
mates that lay within the observed 95% Cls for one treatment
arm but not both, except the generalised gamma, which pro-
vided estimates that fell below the lower 95% limit compared
with observed data for both treatment arms.

At the longest observed annual timepoints (year 5 for
chemotherapy; year 6 for nivolumab plus chemotherapy),
only the NMC models with 10-year boundary knots provided
estimates that fell within the CIs of the observed data for
both treatment arms. The log normal and log-logistic models
provided estimates that fell within the CIs of the observed
data for chemotherapy; however, none of the non-cure mod-
els achieved this for the nivolumab plus chemotherapy arm.
Similarly MCMs provided estimates that fell within the
observed CIs for one of the treatment arms, but not for both.

At the 10-year timepoint, the log-logistic model provided
survival estimates that fell within our pre-specified plausi-
ble range for both treatment arms, but estimates were at the
very bottom of the range (1.0 vs 1-4% for chemotherapy;
2.1 vs 2-8% for nivolumab plus chemotherapy). All other
non-cure models produced estimates that were below the
plausible range. In contrast the MCM and NMC generally
gave long-term survival estimates higher than the plausible
range, with the exceptions of the log normal MCM, which
estimated a 0% cure fraction for both treatment arms and
thus under-estimated survival, and the NMC models with
15-year boundary knots, which provided 10-year survival
estimates within the pre-specified range for chemotherapy
(3.7%) but marginally higher than the pre-specified range for
nivolumab plus chemotherapy (8.5%). The 10-year survival
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O 5 estimates from the NMC models with 15-year boundary
= . .
i g knots appear reasonable, given that observed 4-year survival
g 2 in the 48-month data cut was above the upper bound of the
?;j g pre-specified plausible range for both treatment arms.
O =
@K <
IS Qo o
o S 3.3 Preferred Models
= © ©
] g E’
5 Figures 3 and 4 present (a) survival curves, (b) hazard plots
g5 g p P
e ¥ < ¥ g E and (c) implied HRs for the log-logistic and 10-year and
~ — =} .
N g > o EH 15-year boundary knot NMC models, representing the mod-
© = no— o @ . .
= els we consider to have produced the most plausible sur-
g E vival extrapolations. Based on these results, of the non-cure
Q . e . .
O ‘é g models, the log-logistic models provided survival extrapola-
< 2z E tions that most closely represented pre-specified plausibility
E 5 criteria. However, compared with the data observed in the
o 2 f 48-month data cut, these models appeared likely to have
® & ® ; £ produced pessimistic extrapolations for both treatment arms,
- % B especially for nivolumab plus chemotherapy. This outcome
p= . . . . .
; 8 Lk ﬁ g is due to predicted hazards appearing to remain consider-
KO I e g % %’ ably too high, especially for nivolumab plus chemotherapy,
% 2 tracking above the CI from the observed data.
S e P S E Figure 3b indicates that the NMC models provided
& & < (5] . . .
§ a = RN 5 § reasonable approximations of the hazards observed in the
v — [Sel e @ &= . . .
R 3:0 48-month data cut, accurately representing the turning point
© - B 8 observed in the hazard function for both treatment arms,
IR R e - . .
|8 e NS 2‘3 & and predicting hazards in the longer term that closely align
.o < .
ol e o = %’ with the observed data. Observed hazards appear to be fall-
<5 ing towards background levels towards the end of the trial
- - 8 g g
T s B T 2 g E follow-up, at approximately 5 years (Fig. 4b), although
S [ <« S & ~ 2 - :
SIS o = R convergence was not yet achieved, and hazards remained
‘£ 5 ; . .
® 8 \‘; appreciably higher in the chemotherapy group. The 10-year
Sle | % . S8 © and 15-year boundary knot NMC models predicted conver-
zlg |® © N 273 g . .
318 |2 © NG = 95 gence with background hazards at 10 and 15 years, with
21> | e = e~ S E = o .
| 2% ¢ the implied treatment effect HR converging to 1 at these
52 RS . . .o .
g3 a8 g timepoints. The log-logistic models projected hazards that
o @w = o» . R
5 o L & S 2 e remained substantially above background levels for the
g8 . ) o g y g
= i B T = entire lifetime of even the longest term survivors. It is nota-
~ A=l . .
= S 3 ble that the Weibull MCM and the NMC models provided
— Q . . .
§ é £la o Q@ ey §§ substantially higher estimates than all other models of the
=25 a @ — = % -7 life-years gained associated with nivolumab plus chemo-
b g E, ; therapy compared with chemotherapy alone.
e |, . " =0
S8 (55 33 £72
28 o= = = = CREE 3.4 Summary
= o =
S = g
< EU g . . . .
e B % Using plausibility criteria developed based on our applica-
2 © W fr= 28 . . . .
E g & 8 a3 '-g 5 E) tion of the Palmer algorithm, we identified a range of sur-
= Z vival models that were potentially appropriate for extrapo-
S o o ZE= lating survival from the 12-month data cut from CM-649
Q < = O . .
E § S § E Qg g (in the PD-L1 CPS > 5 population). When these models
g o Z . “ . 3 €5 were fitted, log-logistic models seemed to provide credible
2 g 5 . . .
2 * % < 5 g % < 5 g 2ez extrapolations, although survival predictions from these
N = o 22" .
@[3 i 22758 Epru 58| B B models were towards the low end of the plausible range.
3|8 EEL3I=28E EERILBE | =% 2 ; . .
e | = 4 Z. <z Non-mixture cure models provided extrapolations that were
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«Fig. 3 Preferred model predictions compared to the 48-month data
cut (programmed death-ligand 1 combined positive score > 5), 6-year
timeframe. /0y BK 10-year boundary knot, /5y BK 15-year boundary
knot, df degrees of freedom (the number of degrees of freedom is one
greater than the number of knots), FPM flexible parametric model,
Nivo + chemo nivolumab plus chemotherapy, NMC non-mixture cure
model

close to plausible ranges but appeared slightly optimistic. No
other models produced extrapolations that appeared plau-
sible for both treatment arms. When compared with sur-
vival observed in the 48-month data cut from CM-649, it
became apparent that survival in the trial exceeded expecta-
tions, especially in the nivolumab plus chemotherapy group,
and only the NMC models appeared to provide plausible
extrapolations.

4 Discussion

In this paper, we explored the Palmer algorithm for select-
ing models to extrapolate survival for immunotherapies. We
evaluated its performance using multiple data cuts from the
CM-649 trial. Our objectives were to assess the usability of
the algorithm, identify any potential areas for improvement
and evaluate whether it effectively identifies models capable
of accurate extrapolation.

The Palmer algorithm offers a systematic procedure for
model selection, encouraging thorough analyses and ensur-
ing that crucial stages in the model selection process are not
overlooked. Model selection steps that are implied by other
guidance documents are made explicit by the algorithm. For
example, while DSU Technical Support Documents on sur-
vival analysis state that external validity is crucial [7, 13],
they do not outline how this should be assessed. In contrast,
Steps S1-S5 of the Palmer algorithm detail explicitly what is
expected with respect to survival proportions, hazard func-
tions and treatment effects [6].

The algorithm involves extensive effort dedicated to
identifying models suitable for fitting to the data, before
any analyses of the pivotal trial are undertaken. This inevi-
tably leads to a significant workload. In the context of
HTA, it is our expectation that following the Palmer algo-
rithm will increase the initial workload associated with the
survival extrapolation task. However, this should result in
fewer disagreements around model choice and a reduced
need for additional modelling to be undertaken during
the TA process, potentially leading to quicker and more
efficient decision making and, where appropriate, quicker
patient access to cost-effective treatments.

Our application identified several areas where we
believe additions or modifications to the algorithm could
be considered:

@

(i)

(iii)

@iv)

Plausibility criteria. When applying Steps S1-S5 of
the algorithm, analysts are encouraged to consider
key evidence and expectations around survival pro-
portions, hazard functions and treatment effects.
When completing these Steps, we felt compelled to
define ‘plausibility criteria’—criteria that should be
satisfied for survival models to be considered plau-
sible. The algorithm does not explicitly state that
plausibility criteria should be defined but we believe
this could represent a valuable addition. We believe
that this could also help clarify Step S7, which pre-
sents a priority order for criteria used to assess the
plausibility of fitted models. Specifying plausibility
criteria would allow these criteria to be defined more
formally.

Presentation of predicted treatment effects. Step S7
requires an assessment of the plausibility of fitted
models, including hazard plots. In our application,
we interpreted this as including plots of relative
hazards, in line with NICE DSU Technical Support
Document 21 [13]. The algorithm does not explic-
itly recommend these plots (whereas others are man-
dated), but they are important as they show what fit-
ted models are predicting about the treatment effect
over time.

Testing the proportional hazards assumption. Step
S2 of the algorithm requires an assessment of the
proportional hazards assumption. We identified two
issues at this Step; first, the Royston-Parmar aug-
mented log rank test is suggested as a test of propor-
tional hazards. However, the augmented log rank test
is a test of the statistical significance of a treatment
effect in the presence of non-proportional hazards,
rather than a test of whether the proportional haz-
ards assumption holds [54]. Second, Step S2 refers
solely to an assessment of the proportional hazards
assumption, which is only relevant when using pro-
portional hazards models to extrapolate survival.
Accelerated failure time models are also commonly
used, and these assume a constant treatment effect
on the time—rather than the hazards—scale when
dependent models with treatment as a covariate are
used. To test this assumption quantile-quantile plots
are the appropriate choice [7, 55].

Flexible parametric non-mixture cure models. Our
analyses demonstrated the usefulness of these mod-
els, where cure fractions can be controlled some-
what through placement of boundary knots [23, 24].
Whilst the Palmer algorithm refers to non-mixture
cure models, it does not refer to applying these in a
flexible parametric framework. We believe that these
offer advantages compared with standard cure mod-
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«Fig. 4 Preferred model predictions compared to the 48-month data
cut (programmed death-ligand 1 combined positive score > 5),
50-year timeframe. /0y BK 10-year boundary knot, /5y BK 15-year
boundary knot, df degrees of freedom (the number of degrees of free-
dom is one greater than the number of knots), F/PM flexible paramet-
ric model, NMC non-mixture cure model

els, and these should be referred to in the algorithm
just as other models are signposted.

(v) Further analyses using external data. Step S1 of the
algorithm requires an extensive review of external
data, but does not specify potentially useful analy-
ses that could be undertaken using these data. For
instance, when long-term data are available for the
comparator treatment, the predictive accuracy of
models fitted to artificially censored versions of
these data could be assessed. We believe that further
analyses of models fitted to relevant external data
could provide useful information on their likely per-
formance when fitted to the shorter term pivotal RCT
data.

(vi) Clarifying the priority order of model types. In S6b,
the algorithm presents a priority order for flexible
non-cure models (see Fig. 2). We found that the
hazard function observed in CM-649 could be cap-
tured using the first priority model type (cubic spline
models, also known as flexible parametric models),
and therefore did not consider it necessary to fit
landmark, piecewise or (non-cure) mixture models.
However, the algorithm does not make clear how this
decision should be made. Potentially, this could be
clarified by adding that analysts should move down
the list of model types if higher priority models do
not provide plausible extrapolations.

In our case study, the algorithm identified a relatively
wide range of models that were potentially appropriate for
extrapolating the CM-649 data. However, when fitted to the
data, few of these models resulted in extrapolations that met
our pre-specified plausibility criteria. This may be regarded
as disappointing as the algorithm identified models that did
not result in plausible extrapolations. However, the algo-
rithm ensured poor extrapolations were detected, such that
implausible models could be excluded from further consid-
eration. This might not have been possible if the algorithm
had not been used and in this sense the algorithm performed
well—it allowed a narrow range of models that extrapolated
plausibly to be determined.

The relatively poor performance of several models is
likely to be due to the short-term nature of the 12-month
data cut: 70% of participants had died, and only one par-
ticipant in the PD-L1 CPS > 5 subgroup remained at risk at
the 36-month timepoint. Using such an early data cut, it is

impressive that NMC models fitted in a flexible parametric
framework were able to produce plausible extrapolations.
This appears to be due to the ability to exert control over the
estimation of the cure fraction. Use of these models appears
to have been restricted to population-level survival studies
[56, 57]; we are not aware of them being used in HTAs to
date. We believe that there could be considerable scope for
using these models in HTAs, particularly where a long-term
cure represents a reasonable assumption, but data are imma-
ture. This is especially relevant given that short-term data
cuts are often used in HTA submissions, and indeed only the
12-month data cut from CM-649 was available at the initia-
tion of TA857. However, it is very important to note that
these models will not always provide valid extrapolations.
If cure timepoints are placed too early, these models will
over-estimate long-term survival, and over-estimates will be
further exacerbated if these models are used when in fact
there is not a cure [24].

Survival at 4 years in CM-649 was higher than expected
in both treatment arms. An important finding was that a
potential flaw in using the process recommended by the
Palmer algorithm is that we may reject survival models that
are extrapolating credibly, if survival exceeds all expecta-
tions—outside of pre-specified plausible ranges. This does
not mean that expectations should not be used as inputs
when selecting survival models, but highlights that even if
we attempt to use all available information, the resulting
judgements may still be inaccurate. Hence, when comparing
to pre-specified criteria to determine which models extrapo-
late plausibly, it may be sensible to allow some leeway to
avoid the exclusion of potentially accurate models.

Our research is subject to limitations. In particular, we
present one case study, and repeating this research using
other studies would be valuable. Further, in our study,
long-term survival in the CM-649 trial remains uncertain
even in the 48-month data cut, and models that accurately
predict survival observed in the 48-month data cut may not
extrapolate accurately further into the future. We recom-
mend further research testing the Palmer algorithm with
longer term data cuts. Fundamentally, extrapolation is
necessary because longer term data are not available, but
‘true’ outcomes cannot be known until data are observed.
Therefore, whilst it is crucial for HTA decision making to
use appropriate extrapolation methods, long-term trial data
should always be collected and estimates and decisions
based on earlier data cuts should be reviewed.

In addition, because of the retrospective nature of our
study, we were unable to obtain uninformed clinical expert
beliefs—instead we had to rely on beliefs documented in
NICE TA857 documents. We also recognise that there are
many different ways in which expectations can be elicited
from clinical experts [58], which should be done in an
unbiased way—further research is required in this area.
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A technical limitation of our study is that for some
model types we considered a limited range of parametric
distributions. For MCMs, we considered Weibull, log-
logistic and generalised gamma distributions, which are
those available in the software package we used (strsmix,
in Stata [21]). We believe that these models provide a good
representation of the performance of MCMs when fitted
to CM-649 data, but, in theory, exponential, Gompertz
and log normal MCMs could also have been fitted, and
may have given different results. For NMC models, we
only considered flexible parametric models because these
enabled us to capture the turning point observed in the
hazard function whilst also allowing us to set a range of
cure timepoints. Based on our appraisal of the external
information relevant for our case study, this appeared to
represent a particular advantage, and indeed these models
have been focused upon in a recent tutorial article describ-
ing the use of cure models for HTA [24].

Finally, the Palmer algorithm is extremely clear that
external information (including external data and expert
opinion) should be considered when selecting survival
models. However, it does not require that this informa-
tion is actually used within the fitting of models, such as
by setting constraints or informative priors in a Bayesian
framework [59-62]. Furthermore, there is a growing use
of real-world evidence in HTAs [63], and when long-term
data are available for the comparator treatment these data
could be used to estimate baseline survival, with estimates
of survival for patients treated with the new treatment
derived using the relative treatment effect from the RCT
[64]. Because the Palmer algorithm does not specifically
recommend either of these approaches, we did not test
them in our case study; however, further research in these
areas would be valuable, and, as proposed by Palmer et al.,
the algorithm could be updated to include new methods as
they gain traction [6].

5 Conclusions

The Palmer algorithm appears to be a valuable tool for iden-
tifying suitable survival models for extrapolation. The algo-
rithm should be updated to explicitly require the definition
of plausibility criteria, with other small amendments also
being helpful. Consistent use of the algorithm could reduce
discourse in the HTA process, potentially leading to quicker
and more efficient decision making.
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