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Photonic topological systems may be exploited in topological quantum light generation, the 
development of topological lasers, the implementation of photonic routing systems and optical 
parametric amplification. Here, we leverage the strong light confinement of an ultra-silicon-rich nitride 
(USRN) topological waveguide adopting the 1D Su-Schrieffer-Heeger (SSH) system with a topological 
domain wall. We present the formation and propagation of temporal optical solitons in the topological 
waveguide, exhibiting two-fold temporal compression. We further observe a saturation in the output 
power at sufficiently high input powers. It is further observed that pulse propagation through a trivial, 
non-topological waveguide does not lead to similar temporal soliton dynamics. The demonstrated 
topological system allows for the temporal compression to be manipulated through power tuning via 
topological control of delocalization of the topological mode. This design degree of freedom allows 
temporal solitons to be generated in a topological waveguide while providing straightforward control 
of temporal pulses in practical applications.

The link between condensed matter physics and photonics was significantly strengthened when researchers 
proposed the photonic equivalent of the Quantum Hall effect. This seminal report from Haldane and Raghu 
theoretically predicted that time-reversal symmetry breaking for light could be achieved using magneto-optic 
materials, thus enabling unidirectional propagation1. Haldane and Raghu’s theoretical prediction was reduced 
to practice shortly after by Z. Wang et al., who reported the first demonstration of a topological photonic crystal 
implemented on Yttrium-iron-garnet2. Magnet-optic materials are akin to non-reciprocal media, providing the 
ability for time-reversal symmetry to be broken. Dielectric systems on the other hand, have advantages such as 
ease of fabrication and availability, and potential compatibility with CMOS processes which make them more 
suited for large-scale manufacturability. In all-dielectric systems, only effective time-reversal symmetry breaking 
can be achieved since reciprocity is conserved3. Nonetheless, their considerably easier implementation has 
fuelled extensive development. Advances in topological photonics have recently exhibited substantial potential 
across diverse applications, many of which involve all-dielectric systems. Some recent advancements include 
topological quantum light generation4,5, the development of topological lasers6,7, and the implementation of 
photonic routing systems8–10.

The discovery of topological solitons, widely recognized as being first observed in the Su-Schrieffer-Heeger 
(SSH) system, marked a significant breakthrough in condensed matter physics, similar to the anomalous Hall 
conductance observed in periodic systems11,12. In photonics, topological waveguides utilize the zero modes 
created at the interface between two distinct topological domains within dimerized lattices. In the 1D SSH 
model, each unit cell comprises two sites, and the system’s topology is dictated by the relative strengths of the 
intracell coupling (v) and the intercell coupling (w). The boundary separating regions with different topological 
properties represents a topological domain wall, which gives rise to a topological mode, characterized as having 
its peak coincident with the boundary between the two regions13.

Nonlinear phenomena have been theoretically studied in a variety of topological systems. Of note, Ref. 12 
reported topological edge states and topological gap solitons residing in the same bandgap in the nonlinear 
Dirac model. Nonlinear switching between trivial and nontrivial states in a Floquet lattice of coupled waveguides 
was demonstrated14. Observations of optical spatial solitons in a photonic Floquet topological insulator revealed 
that a lattice with non-zero Floquet winding number working with optical nonlinearities could induce solitons 
residing in topological gaps15. Most recently, it was theoretically predicted that a topological ring resonator could 
provide a new avenue for the generation of frequency combs16.

The topology of a system confers unique optical properties to propagating light. On the other hand, the 
material on which the topological system is implemented serves as a vessel for light matter interaction of varying 
degrees. Ultra-silicon-rich nitride (USRN) is a CMOS (complementary metal-oxide semiconductor)-compatible 
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platform with a high Kerr nonlinearity of n2 = 2.8 × 10− 13 cm2/W and negligible nonlinear loss near the 1550 nm 
wavelength17–19 which has been used for much success in the observation of soliton phenomena including pure-
quartic Bragg solitons20, gap solitons21, soliton fission22, and high-order soliton-effect temporal compression23. 
These have been observed in both on-chip Bragg gratings and photonic waveguides, largely facilitated by 
the large dynamic range of dispersive and nonlinear properties which may be engineered in USRN devices. 
Previous work show that various types of optical solitons may be efficiently generated in the USRN platform 
which is CMOS-compatible, enabling ease of integration with CMOS electronics. Most recently, efficient optical 
parametric amplification leveraging the strong light localization in a topological SSH waveguide with a domain 
wall was demonstrated13. It was further elucidated that the Kerr effect could induce a delocalization on the 
topological mode. Observations of the strong interaction of the topological mode with the medium seeded 
further investigations into nonlinear optical phenomena implemented using the SSH model.

In this paper, we investigate soliton formation in a topological structure implemented on USRN, leveraging 
both the unique light localization properties availed by topology and the high Kerr nonlinearity in USRN. 
Compared to photonic waveguides, the optical confinement can be manipulated using the gaps between 
waveguides in the topological SSH model, which can result in the control of optical losses impacting optical 
soliton generation. This unique feature avails a new design degree of freedom to the SSH model not available 
in conventional waveguides. The temporal compression based on high-order solitons may further be used in 
applications such as temporal manipulation of optical pulses by power. Consequently, high-order solitons in 
topological waveguides may be used for the robust tuning of temporal optical pulses. We report observations 
of optical temporal solitons propagating within a boundary waveguide of the USRN topological waveguide. 
A dimerized coupled waveguide system with two bands, each with different Zak phase, and a boundary 
waveguide provide topological localization of the mode. Topological light guiding and nonlinear interaction 
with the propagating medium lead to experimental observations of 2× temporal compression at a peak power 
of 45.3 W. In addition, output power saturation of the input power exists at the boundary waveguide for input 
pulses < 1ps. Simulations including the reduced power factor using the nonlinear Schrödinger equation were 
performed to explain the temporal soliton behavior. Theoretical simulations reveal similar extents of temporal 
compression factor as the experiment. Lastly, experiments using a trivial, non-topological waveguide array 
reveal no temporal compression, indicating that the observed topologically guided temporal soliton behaviour 
is a result of topological localization.

Results
Theoretical description of the temporal evolution of light in the USRN topological waveguide
We solve the equation to investigate the temporal behaviour. Our experimental condition is that the input is 
launched into the defect waveguide and output from the defect waveguide is measured. The input field into the 
defect waveguide is not exact boundary mode and the spatial amplitude for each waveguide is modulated as 
below Fig. 1 (blue line is for central (boundary) waveguide, red line is for nearest waveguide and green line is for 
next neighbour) but the amplitude flattens after some extent of propagation through the waveguide. We utilize 
the flattened amplitude as the combination of the boundary mode with reduced peak amplitude as depicted 
in Fig. 1c,f. The extent of amplitude reduction will change when the input peak power increases because the 
Kerr effect modifies the shape of the boundary mode13. Thus, we can solve for the temporal distribution at the 
boundary waveguide by assuming that effectively, the modal distribution is that of the boundary mode and the 
peak power is reduced to Pinη (Pin) depending on input peak power. Here, Pin is the input peak power and 
η (Pin) is the reduced power factor which varies as a function of Pin.

The nonlinear Schrödinger equation (NLSE) governing propagation of optical pulses in spatial coupled 
waveguides with SSH distribution is used for numerical calculations. The input optical field from the central 
waveguide may excite not only the dominant topological boundary mode but also bulk modes. The topological 
boundary mode is modified by the nonlinear Kerr effect with a reduced amplitude at the boundary waveguide13. 
In the simulation, Pin*η(Pin) is applied to input power in the NLSE simulation to investigate the temporal 
propagation of optical pulses at the boundary waveguide which explains the composition of the boundary 
modes in the real SSH waveguide system.

We use a variable decomposition method, decomposed to a spatial and a temporal part, to solve Maxwell’s 
equations. The spatial mode for the SSH system with topological boundary consists of the boundary mode and 
two split bulk modes. We assume that the spatial boundary mode is excited dominantly and the bulk modes 
are excited with the very weak scale, therefore, the small excited bulk modes are superposed to propagate like a 
random basis at the coupled array waveguide. The oscillating amplitudes in Fig. 1c (low power) and Fig. 1f (high 
power) show the small excited bulk states (red and green lines) but the oscillating phenomena is reduced to 
almost zero because the more bulks states are superposed by the very devious phases. Therefore, the finally output 
amplitudes are the same as the boundary mode shape as shown in Fig. 1b (low power) and Fig. 1d (high power). 
Thus, the dominant boundary mode is assumed to propagate with the spatial shape, and it is confirmed that we 
can adopt the temporal nonlinear Schrödinger equation, Eq. (1) to analyse the temporal soliton phenomena.

For the topological invariant of the SSH, Zak phase, 
∮ 〈

uk
∣∣ ∂
∂k

∣∣uk
〉
dk, is used. The dimerized SSH system 

is constructed with a boundary separating two regions of distinct bulk topology. The upper band exhibits a 
topological constant of −π , while the lower band has a topological constant of π 13. This configuration results 
in the emergence of a single topological boundary state, which is a consequence of the disparity between the two 
bulk topological constants. We added the topological Zak phase in the Fig. 1a.

Input pulses enter the boundary waveguide and exit through the same waveguide, experiencing the variation 
of the reduced power factor ( η (Pin)) depending on the peak power. Therefore, the single waveguide with the 
reduced power factor can be exploited to explain this work. The NLSE to explain the temporal solitons at the 
boundary waveguide is shown as the following24.
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α represents the propagation loss coefficient of the boundary waveguide. A denotes the slowly varying envelope. 
The variables z and t correspond to the propagation and temporal coordinates, respectively. Additionally, β2, β3 
and β4 signify the group velocity dispersion (GVD), third-order dispersion (TOD), and fourth-order dispersion 
(FOD) coefficients, respectively.

The schematic of the SSH structure and the theoretically calculated temporal evolution of 
optical pulses
The topological photonic waveguide using USRN is designed as a dimerized coupled waveguide system based 
on the SSH model with a domain wall13,25. The gap between the waveguides Gw is designed to be narrower than 
Gv as the topology is considered non-trivial when strength of the intercell coupling (w) is stronger than that of 
the intracell coupling (v). The system was already demonstrated and proved to achieve good linear transmission 
properties and efficient nonlinear parametric amplification due to strong light localization. Figure 2a shows the 
device schematic of the topological waveguide with a domain wall (boundary waveguide) located at the center. 
Within our design, we employ 199 waveguides to guarantee a suitably expansive transverse dimension in the 
topological system concerning the localized boundary mode, which encompasses 9 waveguides. The single input 
waveguide is not identical to the topological boundary mode in the SSH waveguide. The bulk modes are excited 
and modulated; The modulated signal in turn spreads and undergoes an amplitude reduction according to 
propagation length. If the number of waveguides in the array is too small, the modulated signal will return to the 
boundary waveguide from the edge of the array. Now, the amplitude on the boundary waveguide is calculated 
at a finite number of waveguides. For our device length of 4 mm, the modulation almost vanishes when 199 
waveguides are within the array. The cross-section of each waveguide is 600 nm (W) x 340 nm (H). Gw and Gv are 
designed to be 0.15 and 0.25 μm for the optimization of strong localization with coupling ratio, v/w = 0.1713. The 
device length is 4 mm, which is 20 times longer than the coupling length of 200 μm for the long gap, a condition 
which is necessary to experience sufficient couplings between waveguides in the propagation and facilitates 
sufficient nonlinear interaction.

It was previously reported that for input pulses of ≤ 1 ps, the saturation of the output power in the boundary 
waveguide occurred with increasing input power, whereas the output power at the next neighbor waveguide 
increased with input power. This phenomenon was established to originate from the ability of Kerr nonlinear 

Fig. 1. (a)  Energy band, (b)  the mode shape for the boundary state (red dot) in Fig. 1a, and (c) spatial 
amplitude evolution for the center waveguide input at low peak power. (d) Energy band, (e) the mode shape for 
the boundary state (red dot) in Fig. 1d and (f) spatial amplitude evolution at high peak power; The red circle in 
the energy band corresponds to the topological boundary mode. For the amplitude propagation, the blue line 
represents the central waveguide (domain wall), the red line is for nearest neighbour waveguide and the green 
line is for next neighbour waveguide.
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effect to control the degree of localization of the topological mode by effectively breaking the chiral symmetry 
in the waveguide lattice. Nonlinear Kerr perturbation at the boundary is induced because the peak power of 
1 ps is large enough to go over the forbidden band barrier13. Therefore, in this work, 0.93 ps input pulses are 
used to observe the temporal soliton in which the topological mode can be controlled with input power. The 
output average power after the device is measured as a function of input coupled average power, and shows the 
output power (Fig. 2b). As the propagation loss of the SSH structure itself exists with the fixed value along the 
propagation, the reduced power factor ( η (Pin)) is shown to decrease as input power increases as shown in 
Fig. 2c. (η = 1 means that there is no reduction in amplitude during the first propagation.) The characterized 
output power agrees well with theory as shown in Fig. 1, showing power-dependent η.

Figure 3a,b show the calculated second (β2), third (β3) and fourth order (β4) dispersion. The refractive index 
of the USRN film is obtained experimentally using FTIR. The effective index (neff) of the structure is calculated 
using fully vectorial mode calculation (COMSOL) and allows us to derive GVD ( β 2 =

λ 3

2π c2
· d2neff

dλ 2  ), TOD 

( β 3 =
∂ β 2
∂ ω ) and FOD ( β 4 =

∂ 2β 2
∂ ω 2  ), where c is the speed of light, λ is the wavelength, and ω is the angular 

frequency.
High-order solitons are described by the soliton number (N), defined as N2 = Ld/Lnl, where Ld and Lnl are 

the dispersion and nonlinear lengths, respectively. Stronger temporal compression can be generated for larger 
soliton numbers when the propagation length coincides with the soliton evolution where the maximum 
temporal compression is achieved. For N ≥ 10, it undergoes initial temporal compression, reducing to a fraction 
of its original pulse width due to the high-order soliton effect, even in cases where the propagation length does 
not match zopt=1.6z0/N, where z0 = πLd/2 is soliton period. Figure 3c,d show the temporal evolutions of pulses 
for the lowest (Pin= 5.58 W) and highest peak powers (Pin= 45.3 W) where the propagation length is < zopt

24–26. 

Fig. 2. (a) The schematic of the topological waveguide with a domain wall (The light comes in and out at 
the center waveguide called a domain wall). W = 600 nm is the width of USRN waveguides. The gap between 
the waveguides, Gw = 0.15 μm for the narrower gap and Gv = 0.25 μm for the wider gap. The inset shows 
a scanning electron micrograph of the topological waveguide where the scale bar corresponds to a length 
of 100 nm. (b) Measured output power as a function of input coupled average power. The red line depicts 
theoretical calculation using the nonlinear Schrödinger equation. (c) Reduced power factor (η) as a function of 
input coupled peak power.
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The more temporally compressed pulses are generated along the propagation for Pin= 45.3 W (N ~ 51) in Fig. 3d 
compared to the temporal pulses for Pin= 5.58 W in Fig. 3c due to the higher-order soliton.

Experimental observations of temporal solitons in the USRN topological waveguide
To investigate the dynamics of pulse compression, a 0.93ps pulsed laser operating at a repetition rate of 20 MHz 
at a central wavelength of 1550.1 nm is utilized. The input optical pulses with fundamental TE-polarization are 
coupled into the SSH boundary waveguide using a tapered lensed fiber. Temporal profiles of the output pulses 
are measured using an autocorrelator. Figure 4a shows the experimental output temporal traces after applying 
the deconvolution factor (1.54 for sech2 pulse) to autocorrelation traces. Even though the experimental and 
theoretical temporal traces are not exactly compared, the pulse width of both can be compared. The theoretical 
temporal traces from NLSE are shown in Fig.  4b. Theoretical and experimental temporal full width at half 
maximum (FWHM) are compared as shown in Fig. 4c. Both follow the same trends and there is good agreement 
between the theoretical and experimental values. The narrowest temporal width in the experiment is almost the 
same as the theoretical value for Pin=45.3 W. In the experiment, the narrowest temporal pulse width is 0.47ps 
indicating the compression factor of 1.98 as shown in Fig.  4d. This also shows that the NLSE including the 
reduced power factor can well describe the behavior of temporal solitons in an SSH boundary waveguide. The 
variations in the input peak power if the pulse induce a change in the refractive index of the boundary waveguide 
through a contribution from the nonlinear refractive index (n2.I, where I is the intensity of the incident pulse), 
inducing varying extents of delocalization in the topological mode.

Temporal characterization of optical pulses propagating in a trivial (non-topological) 
waveguide
We observed soliton-effect temporal compression and output power saturation induced by the topological 
properties of the SSH waveguide with a domain wall. To confirm that these effects originated from topological 
properties at the boundary waveguide, we observed the same experiment using the trivial (non-topological) 

Fig. 3. (a) GVD, (b) TOD (red line) and FOD (blue line) at a wavelength of 1550.1 nm, used in the numerical 
modelling of the SSH device. (c) and (d) are the evolution of temporal traces for the peak power of the lowest 
(5.58 W) and the highest (45.3 W) along propagation, respectively. T0 = TFHWM_/1.76 (for sech2 pulse), where 
TFHWM_ is the input FWHM of 0.93ps.
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waveguide possessing the fixed gap of 0.25 μm between the waveguides in the array, leading to non-localization 
of light in the boundary waveguide. The same condition of input pulses is applied to the central waveguide. In 
the trivial waveguide where all elements are equidistant from one another, light is not localized to the boundary 
waveguide, but evanescently spreads away from the input, akin to spatial diffraction. Consequently, low output 
power is measured which results in high insertion loss. As may be observed in Fig. 5a, the linear output power 
as a function of input reflects a high, constant insertion loss. We further perform short pulse experiments with 
the trivial waveguide using the 0.93ps pulses. The output temporal trace is observed to have the same width 
as the input one showing there is no temporal compression induced by nonlinear soliton effect as shown in 
Fig.  5b. Comparing the topological and trivial waveguides, it is evident that the observed soliton formation 
and compression occurs only in the topological waveguide, induced by the topological light localization and 
associated nonlinear interaction. As a result of the topological light localization, pulses coupled into the device 
interact with the nonlinearity inherent in the material, thus undergoing self-phase modulation and encountering 
anomalous dispersion leading to temporal soliton formation. In the absence of the topological localization as in 
the trivial waveguide, light does not propagate confined to the boundary waveguide and the high insertion loss 
that results leads to marginal nonlinear interactions of the coupled light. We note further that the transmitted 
optical power is significantly lower in the trivial waveguide compared to the topological waveguide, since the 
lack of topological localization leads to the input pulses essentially spatially diffracting across the waveguide 
array.

Fig. 4. (a) Experimental and (b) theoretical temporal traces at the output as a function of peak power. 
Experimental traces are obtained by applying the deconvolution factor on the autocorrelation traces to 
compare the pulse FWHM between the theoretical and experimental ones. The black dashed line in Fig. 3a 
depicts the input pulse. (c) Experimental pulse FWHM (empty circles) are compared with the theoretical ones 
(black line) on peak power. (d) The compression factor (Fc) of experimental (black triangles) and theoretical 
(red line) are compared as a function of peak power.
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Discussion
Topological localization enables light to be localized at the boundary. The system studied here exhibits anomalous 
dispersion. Therefore, combined with the anomalous GVD and high Kerr nonlinearity, soliton compression can 
be implemented. This work shows that SSH waveguides with a domain wall may support the formation of optical 
solitons, as well as temporal compression through the associated soliton effects.

The interplay between topology and nonlinearity provides a rich platform for exploring novel optical 
phenomena and engineering unique photonic devices. Nonlinear effects leveraging topological photonics systems 
have been observed in a variety of platforms, including waveguides27,28, photonic crystals29, microcavities30, 
atomic gases31 and metamaterials32. Waveguide arrays have previously been used for topological photonics in the 
study of nonlinear effects33. As the topological dynamics are determined by the ratio of the nonlinear and linear 
coupling coefficients, topological nonlinear effects in waveguide arrays have previously been demonstrated in 
AlGaAs27, lithium niobate34, photorefractive waveguides35 and fused silica glass28.

Nonlinear extensions of linear topological models give rise to unique mechanisms for localizing the field, 
resulting in phenomena such as topological gap solitons36, nonlinear edge states (both bulk and edge solitons)37, 
embedded solitons38, and semi-vortex solitons39. The formation of topological solitons can be explained by the 
local impact of nonlinearity inducing a domain wall between different topological phases, with the soliton being 
self-trapped by the interface.

In contrast to nonlinear effects in other topological systems13–16, this work focuses on how the topological 
modes change and influence temporal soliton dynamics. By implementing local, on-site Kerr nonlinearities in a 
1D SSH model with a domain wall using the CMOS-compatible USRN photonic platform, the generated solitons 
may be shown to enable tunability of temporal properties similar to solitons formed in conventional photonic 
waveguides, even though they are formed in a topological structure. Whereas other topological solitons focus on 
the trapping and localization of light, our results reveal the tunability of temporal shapes while having topological 
light confinement. In addition, the topological solitons demonstrated here are generated by interacting with the 
variable spatial modes, a fundamentally different mechanism from optical solitons in conventional photonic 
waveguides where the spatial modes are invariant. This approach facilitates a wide dynamic range of light control 
using nonlinear effects even though complicated interactions exist between the temporal and spatial domains. 
Our work showcases a new paradigm with which to control the temporal profile of a pulse by inducing varying 
degrees of delocalization in the topological mode through variations in the optical intensity.

In summary, we have experimentally demonstrated temporal optical solitons in a Su-Schrieffer -Heeger 
waveguide showing 2-fold temporal compression. We further observe output power saturation as the input 
power increases for < 1ps input pulses. The typical NLSE can be applied to explain the temporal soliton behavior 
at the boundary waveguides of the SSH structure by introducing the reduced power factor. The theoretical and 
experimental temporal widths as a function of input peak power exhibit a similar trend. For the maximum peak 
power of 45.3 W, the temporal pulse width is measured to be 0.47 ps, corresponding to 1.98 times temporal 
compression of 0.93 ps input pulses, showcasing soliton compression in a system which harnesses optical 
nonlinearity and topology. The generation of nonlinear soliton effects in the reported topological structure could 
facilitate new applications in topological pulse shaping and topological soliton lasers in the future.

Methods
Numerical calculations
The concept originates from tight binding theory, where the molecule’s electronic states can be described by 
combination of the electronic states in a single atom.

Analogous to this, the N coupled waveguides can be described by the combination of modes in a single 
waveguide:

Fig. 5. Nonlinear optical properties of non-topological waveguide. (a) Measured output average power as 
a function of input peak power. (b) Experimental autocorrelation trace at the output (orange line), which is 
compared to the input autocorrelation trace (black line).
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 E (r, ω ) = F (x, y)
∼
A (z, ω ) exp (iβ 0z)

where 
∼
A (z, ω ) is slow varying N-vector function of z, F (x, y) is a mode in a single waveguide and β 0 is the 

fast wavenumber in the fast-varying term. From Maxwells wave equation, the two equations are derived24:
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Here, F  is the eigenfunction, 
∼
β  is the eigenvalue and ε (x, y, ω) is the transverse distribution of the dielectric 

constant, containing linear loss and Kerr nonlinear effect. We make an approximation later, where the Kerr effect 
does not change the single mode shape and changes the eigenvalue in the first order approximation24.

The nonlinear Schrödinger equation can be represented by a Hamiltonian matrix with a basis of single 
modes in individual waveguides with different spatial locations. Ki,j =
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and E =
∑

i Ai |Fi⟩ |, where i represents the index of the waveguides, |F ⟩ is a single mode and Ai is 
amplitude of fields for the ith waveguide. The nonlinear Schrödinger equation is represented using a matrix 
equation, i∂ Ai
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n0n2|Ai|2δ i,jAj is the nonlinear operator with only diagonal terms. The transversal dimension derivative 
term could be removed by integrating the equation in transversal space owing to Gauss theorem. Kii=0 when 
β 0 = neffk0, where neff  is the effective refractive index for a boundary mode at a specific frequency, ω 0. The 
off-diagonal terms, K0,ij =
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 are usually referred to as the coupling coefficient. In this case, 

only the nearest-neighbor coupling coefficients are considered, as the coupling coefficients between next-nearest 
waveguides are typically three orders of magnitude smaller than those between nearest neighbors. We take off 
the transversal dimension (xy) and β (ω ) =

�
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F ∗Fdxdy, and apply a Taylor expansion on 

β 0 at a specific frequency ω 0. β (ω ) = β 0 +
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Device fabrication and experimental characterization
The topological and trivial waveguides are fabricated using a 3 μm thermal oxide on silicon substrate as a starting 
point. 300 nm of ultra-silicon-rich nitride is deposited using chemical vapor deposition at a low temperature of 
250 °C. The structures are patterned using electron-beam lithography and defined using reactive ion etching. To 
form the upper cladding of the devices, 2 μm of SiO2 is deposited using chemical vapor deposition.

The temporal optical soliton experiments are performed using a mode-locked fiber laser at a 20  MHz 
repetition rate centered at 1550.1 nm. The optical power of the pulses is tracked using a power meter. The pulses 
are first adjusted for transverse electric polarization and coupled into and out of the devices using a tapered 
lensed fiber. Inverse taper couplers are used to terminate the devices. Characterization of the optical pulses is 
performed using an autocorrelator.

Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable 
request.
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