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Digital profiling of gene expression from
histology images with linearized attention

Marija Pizurica1,2,6, Yuanning Zheng 1,6, Francisco Carrillo-Perez 1,6,
Humaira Noor 1, Wei Yao3, Christian Wohlfart4, Antoaneta Vladimirova3,
Kathleen Marchal 2,7 & Olivier Gevaert 1,5,7

Cancer is a heterogeneous disease requiring costly genetic profiling for better
understanding and management. Recent advances in deep learning have
enabled cost-effective predictions of genetic alterations from whole slide
images (WSIs). While transformers have driven significant progress in non-
medical domains, their application to WSIs lags behind due to high model
complexity and limited dataset sizes. Here, we introduce SEQUOIA, a linearized
transformer model that predicts cancer transcriptomic profiles from WSIs.
SEQUOIA is developed using 7584 tumor samples across 16 cancer types, with
its generalization capacity validated on two independent cohorts comprising
1368 tumors. Accurately predicted genes are associated with key cancer pro-
cesses, including inflammatory response, cell cycles and metabolism. Further,
we demonstrate the value of SEQUOIA in stratifying the risk of breast cancer
recurrence and in resolving spatial gene expression at loco-regional levels.
SEQUOIA hence deciphers clinically relevant information from WSIs, opening
avenues for personalized cancer management.

Cancer is a dynamic disease characterized by intricate molecular
and cellular evolution. Over the course of evolution, cancer
becomes more heterogeneous, classified into inter-patient hetero-
geneity and intra-tumoral heterogeneity1. Inter-patient hetero-
geneity refers to the difference found between patients, which
results from patient-specific factors, including germline genetic
variations, differences in mutation profiles and environmental
factors2–4. Comparatively, intra-tumoral heterogeneity describes the
co-existence of cell subpopulations carrying different genomics,
epigenomics and transcriptomics profiles within the same tissue.
The spatial distribution of these cell subpopulations forms a com-
plex ecosystem fostering signaling transduction that drives
tumor progression5,6. A systematic understanding of cancer het-
erogeneity presents formidable challenges for effective diagnosis
and management.

With the growing interest in precision medicine, molecular pro-
filing has gained significant attention as a critical component of
prognostication and treatment planning. In the past decade, the
advancement of RNA sequencing (RNA-seq) has enabled the compre-
hensive measurement of gene expression profiles at both bulk tissue
levels and at spatially resolved regional levels3,5. The resulting infor-
mation has deepened our understanding of cancer heterogeneity,
leading to the discovery of molecular signatures associated with
treatment sensitivity7–9. However, incorporating gene expression ana-
lysis into clinical practice still represents a challenge. Currentmethods
involve time-consuming and expensive laboratory procedures, limit-
ing the integration of gene expression analysis in routine diagnostics.

With the digitization of histopathology glass slides into Whole-
Slide Images (WSIs), unprecedented opportunities arise for cost-
efficient analyses of tumor properties. Notably, WSIs are available
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without additional cost as they are obtained in routine clinical practice
for diagnostics. Despite providing only morphological information,
WSIs can also reflect the molecular traits of tumors. Over the past
decade, machine and deep-learning methods have been developed to
extract hidden morphological features from WSIs that are associated
with molecular properties10–22.

Although remarkable progress has been made in this domain,
applying state-of-the-art methods to WSIs remains exceedingly chal-
lenging. Due to the immense size and resolutions ofWSIs, they are first
cropped into thousands of smaller tiles. Traditionally, models were
developed at ‘tile-level’, where the model is trained to make predic-
tions for individual tiles10–20. Current datasets (e.g., TCGA and CPTAC)
provide predominantly bulk RNA-Seq profiling, where only a single
gene expression label is available for all tiles within the WSI. However,
due to intra-tumor heterogeneity, not all tiles in theWSI carry the same
genetic profile. Hence, precise annotations are needed in tile-level
workflows to indicate which tiles within theWSI can be used formodel
training19. Gathering these annotations for gene expression post-hoc is
time-consuming and imprecise. Moreover, tile-level models cannot
capture contextual and hierarchical relationships between multiple
tiles of an image.

On the other hand, ‘slide-level’ workflows have been developed
that take into account all tiles in the image at once, with no need for
precise annotations. To aggregate information across tiles, HE2RNA
utilizes a multilayer perceptron (MLP)21. While this approach reached
reasonable performance, the MLP can not effectively model the con-
textual relationships across tiles, thereby limiting its performance. In
contrast, tRNAsformer22 employs a transformer encoder whose self-
attention weights allow us to model the contextual inter-tile interac-
tions. However, despite the advanced modeling capabilities of trans-
formers, they areprone tooverfittingwhen the trainingdataset is small
due to the large number of parameters involved in self-attention23. In
addition, both methods rely on convolutional neural networks (CNNs)
as tile feature extractor. TheseCNNswerepre-trained on the ImageNet
dataset, whichmaynot effectively capture the histological information
from the images.

To tackle these challenges, we propose SEQUOIA, a deep-learning
model for Slide-based Expression Quantification using Linearized
Attention. To capture contextualized WSI features, we adapt the
parameter-heavy self-attention within the transformer for linearized
attention. In addition, we leverage UNI, a foundationmodel optimized
for histological feature extraction24. SEQUOIA is developed on 7584
tumor samples across sixteen cancer types and validated in two
independent cohorts. Further, we establish that the genes with well-
predicted expression values are involved in key cancer processes and
inform the risk for breast cancer recurrence. Finally, we show how
SEQUOIA can be used to resolve loco-regional gene expression pat-
terns using two spatial transcriptomics datasets. In conclusion,
SEQUOIA offers a cost-efficient way to infer and analyze gene expres-
sion patterns on a large scale, with potential applications in both
research and clinical settings.

Results
SEQUOIA as tool for gene expression prediction from WSIs
We present SEQUOIA, a deep-learning model for Slide-based Expres-
sionQuantification using Linearized Attention. ("Methods”, Fig. 1a–c).
To train and evaluate the model, we utilized WSIs and matched bulk
RNA-seq gene expression data of sixteen cancer types available in The
Cancer Genome Atlas (TCGA, Supplementary Table 1): (1) bladder
urothelial carcinoma (BLCA), (2) breast invasive carcinoma (BRCA), (3)
colon adenocarcinoma (COAD), (4) glioblastoma multiforme (GBM),
(5) head and neck squamous cell carcinoma (HNSC), (6) kidney renal
clear cell carcinoma (KIRC), (7) kidney renal papillary cell carcinoma
(KIRP), (8) liver hepatocellular carcinoma (LIHC), (9) lung adeno-
carcinoma (LUAD), (10) lung squamous cell carcinoma (LUSC), (11)

pancreatic adenocarcinoma (PAAD), (12) prostate adenocarcinoma
(PRAD), (13) skin cutaneous melanoma (SKCM), (14) stomach adeno-
carcinoma (STAD), (15) thyroid carcinoma (THCA), (16) uterine corpus
endometrial carcinoma (UCEC).

Since histological phenotypes and gene expression profiles vary
across cancer types, the model was independently developed and
validated in each cancer type. To evaluate the model, we carried out
five-fold cross-validation. In each iteration, slides from 80% of the
patients were allocated for training (of which 10% were used as vali-
dation set), while the remaining 20% were reserved for testing (Sup-
plementary Fig. 1). For each gene, we concatenated the predicted
expression values of tissues from the test sets and compared them to
the ground truth using Pearson’s correlation analysis and root mean
squared error (RMSE).

The resulting correlation coefficient and RMSE values were fur-
ther compared to those obtained with a random, untrained model of
the same architecture (see “Methods” for details). To identify genes
with significantly well-predicted expression levels, we combined three
criteria: (1) the predicted gene expression values must be significantly
correlatedwith the ground truth,with a positive correlationcoefficient
and the associated P value smaller than0.05 (r1 > 0 and p1 < 0.05); (2) r1
mustbe statistically higher than r2 (r1 > r2), as determined by Steiger’s Z
test, where r2 represents the correlation coefficient obtained from the
random model. For this comparison, we required the raw Steiger P
value to be smaller than 0.05 (p2 < 0.05) and the adjusted P value by
Benjamini–Hochberg correction smaller than 0.2 (p3 < 0.2); (3) the
RMSE values obtained from the trained model must be smaller than
those from the random model.

SEQUOIA was able to accurately predict the expression levels of
many genes. On average, 15,344 out of 20,820 genes were significantly
well predicted across the sixteen cancer types (Fig. 1d and Supple-
mentary Table 3). The number of well-predicted genes was positively
correlated with the number of training samples available in each can-
cer (Supplementary Fig. 2). The highest number (N = 18,878) of genes
was identified in BRCA, the cancer type with the most available slides
(N = 1130). Further, we identified 18,758 well-predicted genes in THCA
(N = 517 slides) and 17,623 genes in KIRC (N = 514 slides). Compara-
tively, PAAD had the lowest number of well-predicted genes (N = 9535)
as well as the lowest number of slides (N = 202). To further test the
relation between performance and dataset size, we performed differ-
ent downsamplings (keeping 20%, 30%, 40%) of available data within a
single cancer type (BRCA), indeed confirming a consistent trend of
decreasing performance across all metrics when the dataset size is
reduced (Supplementary Table 6).

Since the histological appearance of BRCA has been shown to be
associated with hormone receptor status25, we separately assessed the
predictive performance in the estrogen receptor (ER) negative and ER
positive subtypes. There were 18,139 and 12,241 genes that passed our
significant thresholds in the ER positive and negative subtype,
respectively. Of these genes, 11,834 genes were significantly well pre-
dicted in both subtypes. These results demonstrate the capacity of
SEQUOIA in predicting gene expression signals specific to breast can-
cer subtypes.

To compare the performance of our model with existing archi-
tectures, we thoroughly benchmark the added value of UNI over
ResNet-50 pre-trained on ImageNet, and the benefit of using the line-
arized transformer for tile aggregation insteadof a regular transformer
(as in tRNAsformer22) or MLP layers (as in HE2RNA21). Both UNI and
improved tile aggregationmethods (MLP vs. transformer vs. linearized
transformer) independently boost prediction performance by large
margins. On average, across cancer types, the number of well-
predicted genes (Fig. 1d and Supplementary Table 3) increases by
830% when using UNI instead of ResNet for MLP aggregation, by 210%
for transformer aggregation and 155% for linearized transformer
aggregation.
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When considering ResNet features, going for a transformer
instead of an MLP increases the number of well-predicted genes by
450%,with an additional increaseof 155%when choosing the linearized
transformer. Similarly, for UNI features, using a transformer instead of
an MLP gives 115%more significant genes, and going for the linearized
version gives an additional increase of again a factor 115%. When
considering the best feature extractor (UNI), the largest added value of
the linearized transformer over the regular version is observed in
PAAD, the cancer type with the fewest available training data (increase

factor 160%), while the smallest added value occurs in BRCA, for which
most slides are available (factor 10%).

The superiority of UNI and the linearized transformer is also
demonstrated in the correlation coefficients between predicted gene
expression values and ground truth (Fig. 1d, Supplementary Table 4).
Using UNI instead of ResNet gives an increase in the correlation
coefficient of 250% for MLP, 155% for transformer and 145% for the
linearized version. When considering UNI features, the correlation
coefficient is similar when using MLP/transformer (0.428/0.419) but
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increases largely when considering the linearized transformer (0.504).
The same conclusion can bemade by analyzing RMSE (Supplementary
Table 5).

SEQUOIA generalizes to independent cohorts
Deep-learning models trained on a specific dataset may be subject to
bias due to technical noise, such as stain variations and color range,
potentially leading to overfitting and limiting their ability to generalize
to other datasets. To test the generalization capacity of SEQUOIA and
the benchmarked variations, we apply the models developed in the
TCGA cohort to the matched cancer type available in the CPTAC
(Clinical Proteomic Tumor Analysis Consortium) cohort3,26–31. We
extend our validation to seven cancers from six tissues available in the
CPTAC dataset, including breast, lung, kidney, brain, colon and pan-
creas (Supplementary Table 2).

The correlation coefficients obtained from SEQUOIA are sig-
nificantly higher (Mann–Whitney p < 0.0001) in 6 out of 7 tested can-
cer types compared to all other combinations (Supplementary Table 7,
Supplementary Fig. 3). Only in case of KIRC, the SEQUOIA model
obtains the same correlation coefficient as a model with UNI features
with an MLP aggregation. On average, across the seven cancer types,

SEQUOIA achieves a correlation coefficient of 0.503, thereby greatly
surpassing the second-best model (UNI+MLP), which achieves an
average coefficient of 0.463. Similar to findings on TCGA, the best
performance (0.636) occurs in BRCA, the cancer type which had the
most available training data, while PAAD, the cancer type with the
smallest training size, has the worst performance (0.321).

In addition, the RMSE values obtained from SEQUOIA were sig-
nificantly lower (Mann–Whitney p <0.0001) in six out of seven cancer
types compared to all other tested model combinations (Supplemen-
tary Table 8, Supplementary Fig. 4). Only for PAAD, the RMSE values of
SEQUOIA are only slightly lower (not statistically significant) than that
of the competing model (UNI+transformer). On average, across the
cancer types, SEQUOIA achieves anRMSEof 0.135, again surpassing the
second-best model (UNI+transformer), which achieves an average
RMSE of 0.144.

Next, we looked into the overlap between well-predicted genes
identified in each specific cancer type from the CPTAC cohort and the
well-predicted genes in the TCGA cohort (Fig. 2 and Supplementary
Table 9). In terms of number of well-predicted genes, SEQUOIA greatly
surpasses all other model combinations with 7159 genes validated on
average, achieving a 145% increase compared to the second-best

Fig. 1 | Overview of the workflow for the SEQUOIA model. a Cancer types on
which the SEQUOIAmodel is developed and validated. Created with BioRender.com
released under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0
International license (https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en).
b The model is trained and evaluated using matched WSIs and bulk RNA-Seq data
from sixteen cancer types available in the TCGA database. The model is indepen-
dently validated using data from the CPTAC and Tempus cohorts. Apart from
predicting tissue-level gene expression, we integrate a spatial prediction technique
that elucidates region-level gene expression patternswithin tumor tissues, validated
using two spatial transcriptomics datasets5,44. Clinical utility is demonstrated by
evaluating the model’s capacity to predict cancer recurrence. c SEQUOIA archi-
tecture and benchmarked variations. First,N tiles are sampled from theWSI. Feature
vectors are extracted using either ResNet-50 pre-trained on ImageNet or UNI. We

then cluster the feature vectors into K clusters, and within-cluster averages result in
K-aggregated feature vectors. Next, either a Multi Layer Perceptron (MLP), a
transformer (`tformer'), or linearized transformer (`tformer-lin') (followed by an
MLP) are used to predict gene expression values. d Performance benchmarking of
SEQUOIA. Violin plots illustrate the distribution of Pearson correlation coefficients
(left y axis) between the predicted and ground truth gene expression values in
TCGA test sets. Within each violin plot, a miniature box-and-whisker plot is shown
where whiskers bound the min–max values of the data, the bounds of the box
represent lower (Q1)/upper (Q3) quartiles, and the central value contains the
median value. The top 1000 genes with the highest correlation coefficients
obtained from each model are shown. Black squares indicate the absolute number
(right y axis) of genes with significantly well-predicted expression levels. WSI Whole
Slide Image. Source data for d are provided in the Source Data File.

Fig. 2 | Genes that validate both in TCGA test sets and in external cancer
cohorts. a Violin plots show the distribution of the Pearson correlation coefficient
(left y axis) of genes that validate both CPTAC and TCGA test set. Within each violin
plot, a miniature box-and-whisker plot is shown where whiskers bound the
min–max valuesof the data, the bounds of the box represent lower (Q1)/upper (Q3)
quartiles, and the central value contains themedian value. The top 1000 geneswith

the highest correlation coefficients obtained from each model are shown. Black
squares indicate the absolute number (right y axis) of genes that validate both
TCGA test set and CPTAC. b Same as (a) for Normalized RMSE. Note that mlp_res
did not have any significant genes that overlap between TCGA-CPTAC for LUSC,
PAAD, KIRC (Supplementary Table 9) and hence violin plots for these settings do
not exist. Source data are provided in the Source Data File.
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model (UNI+transformer, 4934 genes). Also, in terms of correlation
coefficient and RMSE, SEQUOIA outperforms all other model combi-
nations (Fig. 2, Supplementary Tables 10, 11). These results indicate a
higher generalization capacity of SEQUOIA compared to all other
model combinations.

Most genes are validated across both TCGA and CPTAC for LUAD
(12,422), followed by KIRC (10,477), BRCA (9418), LUSC (8610), COAD
(5784), GBM (1816) and PAAD (1589) (Supplementary Table 9).
Regarding correlation coefficients among genes in the overlap (Sup-
plementary Table 10), the highest value (0.636) was found for BRCA,
followed by LUAD (0.578), LUSC (0.543), KIRC (0.525), COAD (0.498),
GBM (0.391) and PAAD (0.274).

To further test the generalization capacity of our models, we
extended the validation to a LUAD cohort from Tempus ("Methods",
N = 287 slides from N = 249 patients). This led to the identification of
5851 genes thatwerewell-predicted across all three (TCGA, CPTAC and
Tempus) LUAD cohorts.

Pathway-level analysis of the predicted gene expression values
To characterize the biological functions of the well-predicted genes in
our model, we carried out gene set analysis. First, we performed gene
set variation analysis (GSVA) to assess the predicted gene expression
values at the pathway level32. Second, we conducted hyper-geometric
tests using the well-predicted gene list obtained from each cancer
type. For both analyses, we included three categories: (1) gene ontol-
ogy (biological process), (2) KEGG pathway and (3) cell-type signature.
In our GSVA analysis, the average correlation coefficient between the
ground truth and predicted pathway scores across TCGA cancer types
was 0.53 (range 0.37–0.67) for gene ontology, 0.45 (range 0.19–0.58)
for KEGG pathways, and 0.52 (range 0.33–0.52) for cell-type sig-
natures. (Fig. 3a).

For gene ontology, hyper-geometric analysis revealed several
common pathways enriched in the well-predicted genes across cancer
types, including T cell activation (CCL2, CCR2, CCDC88B), cell-matrix
adhesion (EMP2, COL16A1, VEGFA), epithelial-mesenchymal transition
(BMP2, PDPN, SMAD2) and response to oxidative stress (TP53, PRDX1,
VRK2) (Fig. 3b andSupplementaryData 1). Additionally, somegene sets
were enriched in specific cancer types. For instance, in STAD, we
identified genes associated with dendritic cell migration (CXCR1, CCL5,
ALOX5), B cell homeostasis (BLK, BAX, DOCK10), endothelial cell
development (ICAM1, COL15A1, MYADM), and epithelial-mesenchymal
transition (BCL9L, PTEN, OVOL2) (Fig. 3c). Published studies have
revealed the critical roles of dendritic cells in promoting the anti-
tumoral immunity in gastric cancers, and patients with a low density of
tumor-infiltrating dendritic cells had lower survival rates than those
with high density33. Conversely, higher activation levels of endothelial
cell development pathways may reflect enhanced angiogenesis in
tumor tissues, which is a known factor that drives the progression and
metastasis of gastric cancer34.

KEGG pathway analysis further revealed the regulatory effects of
thewell-predicted genes in VEGF signaling (SPHK1,HRAS,HSPB1), HIF-1
signaling (GAPDH,HIF1A,VEGFA), the PD-L1 expression and checkpoint
pathway (CD247, CD274, MAPK11), and NF-kappa B signaling (CXCL12,
NFKB1, PRKCB) (Fig. 3d, e and Supplementary Data 2).

In addition, we also identified several well-predicted cell-type
markers, including those for endothelial cells (CD69, CD93), CD4 T cell
(CD3E, CD4, CD48), M2 macrophage (CD14, CD163, CD84), and B cell
(CD19,CD53,CD37) (Supplementary Fig. 5a andSupplementaryData 3).
These results indicate the capacity of SEQUOIA in capturing tumor
microenvironmental features.

Notably, the presented gene ontology and KEGG gene sets were
not enriched with the inaccurately predicted genes (i.e., genes that did
not pass our significant thresholds) (Supplementary Figs. 5b, c). The
functions of inaccurately predicted genes were not strictly related to
cancers or not interpretable in the context of the disease

(Supplementary Fig. 5d). These results highlight the functional speci-
ficity of genes that can be well predicted with SEQUOIA.

Further analysis on the genes that were well predicted in both the
TCGA and CPTAC cohorts revealed their functions in regulating cell
cycle, T cell activation, DNA replication and cell adhesion (Supple-
mentary Figs. 5e, f). These results indicate that the well-predicted
genes from SEQUOIA were primarily and specifically related to the
regulation of cancer development and progression.

A digital signature for breast cancer recurrence prediction
Given that SEQUOIA was able to predict the transcriptional activity of
genes involved in key cancer-related pathways, we next assessed
whether these genes have prognostic value. We focused our analysis
on breast cancer, in which the highest number of genes (N = 18,878)
were significantly well-predicted for their expression levels in the
TCGA test sets.

The well-predicted genes encompass various published prog-
nostic signatures (Supplementary Data 4)35–38. These include 46 out of
70 (66%) genes of theMammaprint signature, 45 out of 50 (90%) genes
of the PAM50 signature, 13 out of 21 (62%) genes of the Oncotype DX
signature, all 12 (100%) genes of the EndoPredict signature, 5 out of 7
(71%) genes of the Breast Cancer Index and 3 out of 5 (60%) gene of the
Mammostrat signature.

Since the Oncotype DX and MammaPrint signatures are devel-
oped on data from RT-qPCR and microarray assays, and their exact
mathematical formulas are protected by proprietary license, we next
developed an RNA-seq-based gene expression signature that can
stratify the risk of breast cancer recurrence. To this end, we fitted a
regularized Cox regression model on the ground-truth gene expres-
sion values for the genes well predicted by SEQUOIA, and the model
aims to predict a risk score of recurrence for each patient (see
“Methods" for details). We developed the model on the TCGA cohort
(N = 909 patients) and independently validated it using data from the
SCANB (N = 5034 patients) and METABRIC (N = 1933 patients)
cohorts39,40.

Our analysis led to the identification of a gene expression sig-
nature comprising 272 genes significantly associated with recurrence
(Fig. 4a–c andSupplementaryData 5). Todemonstrate its performance
in risk stratification, we first treated the predicted risk scores as a
dichotomous variable. Patients within each cohort were divided into a
high-risk and a low-risk group based on themedian score. Results from
our log-rank test demonstrate that the high-risk group had sig-
nificantly worse prognosis compared to the low-risk group in both the
TCGA discovery set (P < 2e−16) and the two validation sets (SCANB:
P < 2e−16;METABRIC:P =0.0001) (Fig. 4a–c). It is worth noting that the
gene expression data from METABRIC were generated using a micro-
array assay, therefore a lower performance is expected.

Next, we treated the predicted risk score as a continuous variable
and evaluated its performance using regression analysis. Since breast
cancer subtype is a confounding variable in risk prediction, we incor-
porated PAM50 molecular subtypes and hormone (i.e., estrogen and
progesterone) receptor status as covariates into our analyses. In both
validation datasets, the predicted risk score was significantly asso-
ciated with prognosis: SCANB (HR = 7.86, 0.95 CI = 4.96–12.40,
covariate-adjusted P = 1.50e−18) and METABRIC (HR = 1.68, 0.95
CI = 1.23–2.29, covariate-adjusted P = 0.001). Gene ontology analysis of
the signature genes revealed their regulatory functions in cell growth
(IGFBP7, RGS2TOMM70), angiogenesis (GATA2, SFRP2, RUNX1), cell-cell
adhesion (EMILIN1, EFNB1, CD83), regulation of T cell activation
(SMARCB1, IL1RL2, HLA-DQB2) and response to oxidative stress (IL1A,
MMP3, ERO1A) (Fig. 4d).

So far, we have developed and validated a gene signature using
the ground-truth gene expression values. We then assessed whether
utilizing the gene expression values predicted from histology images
was sufficient to stratify the risk groups. For each patient in the TCGA
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test set, we calculated a risk score using the same risk coefficient in our
Cox regression model, but this time replacing the ground-truth gene
expression values with the predicted values by SEQUOIA. As shown in
Fig. 4e, patients assigned with high-risk scores demonstrated sig-
nificantly shorter recurrence-free survival compared to patients with
low-risk scores (Log-rank P = 0.04).

To benchmark the predictive performance of this gene expression-
based model, we next trained a separate deep-learning model to

directly predict recurrence-free survival from histology images. The
architecture of this model was identical to that of SEQUOIA, except it
was trained to predict a risk score for each patient rather than gene
expression values (see “Methods" for details). We found that using
histology images alone was not able to effectively stratify the patients
(Fig. 4f, Log-rank P=0.43). These results demonstrate the potential of
SEQUOIA in predicting breast cancer recurrence through gene expres-
sion prediction.

Fig. 3 | Evaluation of gene expression predictions at the pathway level. a Violin
plots illustrating the distribution of Pearson correlation coefficients (left y axis)
between the predicted and ground truth pathway enrichment scores in TCGA test
sets. Within each violin plot, a miniature box-and-whisker plot is shown where
whiskers bound the min-max values of the data, the bounds of the box represent
lower (Q1)/upper (Q3) quartiles, and the central value contains the median value.
The top 100 pathways with the highest correlation coefficients obtained from each
model are shown.b, cHeatmap showing the significant P values obtained fromone-

sidedhyper-geometric tests inb gene ontology and cKEGG pathway analysis of the
well-predicted genes. Color and size of the circles represent the negative log-
transformed P values. Integers represent the absolute gene count in each category,
and non-significant categories are left in blank. d, e Circos plots showing the
d biological process enriched with the well-predicted genes in STAD and e KEGG
pathways in COAD. Gene names are displayed on the left and the corresponding
biological processes are shown on the right. Source data for all panels are provided
in the Source Data File.
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Tile-level predictions validated with spatial transcriptomics
Wehavedemonstrated the ability of SEQUOIA to predictRNA-Seqgene
expression values collected from bulk tissues. However, gene expres-
sion patterns are known to vary across different tumor regions due to
intra-tumoral heterogeneity resulting from uneven spatial distribu-
tions of cell phenotypes. Uncovering spatial gene expression patterns
can reveal the intricate landscape of tumor architecture and signaling
environment, which is known to affect tumor growth, metabolic pro-
cesses, and resistance to therapy6,8. We hence investigated whether
our models trained at the slide level can be used to predict gene
expression values at loco-regional levels within tumour tissues.

Here, we implemented a sliding-window approach to generate
tile-level predictions of gene expression. The histology image was first
processed using a sliding window of 10 × 10 tiles starting from the left
upper corner, where the dimensions of each tile (128μm× 128μm)
were consistent with those used for training SEQUOIA models. The
window size was determined based on SEQUOIA architecture, which
requires 100 feature vectors as input. For each window, a 100 × 1024
feature vector was extracted and then fed to SEQUOIA for generating a
prediction. This prediction was then stored for every tile within the
window (see “Methods" for details). After processing the entire image,
the predicted gene expression for each tile was calculated as the
average of the stored values for that tile. A stride of 1 (tile) was chosen
for fine-grained analysis.

To validate the prediction, we utilized data from an independent
cohort of patients with GBM, which contains matched histology ima-
ges and spatial transcriptomics data (N = 54,000 gene expression

spots from N = 18 patients), providing tile-level ground truth gene
expression measurements5 (Fig. 5a). We focused our analysis on the
top 1000 genes for which SEQUOIA generated the best-generalized
predictions across both the TCGA test set and CPTAC (i.e., genes with
the highest Pearson correlation coefficients, PCCs). For each of these
genes, we generated a spatial heatmap illustrating their expression
values across the slide.

To quantitatively assess the prediction performance, we used
both the PCC and EMDas evaluationmetrics. EMD values are bounded
between 0 and 1, with lower values indicating a closer correspondence
between predictions and ground truth. Note that PCC is a pixel-level
metric, and hence has limitations to evaluate spatial performance.
Specifically, if a prediction is shifted with a few pixels, this may heavily
impact the PCC, while in reality, this small shift may not be that
noticeable. In addition, the spatial slides are smaller and more homo-
geneous compared to TCGA slides (number of tiles ranging from 250
to 1500 compared to 4000 in TCGA), in which case PCC cannot fully
capture true performance. To address these limitations, we included
EMD as an additional metric, which takes into account the 2D Eucli-
dean distance between predictions and ground truth (see Methods).

Although the quality of the H&E images in the spatial GBMdataset
is considerably lower than on TCGA (Supplementary Fig. 6), SEQUOIA
was able to achieve good prediction performance across many genes
on this spatial dataset (Fig. 5b, c). On average, SEQUOIA achieved an
EMD of 0.15 (95% CI = 0.149–0.151) across all slides and genes. Well-
predicted genes include COL6A2 (avg. PCC 0.14, EMD 0.14 across
slides), S100A13 (avg. PCC 0.16, EMD 0.14) and ALDOC (avg. PCC 0.16,

Fig. 4 | Development and validation of a digital gene expression signature for
predicting breast cancer recurrence. a Kaplan–Meier curves of recurrence-free
survival obtained from the TCGA discovery dataset. Patients were split by the
median risk score. b, c Kaplan–Meier curves of recurrence-free survival in the
b SCANB and cMETABRIC validation datasets. dCircos plot showing the biological
process associated with the prognostic gene signature. Gene names and the asso-
ciated risk coefficients are shown on the left, and the corresponding biological

processes are shown on the right. e Kaplan–Meier curves of recurrence-free sur-
vival obtained from the predicted gene expression values of the TCGA test set.
Patients were split by the median risk score. f Kaplan–Meier curves of recurrence-
free survival directly predicted fromhistology images of the TCGA test set. Patients
were split by the median risk score. Source data for all panels are provided in the
Source Data File.
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EMD 0.13), each of which have been associated with GBM malignancy
and prognosis41–43. These results highlight the potential of SEQUOIA in
predicting spatial gene expression patterns related to GBM malig-
nancy and prognosis.

Since HE2RNA21 has also been shown to be capable of predicting
spatial gene expression levels, we benchmarked the predictive

performance of SEQUOIA with HE2RNA. We considered the top 100
genes predicted within each model. Both in terms of EMD and PCC,
SEQUOIA outperformed HE2RNA (Supplementary Fig. 7, Supplemen-
tary Table 12). The median PCC for SEQUOIA was 0.255, almost dou-
bling the value of HE2RNA (0.138). Higher performance was observed
in slides with high degrees of spatial variance in gene expression5,6. In
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the best-performing slide (269), SEQUOIA achieved a median PCC of
0.678 across the 100genes.Although slides differ significantly in terms
of H&E quality, staining and heterogeneity, we also compared the
extent to which genes validate across different slides in both models.
Hereto, we computed the number of slides where genes are predicted
with PCC>0.1 (Supplementary Table 8). Again, SEQUOIA greatly out-
performed HE2RNA, with 60 genes validating to more than 8 slides
compared to only 11 with HE2RNA.

We then also evaluated the spatial prediction performance of
SEQUOIA on another independent spatial transcriptomics dataset for
breast cancer44, containing N = 92 slides from N = 48 unique patients.
Again, despite the lower quality of the H&E slides in this cohort com-
pared to TCGA (Supplementary Fig. 9), SEQUOIA was able to predict
the spatial expressionofmany genes, therebyoutperformingHE2RNA.
On average across all slides, the median PCC of the top 100 genes for
SEQUOIAwas0.168 (compared to0.154withHE2RNA) (Supplementary
Table 14). In slides with best generalization performance (SPA145,
SPA143, SPA146, SPA148), SEQUOIA achieved a median PCC>0.45.
Also in terms of EMD, SEQUOIA outperformed HE2RNA with a median
EMD of 0.103 across the 92 slides, compared to 0.121 with HE2RNA
(Supplementary Table 15). Genes that validate the most slides include
YWHAZ, DCN, TMSB10, which have been related in literature to breast
cancer aggressiveness and survival45–47 (Supplementary Fig. 10, Sup-
plementary Table 16).

Finally, the integrative analysis of single-cell RNA-seq and spatial
transcriptomics data in recent studies have revealed that cells sharing
the same transcriptional subtype are often co-localizedwithin spatially
segmented niches5,48. To investigate whether SEQUOIA captured true
biological signals that reflect underlying tissue compositions, we
assessed spatial co-expression patterns of functionally related genes.
We considered four previously established meta-gene modules gov-
erning the transcriptional subtype and proliferation state of GBMcells:
(1) ‘lineage development’ (124 genes), (2) ‘cell cycle’ (70 genes), (3)
‘mesenchymal-like’ (92 genes) and (4) ‘astrocyte-like’ (37 genes)49.
Spatial correlation analyses showed that genes within the same meta
module consistently clustered together, exhibiting similar spatial
expression patterns (Fig. 5d, e).

To demonstrate the spatial prediction capacity of SEQUOIA in
other cancer types, we developed a user-friendly, interactive web
application (https://sequoia.stanford.edu)where users can explore the
spatial heatmap forgenespredicted in theTCGAcohorts. These results
demonstrate the potential of SEQUOIA in resolving spatial cellular
architectures within heterogeneous tumor tissues.

Discussion
Transcriptomic analysis of tumor tissues holds immense promise in
advancing personalized diagnosis and outcome predictions. In this
study, we presented SEQUOIA, a deep-learning model for predicting
RNA-seq gene expression data from whole slide images (WSIs). We
combined algorithmic and methodological advancements, followed
by thorough analyses of gene functions, clinical relevance, and gen-
eralization capacity. Through a comprehensive evaluation of our
model in sixteen cancer types across fourteen tissues, we demon-
strated the value of SEQUOIA in predicting clinically relevant gene
expression patterns.

Over the past decade, deep learning has revolutionized cancer
diagnosis. Published studies have demonstrated the potential of deep
neural networks in extracting genetic information from medical ima-
ges. He et al.50 developed ST-Net, a convolutional neural network that
predicts the expression values of 250 genes from histology images in
breast cancer. Their model, however, cannot integrate contextual
information across tiles and is trained on individual tiles, which
requires high-resolution training labels obtained from spatial tran-
scriptomics assays.

To avoid trainingon individual tiles,methods are beingdeveloped
thatfirst extract tile features for the entire slide, which thengo through
an aggregation function before calculating the output. Graziani et al.51

perform this aggregation by calculating a weighted average, where the
weights are determined by an attention mechanism that determines
the importance of tiles in the average. These attention weights are
calculated for each tile individually based on the tile’s features and,
hence, do not take into account contextual relationships. In addition,
their strategy requires training a dedicated model for predicting the
expression of each individual gene which can lead to computational
challenges, particularly when attempting to infer the entire tran-
scriptome. Schmauch et al. developed HE2RNA21, which contains an
MLP aggregation mechanism and is able to predict the entire tran-
scriptome. However, their MLP aggregation also cannot model con-
textual tile interactions. Then, Alsaafin et al. introduced tRNAsformer,
where the aggregation function is implemented with a transformer
encoder. The transformer contains self-attention weights that allow us
to model these contextual relations across tiles. They apply this for
gene expression predictions and subtype classifications in renal cell
carcinoma22. However, the increased complexity of the transformer
(quadratic in terms of input tokens) may lead to overfitting, especially
with limited training data52. Finally, the mentioned studies use CNNs
(ResNet/DenseNet) pre-trainedon the ImageNetdataset for tile feature
extraction, which does not contain medical images.

To address these shortcomings, we introduce two alternative
components in theWSI predictionpipeline. Insteadof using aCNNpre-
trained on ImageNet, we use the recent advanced UNI24 foundation
model that was specifically developed for WSI feature extraction. In
addition, we introduce an alternative tile aggregation method where
we linearize the self-attention component in the transformer archi-
tecture, enabling contextual representations at linear complexity. We
thoroughly benchmark the added value of each component by com-
paring UNI vs. ResNet (pre-trained on ImageNet) feature extraction
across the three aggregation methods mentioned above: MLP aggre-
gation (as in HE2RNA), transformer aggregation (as in tRNAsformer)
and our linearized transformer model. The results of our analysis
revealed consistent improvements across various types, both when
using UNI instead of ResNet, and when using the linearized transfor-
mer versus the other two options.

The genes with accurately predicted expression values by
SEQUOIA were found to be associated with key pathways pertinent to
cancer progression. Among these were genes involved in regulating
cell cycles, inflammation, angiogenesis, and hypoxia response. Addi-
tionally, the model effectively captured cell-type markers, including
those for endothelial cells, CD4 T cells, M2 macrophages and B cells.
Building upon the well-predicted genes, we developed a 272-gene

Fig. 5 | Spatial visualization of gene expression predicted at the tile level.
a Whole Slide Image thumbnails from the validation cohort. b Examples of genes
that are well-predicted spatially within slides, with predicted spatial gene expres-
sion shown on the left and ground truth on the right. The prediction and ground
truth maps were normalized to percentile scores between 0 and 100. Above each
pair of prediction and ground truth, we show the Pearson Correlation Coefficient
(PCC) and Earth Mover’s Distance (EMD) metric. c Examples of genes that are
spatially well-predicted across several slides. Each row shows the prediction map

(on the left) and ground truth (on the right) for a particular gene across four slides.
Above each pair of prediction and ground truth, we show the Pearson Correlation
Coefficient (PCC) and Earth Mover’s Distance (EMD) metric. d Heatmap showing
the Pearson correlation coefficients of meta-gene modules that define the tran-
scriptional subtype and proliferation state of GBM cells. e Spatial organization of
the predicted transcriptional subtypes within different slides. Transcriptional
subtypes were assigned based on the meta-gene module showing the highest
prediction values. Source data for panel d are provided in the Source Data File.
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signature that predicts the risk of breast cancer recurrence. Although
the gene expression signature was developed on ground-truth gene
expression values, we demonstrated its utility in patient stratification
by just using the predicted gene expression. Despite the decreasing
costs for transcriptomics sequencing, the integration of gene expres-
sion analysis into clinical routines is hindered by the lack of necessary
equipment and trained personnel. By leveraging SEQUOIA’s predic-
tions, one can gain mechanistic insights linking histopathological
phenotypes to molecular characteristics, thereby offering guidance
for disease classification, prognostication, and treatment planning.

Understanding spatial topological organization of tumor cells has
attracted recent research interest in the field. The advancement of
spatial transcriptomics and proteomics technologies has deepened
our understanding of the intrinsic signaling environment that drives
tumour growth, metastasis and treatment sensitivity. While SEQUOIA
was trained using bulk RNA gene expression, we demonstrated its
potential in predicting gene expression patterns at the loco-regional
level. We implemented a technique that enables computational
reconstruction of high-resolution spatial gene expression within
tumor tissues. The results were validated using two spatial tran-
scriptomics datasets from independent cohorts of patients with glio-
blastoma and breast adenocarcinoma. Notably, genes with accurate
spatial expression predictions include those regulating malignant
phenotype and prognosis. Applying such computational method to
WSIs can bring significant values to both clinical and research settings.
In the clinic, it can aid in identifying specific regions within a hetero-
geneous tumor that require sequencing, hence ensuring the accurate
detection of biomarkers and preventing the omission of critical
lesions19. In research, this approach enables the cost-efficient
exploration of gene expression dynamics at high resolution, which
allows us to generate hypotheses about signaling events driving cel-
lular interactions, thereby advancing our understanding of the com-
plex mechanisms underlying cancer progression.

Future efforts will be dedicated to further improving the model’s
performance by pretraining on large-scale, multi-center data cohorts,
exploring the benefit from color normalization, and providing uncer-
tainty measurement using ensemble or bootstrapping methods. The
accurate prediction of molecular traits from histology holds immense
potential to improve cancer diagnosis and prognosis, provide valuable
insights into a tumour’s aggressiveness and its molecular character-
istics, advance our understanding of cancer heterogeneity, and enable
personalized and targeted therapies. To this end, the implementation
of AI-based predictive models has the potential to streamline medical
processes, save costs, and improve efficiency by rapidly identifying
actionable information from image-based data.

In conclusion, by combining algorithmic advancements with
thorough analyses of biological functions, clinical relevance, and
generalization capacity, our research demonstrates the potential of
using transformer-based deep-learning models in predicting high-
dimensional gene expression features from whole-slide histology
images.

Methods
Patient cohorts and ethics
TCGA. For model training and evaluation, we retrieved anonymized,
paraffin-embedded (FFPE) WSIs and matched gene expression data
from the publicly available TCGA archive (https://portal.gdc.cancer.
gov). We focused on 16 cancer types within this cohort: (1) BLCA, (2)
BRCA, (3) COAD, (4) GBM, (5) HNSC, (6) KIRC, (7) KIRP, (8) LIHC, (9)
LUAD, (10) LUSC, (11) PAAD, (12) PRAD, (13) SKCM, (14) STAD, (15)
THCA, (16) UCEC.

Among these cancer types, seven have independent patient
populations available in the CPTAC cohort for external validation
(detailed below). Our models were trained on diagnostic slides of
tumor tissues, while the adjacent normal tissues were excluded. The

number of patients, WSIs and genes in each cancer type are listed in
Supplementary Table 1.

CPTAC. For validation, anonymized patient data were retrieved from
the publicly available Clinical Proteomic Tumor Analysis Consortium
(CPTAC) cohort (https://portal.gdc.cancer.gov). We downloaded
matchedWSIs and gene expression data from seven cancer types from
six tissues, including BRCA, LUAD, LSCC/LUSC, COAD, kidney renal
clear cell carcinoma (CCRCC/KIRC), GBM, pancreatic adenocarcinoma
(PDA/PAAD). The sample size is described in Supplementary Table 2.

Tempus. For an additional validation, we utilized matched WSIs and
RNA-seq data (N = 287 slides from N = 249 patients) of LUAD. The data
were obtained through a data transfer agreement with Tempus
Labs, Inc.

Spatial GBM, Spatial BRCA, SCANB, METABRIC. Spatial tran-
scriptomic data and matched histology images of GBM were obtained
from a published study by Ravi et al. (https://datadryad.org/stash/
dataset/doi:10.5061/dryad.h70rxwdmj)5. Spatial transcriptomics and
matched histology images of BRCA were obtained from Jaume et al.44

(https://doi.org/10.48550/arXiv.2406.16192).
Data of the SCANB and METABRIC breast cancer cohorts were

obtained from published studies by Staaf et al.39 and Curties et al.40.

Pre-processing of RNA-Seq data
For the training and validation of our models, we used FPKM-UQ
normalized gene expression values. Since the gene expression values
span several orders ofmagnitude and ourmodel was trained using the
Mean Squared Error loss function, the training process may introduce
bias to genes with large gene expression values. To overcome this
potential bias, we performed log2 transformation (v → log2(v + 1)) of
the gene expression values.

We focused our analysis on three gene categories: (1) protein-
coding genes, (2) micro-RNAs (miRNAs) and (3) long non-coding RNAs
(lncRNAs). On average, the protein-coding genes account for 85%of all
the analyzed genes.

Pre-processing of WSIs
WSIs were acquired in SVS format and downsampled to ×20 magnifi-
cation (0.5μmpx−1). We used the Otsu threshold method to obtain a
mask of the tissue, which allows us to omit tiles mostly containing
white background53. WSIs have much larger dimensions than natural
images (usually over 10k × 10k pixels), and therefore cannot be used
directly to train machine learning models. To address this challenge,
we employed amultiple instance learning (MIL) approach, where each
WSI was cropped into non-overlapping tiles of 256× 256 pixels
(128μm× 128μm).

In each slide, we randomly selected a maximum of N = 4000 tiles,
omitting those containing more than 20% background and tiles with
low contrast. To obtain a feature representation, we first organized the
selected tiles into bags. Then, we either used a ResNet-50module pre-
trained on ImageNet, or UNI24 to covert each tile into a feature vector
(respectively either 1 × 2048 or 1 × 1024 feature dimension).

Then, we used the k-means algorithm to cluster similar tiles of
each slide into K = 100 clusters. Each cluster contains tiles with similar
morphological features, where cluster A may represent tiles that
mostly contain tumor cells, cluster B may contain tiles with mostly
connective tissue and so on. Features of patches within the same
cluster were averaged, resulting in a matrix of 100 × 2048 (ResNet) or
100 × 1024 (UNI) vectors that represent the slide.

SEQUOIA architecture and benchmarked variations
As described above, theWSI pre-processing step results in 100 feature
vectors which are obtained either with ResNet or UNI. We represent
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the dimension of each feature as D (2048 for ResNet, 1024 for UNI).
The dimension of the output (number of genes) is defined as
N = 20,820. To combine the 100 feature vectors into a slide-level
representation, we compared three approaches described below. In
the figures and text, we refer to the first one as ‘MLP aggregation’, the
second as ‘transformer aggregation’ and the last one as ‘linearized
transformer aggregation’. The linearized transformer, in combination
with UNI features is the SEQUOIA architecture.

The first approach to aggregate the 100 feature vectors into a
slide-level representation is to feed each feature into a dense neural
network (MLP). Then, the transformed feature vectors are combined
by an aggregation procedure that is equivalent to a weighted average.
We implemented this procedure according to HE2RNA21.

In the second option, we model the contextual relationships
across the 100 features by implementing a transformer encoder (also
used in tRNAsformer23). The transformer encoder uses self-attention
mechanisms to model the contextual relationships across feature
vectors, enabling it to determine the relevance of these relationships
for slide-level gene expression prediction. Hereto, the feature matrix
from each WSI is fed to a transformer encoder, comprising of 6
encoder blocks, 16 attention heads, and a head dimension of 64. After
layer normalization, the output is sent to an MLP head with dimen-
sion D × N.

As the third option, we implement a linearized version of the self-
attention component within the transformer architecture54. We can
represent the input to the self-attention module as a vector
X = {x1, . . . , xT} of T = 100 feature vectors of dimension D, which are
transformed into a hidden representationH = {h1, . . . , hT}. To calculate
the hidden representation, self-attention calculates a score etj for each
combination of input vectors xiwith xj (quadratic complexity w.r.t the
number of input features). Instead, in the linearized version, we com-
pute a summary of the input vectors ~s (linear complexity) that is pas-
sed to each input vector. Formally, the calculation of the hidden
representation is represented in equation (1), with ⊕ representing
concatenation. The functions f1, f2, f3 are implemented as adense linear
layer (dimension 64) followed by GeLU activation. All other compo-
nents of the transformer were kept the same as in the regular version,
i.e. the number of blocks (6), attention heads (16) and head dimension
(64) were kept the same. After layer normalization, the output is sent
to anMLPheadwith the samedimensions as in the regular transformer
(D ×N).

ht = f 3ðf 2ðxtÞ � ~sÞ, ~s=
1
T

XT

i= 1

f 1ðxtÞ ð1Þ

Training and evaluation on the TCGA dataset
We trained a dedicated model for each cancer type using data of the
TCGA cohort. For training and evaluating the model, we conducted a
five-fold cross-validation (Supplementary Fig. 1). In each fold i, the
dataset was partitioned at the patient level, allocating 80% for ‘global’
training and 20% for testing. Themodel was trained exclusively on the
training set and then independently applied to the test set. To deter-
mine the optimal stop point for training themodel in fold i, we further
split the ‘global’ training set i into 90% for training and 10% for internal
validation. We used theMean Squared Error (MSE) as the loss function
during training, with each model being trained for a maximum of 200
epochs.

For early stopping and determining the point for model saving,
instead of relying solely on the PCC as described in Schmauch et al.21,
we employed a criterion that considers both MSE and correlation.
Specifically, we continued training and saving the model at each
optimalMSE point as long as theMSE continued to decrease. Once the
MSE stopped improving for a consecutive patience interval of 20
epochs, we continued training the model if the correlation had

improved in the last patience epochs and if the MSE remained below a
reasonable threshold (i.e., MSE < δ + bestMSE, with δ =0.5). We then
saved the model at the optimal epoch if the correlation had improved
(i.e., corr > best_corr).

Throughout this process, we used a fixed learning rate of 1 × 10−3

and a batch size of 16. The model parameters were optimized with the
Adam optimizer. For Pearson correlation and RMSE analyses, we
concatenated predictions on patients from all test sets i (i = 1..5), which
allowed us to leverage the predictive strength of the entire cohort.

Identification of significantly well-predicted genes
To assess the performance within the TCGA cohort, we concatenated
the predictions of all test sets i (i = 1..5). For each gene, the predicted
gene expression values were compared to the ground truth using both
Pearson’s correlation analysis and RMSE. The resulting correlation
coefficient and RMSE values were then compared to those obtained
with a random, untrained model of the same architecture.

To identify genes with significantly well-predicted expression
levels, we combined three criteria: (1) The correlation coefficient (r1)
between ground truth and the predicted gene expression values must
be positive and the associated P value (p1) should be less than 0.05
(r1 > 0 and p1 < 0.05); (2) r1 must be significantly higher than r2 (r1 > r2)
as determined by the Steiger’s Z test, where r2 represents the corre-
lation coefficient between ground truth and predicted gene expres-
sion values obtained from the random model. We required the raw
Steiger P value to be less than 0.05 (p2 < 0.05) and the adjusted P value
byBenjamini-Hochberg correction tobe less than0.2 (p3 < 0.2); (3) The
RMSE values obtained from the trained model must be smaller than
those from the random model (rmse1 < rmse2).

For better presentation and interpretation, we calculated a “nor-
malized RMSE value" using a two-stepmethod. First, since the absolute
gene expression values varied across different genes, we performed
quantile normalization of the RMSE values. For each gene, the RMSE
value between the prediction and ground truth was divided by the
interquartile range of its absolute expression values across the sam-
ples. This normalization ensured that the RMSE values were compar-
able between different genes. Second, we performed min-max
normalization for the quantile-normalized RMSE values across all
genes calculated in each specific cancer type. This step scaled the
quantile-normalized RMSE values to a range between 0 and 1. There-
fore, thefinal normalizedRMSEvalue is boundedbetween0and 1,with
smaller values indicating more accurate predictions.

Gene set analysis
The gene set analysis was performed with the ClusterProfiler R library
(version 4.2.1)55 and GSEApy package (version 1.0.5)56. Biological pro-
cesses from gene ontology and cell-type signatures were obtained
from theMSigDBdatabase (https://www.gsea-msigdb.org/gsea). KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway annotations
wereobtained from theKEGGdatabase (https://www.genome.jp/kegg/
catalog/org_list.html). The enrichment analysis was performed with
hyper-geometric testing. To generate heatmaps of the P values, we
aggregated gene sets with high similarities (e.g., “regulation of T-cell
proliferation" and “positive regulation of T-cell proliferation"), and the
average P values were shown. GSVA was performed to assign an
enrichment score to each pathway based on the ground truth or pre-
dicted gene expression values using the GSEApy package (ver-
sion 1.0.5).

Identification and validation of the prognostic gene signature
To construct a gene expression model for predicting breast cancer
recurrence, we first selected the top 5000 well-predicted protein-
coding genes from the TCGA-BRCA cohort as potential candidates.
Then, we performed LASSO Cox regression model analysis with the
-‘glmnet’ R package (version 4.1)57. The penalized Cox regression
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model with LASSO penalty was used to achieve shrinkage and variable
selection simultaneously. The optimal value of the penalty parameter λ
was determined through a five-fold cross-validation.

Utilizing the optimal λ value, we curated a list of prognostic genes,
each associated with a coefficient (i.e., hazard ratio) that was not equal
to zero. The risk scorewas derived by performing a linear combination
of the expression levels of the selected genes, with each expression
level being weighted by its associated coefficient, as described by the
equation (2):

risk score =
Xn

i = 1

Ci × Expi ð2Þ

where Ci represents the coefficient of a gene and Expi its
expression value.

The patients in each dataset were split into a low-risk and a high-
risk group according to the median risk score. Finally, the
Kaplan–Meier estimator and the log-rank test were performed to
assess the difference in recurrence-free survival between the low-risk
and high-risk groups.

Recurrence-free survival prediction from histology images
To predict recurrence-free survival directly from histology images, we
changed the dimension of the fully connected layer of the MLP head
from 2048× num_genes to 2048 × 1, and amodel was trained to predict
a risk score for each patient in the TCGA test set. To predict time to
recurrence, we applied the Cox proportional hazards model to the
feature vector obtained from the transformer encoder. The hazard
function was λ(t∣Z) = λ0(t)exp(Z · β), where Z represents the linear fea-
ture vector output from the transformer encoder, λ0(t) the baseline
hazard function, and β the coefficient weight implemented in the fully
connected layer. The model was trained to minimize Cox loss6:

LðβjZ Þ= �
X
ijCi = 1

Ziβ� log
X

jjY j ≥ Y i

eZiβ

0
@

1
A

0
@

1
A ð3Þ

where Zi represents the feature of patient i, Yi the recurrence-free
survival time, and Ci the censored indicator. Themodel was trained for
50 epochs with a learning rate of 1 × 10−3 and a batch size of 64. To
generate a fair comparison, we kept the input tile features from each
WSI consistent with the model used for gene expression prediction.

Spatial gene expression prediction at tile level
To predict gene expression levels spatially at tile-level, we imple-
mented a sliding-window method. Starting from the left upper corner
of the histology image, we generate a window of 10 × 10 tiles, equiva-
lent to the number of features used as input for training SEQUOIA on
the TCGA dataset. Hence, the geometric location of a window can be
defined as (x, y), the 2D coordinate of the top-left point of the top-left
tile within the window. The window is intially placed at coordinate
(0, 0), referred to asw0,0. The x coordinate increaseswhen thewindow
moves to the right, and the y coordinate increases when it moves
below. The feature vector of dimension 1 × 2048 is extracted fromeach
tile as described for our pre-processing of WSIs. At each step, the
100 × 2048 feature vectors of tiles in the window wx,y are fed to the
model. The resulting predicted gene expression gwx, y

is assigned to all
tiles within the window wx,y. To resolve the gene expression at single-
tile level, we saved the prediction at each individual step. Then, the
window ismoved stride number of tiles to the right (wx+stride,y), and the
predicted gene expression is again saved for all tiles within the new
window.When thewindowhas reached theendof a row, anewwindow
is started at position stride below the previous row (w0,y+stride). After
the window has passed the entire histology image, the prediction for
each tile is calculated as the average of all values that were saved for

that tile when it was part of a window wx,y. In our implementation, we
set stride = 1. Larger strides require less compute time but are less fine-
grained.

For comparison of the predicted spatial gene expression with the
spatial transcriptomicsmeasurement in the ground truth,we resampled
the ground truth resolution to match the predicted resolution. Namely,
the ground truth resolution was 55μm per spot, which is higher than
the predicted resolution of 256μmper spot. Hence, we compared each
spot in the prediction with the average of the four nearest spots in the
ground truth (nearest in terms of smallest Euclidean distance between
the x,y coordinates of the spots).We also performedmedian filtering on
the ground truth map to remove noise (window size 3 × 3), and we only
considered genes with ≥10 unique measured values in the spatial
ground truthmap (to avoid incorporating noisymeasurements). Finally,
we converted both the predicted and ground truth values to normal-
ized percentile scores between 0 and 100.

Earth Mover’s distance
For a quantitative evaluation of the spatial visualization capabilities of
themodel, weused the two-dimensional EarthMover’sDistance (EMD)
(implemented with the cv2. EMD function from opencv-python58).
Intuitively, the metric captures the minimum amount of ‘work’
required to transform one distribution into the other. Often the two
distributions are informally described as different ways of piling up
earth/dirt, and the ‘work’ to transform one distribution into another is
defined as the amount of dirt multiplied by the distance (Euclidean
distance in our case) over which it is moved. In the context of spatial
gene expressionmaps, EMD considers not only the similarity of values
between the ground truth and prediction at individual points but also
the spatial arrangement and distribution of those values across the
tissue. Hence, this metric takes into account the spatial context to
determine how well the prediction map corresponds to the ground
truth. In contrast, a pixel-level metrics like PCC/RMSE calculate the
differencebetween thepredicted andground truth values at eachpixel
independently, without explicitly considering the spatial relationships
between pixels.

Spatial correlation analysis of GBM signature genes
To assess whether genes exhibiting similar spatial expression patterns
are functionally related, we used four recurrent meta-gene modules
governing the transcriptional subtype and proliferation state of GBM
cells as discovered from a published single-cell RNA-seq study49. We
included all signature genes from these modules, except for those
(N= 18 genes) not included in our training process. The neural-
progenitor-like and oligodendrocyte-progenitor-like) modules were
combined into one group, namely ’lineage development’, which
includes a total of 124 genes. Further, genemodules regulating G1/S and
G2/M phase transitions (N= 70 gens) were combined into a ’cell cycle’
module. Finally, the ‘mesenchymal-like’ (N =92 genes) and ‘astrocyte-
like’ (N= 39 genes) modules were included as separate groups.

To assess spatial co-expression patterns, we determined the
similarity of spatial prediction maps for each pairwise combination of
genes (N = 325 genes in total). This was accomplished by first flattening
the tile-level predictions into two 1D arrays and then computing the
Pearson correlation between them. This process was repeated in each
slide, and the resulting correlation matrices were averaged across all
eighteen slides. The spatial correlation matrix was clustered using
hierarchical clustering to reveal genes that exhibit similar spatial
expression patterns. We further assigned a colour to each row and
column in the matrix, indicating the meta module each gene
belongs to.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Anonymized WSIs, gene expression and clinical data of TCGA cohorts
were retrieved from the publicly available Genomic Data Commons
(GDC) portal (https://portal.gdc.cancer.gov). Gene expression data of
the CPTAC cohort were downloaded from GDC portal (https://portal.
gdc.cancer.gov), and WSIs were obtained from the Cancer Image
Archive with the accession URL. Gene expression data andWSIs of the
Tempus cohort were obtained through a data transfer agreement with
Tempus Labs, Inc. The publicly available spatial transcriptomics data
of GBM were acquired from Datadryad using the following accession
URL5. Spatial transcriptomics and matched histology images of BRCA
were obtained from Jaume et al.44 (https://doi.org/10.48550/arXiv.
2406.16192). TheRNA-seq data and clinical annotations of the SCANB39

cohort were obtained from the accession URL, and data from the
METABRIC40 cohort was obtained for cbioportal with accession URL.
Source data for all figures/tables in this work are provided as a zipped
folder (including main text and supplementary). Each file within the
folder is named according to the figure/panel it belongs to. Source
data are provided with this paper.

Code availability
Codes for data pre-processing, model training and evaluation were
deposited into a public GitHub repository (https://github.com/
gevaertlab/sequoia-pub, release tag v1.0.0, https://doi.org/10.5281/
zenodo.13821496)59.
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