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Explicit description of viral capsid subunit
shapes by unfolding dihedrons
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Viral capsid assembly and the design of capsid-based nanocontainers critically depend on
understanding the shapes and interfaces of constituent protein subunits. However, a comprehensive
framework for characterizing these features is still lacking. Here,we introduce a novel approach based
on spherical tiling theory that explicitly describes the 2D shapes and interfaces of subunits in
icosahedral capsids. Ourmethod unfolds spherical dihedrons defined by icosahedral symmetry axes,
enabling systematic characterization of all possible subunit geometries. Applying this framework to
real T = 1 capsid structures reveals distinct interface groups within this single classification, with
variations in interaction patterns around 3-fold and 5-fold symmetry axes. We validate our
classification through molecular docking simulations, demonstrating its consistency with physical
subunit interactions. This analysis suggests different assembly pathways for capsid nucleation. Our
general framework is applicable to other triangular numbers, paving the way for broader studies in
structural virology and nanomaterial design.

Viral capsids are assemblies of proteins that encapsulate andprotect the viral
genome.Many spherical viral capsids adopt icosahedral structures, which is
fully characterized by 60 symmetry operations. To elucidate themechanism
of self-assembly of molecules1,2 for the rational design of capsid-based
nanocontainers3–6, it is important to understand how icosahedral symmetry
imposes geometric constraints on the interaction patterns between subunit
proteins.

The Caspar-Klug (CK) theory is currently used as a major tool for
classifying capsid structures7. The theory explains how capsids can be
formed fromdifferent numbers of subunits, resulting in various sizes8. In the
CK theory, protein subunits are modeled using a hexagonal network of
subunits on a plane according to the p6 wallpaper group, whose 6-fold
symmetric interface on the plane is regarded as quasi-equivalent to that of
the 5-fold symmetry axis on the icosahedron. The CK theory systematically
describes the size and number of subunits by subdividing the triangular
region intomultiple triangles using two integers (h, k) and the triangulation
(T) numbers. On the other hand, the CK theory cannot directly address
questions on what the necessary shapes of subunits and interfaces for self-
assembling icosahedral capsids are. This question is not only essential for the
rational design of capsids of subunit proteins but also for understanding the
possible formation pathways during the self-assembling process. To answer
this question, an explicit description or characterization of all possible
subunit shapes or interfaces would be needed.

Thus far, several contributions have directly or indirectly focused on
characterizing the shapes of subunits in viral capsids from viewpoints
beyond the CK theory 9–15. These studies include affine extensions to
describe the icosahedral groups and virus capsids10,12, and a framework to
investigate the locations of protrusions13. Twarock introduced non-triangle
tiles instead of the CK theory’s triangular tiles to characterize Simian Virus
40 and L-A virus capsids9. Raguram et al. also developed a general poly-
hedral framework to describe virus capsid structures, employing pentagonal
subunits, accounting for intrinsic capsid chirality14. Twarock and Luque
recently elegantly extended the CK theory by using non-CK tiles (Archi-
medean tiles and their duals) to describe capsid structures that fall outside
the CK description15. While these works significantly broadened the spec-
trum of describable capsid geometries beyond the original CK theory, the
subunit shapes that can be systematically handled are still confined to
specific geometry forms, such as typical pentagonal, hexagonal, and trian-
gular tiles, as well as rhombs, kites, and florets in the dual representations.

The contribution of this study is to develop a framework for describing
the shapes and interfacesof subunit proteins basedonanovel representation
using the tiling theory on spherical surfaces. The idea is based on the
unfolding of dihedronswith the triangular shape used in theCK theory.Our
representation can account for all possible 2D shapes and interfaces of
subunit proteins of icosahedral capsids. Using the proposed representation,
we classify the icosahedral structures according to the shapes and interfaces
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of their subunits in the T = 1 group. Then, we show that there are distinct
interface types within the same T = 1 group, with variations in interface
curve lengths around the 5-fold, 3-fold, and 2-fold symmetry axes. We
propose these interface curve lengths as a governing factor to classify the
interactions between subunits. To validate our classification andunderstand
the physical interactions between subunits, we employ pairwise docking
simulations. These simulations investigate the potential interactions
between two protein subunits, predicting their most favorable binding
orientations and energies. By comparing the results of these simulations
with our geometric classification, we can assess the consistency between the
predicted physical interactions and the structural patterns identified by our
framework. These results imply that there are multiple types of assembling
interactions in capsid structures and a strategy for creating a nucleus in the
self-assembly process.

Results
Dihedron-unfolding model based on spherical tiling
WefocushereonT=1 tiling for simplicity, althoughour approach is general
and can straightforwardly extend to T ≠ 1 cases (see Supplementary Fig. 1
and text for extension). In T = 1 tiling, 60 subunits are assembled according
to chiral icosahedral symmetry. Subunit shapes can be generated by creating
the fundamentalfigure or tile thatmakes up 1/60of the sphere (Fig. 1b). The
boundary of the tile can be segmented into at most three pairs of identical
curves copied by rotations of 180°, 120°, and 72° about the 2-, 3- and 5-fold
symmetry axes, respectively (Fig. 1a, b).

Consider the tile as a thin, flexible sheet on the sphere’s surface. The
symmetry axes of the icosahedron ensure that when we stitch the identical
boundary curves together, they align perfectly (Fig. 1b, c). Aswe stitch along
each symmetry axis, the vertices of the tile are brought closer together. The
final stitching necessarily brings all three vertices to meet at a single inter-
section point. In the end, this stitching transforms the original tile into a
dihedron16: a doubly-covered half equilateral triangle that covers two adja-
cent triangular regions. This dihedron is a 2-to-1 mapping precisely cov-
ering 1/120 of the sphere’s surface.

By considering its inverse process, any tile figure can be obtained; i.e.,
we start from the dihedron, cut it along an arbitrary curve, and unfold it into
a spherical tile (SupplementaryMovie 1). To unfold the triangular dihedron
into a tile, the dihedronmust be cut along aY-shaped path (cut tree) starting
from a single point we call the junction pointwith three ends at the vertices
(the cut tree and the junction point shown in Fig. 1b, c). To focus on the
contact relationship, we here simplify the cut to three shortest paths (geo-
desics) on the sphere’s surface (Fig. 1c). We construct a polygonal tile by
alternately connecting the three symmetry axes and the threemirror images
of the junctionpoint relative to the edges of the spherical triangle.Under this
simplification, the unfolding is uniquely characterized by the choice of
orientation of the dihedron and the location of the junction point for the
cutting. The orientation corresponds to choosing either a left- or right-

handed triangle as the basis for the dihedron (Here, the trianglewith vertices
2, 3, and 5 in counterclockwise order is called the right-handed).

This dihedron-unfolding model provides two-parameter (the location
of the junction point and the orientation) representation of how subunits
connect with each other in T = 1 group. Figure 2 shows tile shapes and
connections for various positions of the junction point and the orientation.
Note that the junction point can be placed outside the triangle. Even in this
case, the shape of the tile can be defined similarly by mirror reflection with
respect to each edge, resulting in a concave tile (Fig. 2 and Supplementary
Movies 2 and 3). The junction point must be within the highlighted area in
Fig. 2; otherwise, the unfolded tile self-intersects (i.e., mirror-reflected edges
intersect with each other).

The connectivity between the tiles can be representedby the polyhedral
graph (black lines in Fig. 2) and its dual graph (red dashed lines in Fig. 2). In
the dual graph representation, each point (node) represents a subunit, and
lines (edges) between points show connections between subunits. For
visualization purposes, we use mapping from a sphere onto a flat surface
(gnomonic projection) that represents shortest paths (geodesic lines) on the
sphere’s surface as straight lines. This lets us specify the junction point on a
projected flat plane, whichwe set perpendicular to the 2-fold symmetry axis
(z-axis in Fig. 2).

In a generic case, when the junction point is not on any symmetry axes,
each tile becomes pentagonal. Each subunit is connected tofive neighboring
subunits: one through 2-fold symmetry, two through 3-fold symmetry, and
two through 5-fold symmetry. The polyhedral graph of this tiling is clas-
sified to the pentagonal hexecontahedron (a 60-faced polyhedron with
pentagonal faces); its dual graph is the snub dodecahedron (a polyhedron
with 12 pentagonal and 80 triangular faces). This case includes the penta-
gonal tiles investigated byRaguramet al.14 in their study to develop a general
polyhedral framework. As already discussed by Raguram et al.14, the pen-
tagonal hexecontahedron and its dual have orientation (chirality), which
depends on the choice of orientation of the triangle in our dihedron-
unfolding model. The left- and right-handed tiles (also called Laevo and
Dextro, respectively) result in left- and right-handed pentagonal hex-
acontahedral graphs, respectively.

Indegenerate cases, we locate the junctionpoint on the2-, 3-, and5-fold
symmetry axes.When the junction point is on the 2-fold symmetry axis, we
obtain quadrangular tiles classified to the deltoidal hexecontahedron (a 60-
faced polyhedron with kite-shaped faces); its dual is classified to the
rhombicosidodecahedron (a polyhedron with 20 triangular, 30 square, and
12 pentagonal faces). Each subunit is connected to four neighboring sub-
units: two through 3-fold symmetry and two through 5-fold symmetry. This
case includes the kite-like tiles studied by Twarock and Luque15 for the
analysis of Tobacco ringspot virus17 using non-CK tiles. When the junction
point is on the 3-fold symmetry axis, we obtain triangular tiles classified to
thepentakis dodecahedron (a 60-facedpolyhedronwith triangular faces); its
dual is classified to the truncated icosahedron (a polyhedron with 12

Fig. 1 | Dihedron unfolding and resulting tile
shapes. a A dihedron (represented by an orange
triangle), which is a double covering of the spherical
triangle formed between the three axes of symmetry
(1/120 of the sphere’s surface). The cut tree is shown
by solid red lines. b The unfolding of the dihedron,
forming a tile (outlined by solid red lines) using the
cut tree (indicated by dashed red lines). c Another
example where the cut tree corresponds to three
geodesics (shortest paths on the sphere’s surface).
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pentagonal and 20 hexagonal faces). Each subunit is surrounded by three
neighboring subunits: on through 2-fold symmetry and two through 5-fold
symmetry. When the junction point is on the 5-fold symmetry axis, we
obtain triangular tiles classified to the triakis icosahedron (another 60-faced
polyhedron with 60 triangular faces); its dual is classified to the truncated
dodecahedron (a polyhedron with 12 ten-sided and 20 triangular faces).
Each subunit has three neighbors: one through 2-fold symmetry and two
through 3-fold symmetry.

Characterization of real capsid structures
We fitted our dihedron-unfolding model to experimental capsid structures
of T = 1 to classify real structures. Here, by fitting the model to real
structures, we inversely estimated the left- or right-handed orientation and
location of the junction point for each capsid. We first determined left- or
right-handedorientations based on the observation that the boundary of the
tile passes through all three axes. So, we chose the orientation such that the
maximumof the shortest distances from the three axes to the atompositions
are smaller (see Fig. 3a for the interpretation of the criteria). Then, we
calculated the fitness (measured by the Dice coefficient18) between the real
structures (silhouette represented by the circles with the effective radii of
amino acids centered at their Cα atom positions of subunit protein) and the
tile in the gnomonic projection and maximized the fitness using a genetic
algorithm (see Methods for details).

Figure 3 illustrates the computed orientations and locations of the
junction points for the real capsid structures. We used the capsid structures
of T= 1 number taken from Protein Data Bank (PDB) whose PDB IDs are
2BUK19, 4V4M20, 6S4421, 7ODW22, 3R0R23, 5ZJU24, 1STM25, and 1VB426.
PDB IDs 2BUK and 4V4M belong to the satellite tobacco necrosis virus,
both sharing identical sequences (structures are slightly different due to

experimental conditions). Also, PDB IDs of 3R0R and 5ZJU belong to the
porcine circovirus 2, albeitwith slightly different sequences.This selectionof
redundant pairs aimed to check the robustness of ourfitting procedure. The
other structures have different origins and sequences with each other: the
faba bean necrotic stunt virus (PDB ID 6S44), a model of the haliangium
ochraceum encapsulin (PDB ID 7ODW), and the sesbania mosaic virus
deletion mutant (PDB ID 1VB4). The structure of the L-A virus (PDB ID
1M1C27), classified asT= 2 comprising a 120-homomer, was also included.
In this capsid, a neighboring subunit pair (dimer) was treated as a single tile
in the fitting process. For details of the structural data, see Methods and
Supplementary Fig. 2.

In Fig. 3b, all capsids fall into generic types, where PDB IDs 2BUK,
6S44, 7ODW, 4V4M are left-handed and 1VB4, 1STM, 5ZJU, 3R0R, and
1M1C are right-handed. In the figure, we provide a simple metric based on
the lengths of shared edges (interface) between neighboring capsids copied
by the 2-, 3- and 5-fold axes to evaluate the contacts between adjacent
subunits numerically. These lengths are the distances from the axis for 3-
and 5-fold axes, while twice the distance is used for the 2-fold axis as we
consider the edges active in a face-to-face manner between a pair of sub-
units. As the longer contact edge is associated with the strong interaction
between the subunits, the categorization with this measure suggests the
strength of pairwise interaction between the subunits, whichwe verify in the
following section. The contour plot shows the maximum value of the dis-
tances; this decomposes the region into three domains governed by contact
with respect to the 2-, 3-, and 5-fold axes.

The figure shows that the subunits of the satellite tobacco necrosis
viruses (PDB IDs 2BUKand4V4M),whichhave sequences identical to each
other, possess the longest contact edge between their copies along the 5-fold
axis in the left-handed. In contrast, the other twin subunits, porcine

Right-handedLeft-handed

2-fold axis

3-fold axis

5-fold axis

Gnomonic projection of triangle

2 5

3

3´

2
5

3

2´

2

3

5´

2 5

3

5

Junction point

Tiling line

Dual line

Boundary line

Image of  junction point

2,3,5-rot sym.

25

3

2 5

3

Region without self-intersection

y

x x

y

2
5

3

tile shape

tile shape

tile shape

tile shape

tile shape

Degenerate case

Generic case Generic case

tile shape

tile shape
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circoviruses 2 (PDBIDs3R0Rand5ZJU),with almost identical sequences to
each other, exhibit the longest contact edge around the 3-fold axis, char-
acterized by a different orientation (the right-handed). Interestingly, other
subunits also cluster around the same regions as these twin subunits, namely
the left-handed5-fold axis and the right-handed3-fold axis. Since there is no
physical reason to prefer any specific orientation for subunit interactions,

the observed tendency for these junction points to cluster would be evolu-
tionarily coincidental. Another intriguing observation is that almost all
junction points do not distribute around regions governed by the 2-fold axis
(except for the satellite panicum mosaic virus, PDB ID 1STM). The 2-fold
symmetry that interacts in a face-to-face manner is evolutionarily easier to
optimize compared to other symmetry axes28. In fact, it is well known that
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structures stabilized around the twofold axis are common in ordinary
dimers29. On the other hand, in the case of capsids, symmetries other than
the 2-fold may be more important for creating a kinetic nucleus for growth
toward full capsid formation.

Pairwise docking simulation of subunit proteins
In order to investigate whether our classification of subunit contacts is
consistent with physical interactions, we conducted rigid-body docking
simulations of paired monomeric subunits. In the rigid-body docking
simulations, the structure of the subunit protein is treated as a rigid body,
and no conformational changes are considered. We here used ZDOCK30,31

for the simulation. In ZDOCK, physical and statistically derived interaction
energies are approximately calculated with regular grids and docking poses
(translations and orientations) with high docking scores are exhaustively
searched.

Figure 4 shows the results of thedocking simulations.Here, to relate the
docking poses to the symmetry axes of capsid, we calculated the screw axis32

for individual docking structure. The screw axis is an axis that describes a
rigid bodymotion (translation and rotation) to superimpose onemonomer
to the other one (Supplementary Fig. 5). The screw axis and translation and
rotation around that axiswere determinedbyusing theRodriguez equations
(see Methods). The maximum scores of docking scores and the minimum
values of root mean square deviation (RMSD) from the experimental
structure are shownas heatmaps in the space of rotations and translations of
the screw axes.

The figure shows that the sesbaniamosaic virus capsid (PDB ID 1VB4,
classifiled as right-handedand5-fold inourdihedron-unfoldingmodel) and
the faba bean necrotic stunt virus (PDB ID 6S44, left-handed 5-fold) have
high docking scores at around the axes of the 5-fold (72° in the figure) and
2-fold axis (180°). Among these two axes with high docking scores, the
5-fold axis was confirmed to be indeed stable based on RMSD, implying the
consistency with the classification with the spherical tiling. This consistency
was also confirmed for the other left-handed 5-fold capsids, the satellite
tobacco necrosis viruses (PDB IDs 2BUK and 4V4M, Supplementary
Figs. 6 and 7). The porcine circovirus 2 like particle (PDB ID 5ZJU, right-
handed 3-fold) does not have stable docking structures at around the 5-fold
axes. Instead, it has stable structures around the 3-fold axis (120° in the
figure) and the 2-fold axis. The 3-fold axiswas confirmed to be indeed stable
from the result of RMSD. Additionally, the satellite panicum mosaic virus
(PDB ID 1STM, classified as right-handed 2-fold) exhibits a single docking
score peak at around the 2-fold axis. The structure around the 2-fold axis is
consistently validated by the RMSD result.

The model of haliangium ochraceum encapsulin (PDB ID 7ODW),
which is classified as left-handed and 5-fold, shows an exceptional result
(Supplementary Figs. 6 and 7). In this case, we could not find notable
docking score peaks except for the 2-fold axis. The reasonwould be that this
capsid has interactions where subunits stack on top of each other in a
direction perpendicular to the spherical surface (Supplementary Fig. 2),
which would not be adequately characterized by 2D tiling. Also, the L-A
virus (PDB ID 1M1C), which treats two subunits as one tile, shows
exceptional behavior. While our model classifies it as right-handed 5-fold,
the docking simulation results indicate that the 3-fold and 5-fold axes are
stabilized to a similar degree (Supplementary Figs. 6 and 7). This suggests

that ourmodelmay be underestimating the contribution of interactions due
to the concave shape formed around the 3-fold axis, which is exceptionally
created by combining two subunits.

As for references, we further performed the same type of docking
simulation for non-capsid structurtes: the tobacco mosaic virus subunit
(PDB ID 6R7M, Fig. 4d) that only has a 16 1/3 symmetry axis and anNMR
structure of chymotrypsin inhibitor structure in solution (PDB ID 2M99,
Supplementary Figs. 6 and 7) that does not have any symmetry axes. Our
docking simulation correctly captured the stable symmetry axis for the
tobaccomosaic virus anddonot shownotable peaks except for 2-fold axis in
the case of chymotrypsin inhibitor.

The initial stages of capsid self-assembly involve complex interactions
between subunits. Our pairwise docking simulation results indicate that
there may be preferences in subunit interactions near different symmetry
axes depending on the subunit shape. Notably, our results suggest that
dimers around the 5-fold or 3-fold axes can be stabilized without the pre-
sence of other neighboring contacts. This finding provides insights into the
potential early stages of capsid assembly, although it does not necessarily
imply that dimer formation is the most important step in the process.

It is noted that capsid assembly is influenced bymultiple forces beyond
simplehydrophobic interactions.As recently studied byPanahandeh et al.33,
elastic energy from protein stretching and bending significantly affects the
assembly process and final capsid structure. These elastic forces, along with
hydrophobic interactions and other factors such as protein concentration,
contribute to the energy barriers in capsid formation and help guide the
assembly towards symmetrical structures. For capsids with T numbers
greater than1, the assembly process generally involves the formationof both
pentamers and hexamers. While pentamers are necessary due to the
spherical geometry of the capsid, hexamers are generally preferred by
hydrophobic interactions. The interplay between these structures is crucial
for the final capsid formation.

Discussion
In this study, we have proposed a novel framework based on spherical tiling
theory to explicitly describe the possible 2D shapes and interfaces of sub-
units in icosahedral capsids. This approach has allowed us to classify T = 1
real capsid structures in terms of subunit shapes and interfaces.Ourfindings
reveal distinct interface groups even within the same T = 1 classification,
highlighting variability in interaction patterns around 3-fold and 5-fold
symmetry axes.Althoughwe focusedonT=1 capsids due to their simplicity
and the uniformity of interfaces across all subunits, the framework for
describing subunit shapes proposed is not limited toT = 1 capsids. It can be
naturally extended to capsids with other triangulation that follows CK
theory, that is, when T ¼ h2 þ hkþ k2 for integers (h, k) (see Supple-
mentary Fig. 1 and text).

We believe that an explicit description approach of tile shapes and
connectivity leads to a new theory of capsid structure that falls outside ofCK
theory. For example, in the T = 2 case, even though the shape of each tile is
nearly identical, the connectivity between the tiles is not unique. Non-CK
tiling is describedasnon-isogonalmonogonal tilingona sphere. For theL-A
virus (PDB ID 1M1C), we used the dimer as the subunit to be assembled.
Since each subunit consists of two identical tiles, thewhole systemcomprises
aT=2assembly.This suggests that analysis anddesignofnested tiles, that is,

Fig. 3 | Analysis of real capsid structures using our dihedral unfolding frame-
work. a Fitting of the junction point location to a real capsid structure. Gnomonic
projection of a subunit is shown for the L-A helper virus (PDB ID 1M1C). Black dots
represent theCα atompositions of the subunit protein. Arrows labeled 2-fold, 3-fold,
and 5-fold indicate the projected 2-fold, 3-fold, and 5-fold symmetry axes, respec-
tively. The blue line outlines the spherical and projected triangles (dihedrons). Red
dots represent the locations of the junction points on the projected plane that best
matches our model to the real structure. The orientation (chirality) of tile is deter-
mined according to the distances between the symmetry axes and the Cα atom
positions. The junction point location is optimized by maximizing the Dice

coefficient. b Results of fitting our model to various real capsid structures. Left and
right panels show left-handed and right-handed orientations. Colored regions
indicate where the junction point does not induce self-intersection,with yellow, blue,
and red areas corresponding to domains governed by contact with respect to the 2-,
3-, and 5-fold axes, respectively. Capsid structures (black circles) are labeled with
their PDB IDs. c Schematic representations of subunit-subunit interactions for
3-fold axis dominant (the faba bean necrotic stunt virus, PDB ID 6S44), and 5-fold
axis dominant (the PCV2 virus-like particle, PDB ID 5ZJU) cases. Real subunit
shapes are colored by orange, and fitted tiling shapes are shown with red lines. The
junction points are located by black arrows.
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the division of a single tile further intomultiple identical units,may lead to a
new way of understanding non-CK cases, such as T = 2,5,6,….

The explicit description of subunit shape developed in this study also
assists in the rational design of icosahedral protein complexes. In the design
of icosahedral complexes, it is typical to first optimize the interactions either
around the 3-fold or the 5-fold symmetry, and then stabilize the interactions
around the remaining symmetry axes and the 2-fold axis. Generally, the

choice of which symmetry axis (3-fold or 5-fold) to prioritize is not obvious.
However, employing the method of our study allows for the determination
of whether the 3- or 5-fold axis is more likely to stabilize from a given
monomer structure. Moreover, our approach could potentially be extended
todescribemore complex icosahedral structures, suchas thosewithmultiple
openings. This extensionmight involve considering strategic cut-outs in the
dihedron, allowing for the modeling of cage-like structures with varied

Fig. 4 | Results of rigid body docking simulations for a pair of subunits. a Sesbania
mosaic virus mutant (PDB ID 1VB4), b Faba bean necrotic stunt virus (PDB ID
6S44), c Porcine circovirus 2 like particle (PDB ID 5ZJU), and d Tobacco mosaic
virus (PDB ID 6R7M). Left: filled contour plot of the maximum docking scores of
docked poses in the space of rotation and translation of detected screw motions.
Vertical dashed lines indicate the rotation positions of 72° (red), 120° (blue), and

180° (yellow), which correspond to the 5-fold, 3-fold, and 2-fold axes, respectively.
Middle: filled contour plot of the minimum root mean square displacements of
docked poses from the experimental capsid structure. Right: real experimental
capsid and non-capsid structures. Different subunits are represented by different
colors. For visual clarity, the contours were smoothed by averaging over ~5°.
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porosity. Such an adaptation could broaden the applicability of our method
to a wider range of nanocontainers. Furthermore, our approach enables the
proposal of specific subunit shapes that satisfy spherical tiling for each
symmetry axis. These tiling shapes can thenbe targeted for backbone design
and sequence optimization using diffusion model-based frameworks, such
as RFDiffusion34 and Chroma35, potentially enhancing the design process of
icosahedral complexes.

Finally, we discuss the limitations of the proposed framework. The
inherent constraint of this framework, based on spherical tiling, is limited to
only 2D subunit shapes. There are cases in capsid structures where the shell
thickness formed by the subunits is substantial relative to its radius, and the
contributions from the three-dimensional interactions at the interface
cannot be ignored, e.g., the model of haliangium ochraceum encapsulin
(PDB ID 7ODW) in this study. In such cases, the stability of complexes
likely affected by not only by the two-dimensional shape but also by three-
dimensional shape complementarity between neighboring subunits. For
these cases, an extension of the framework would be necessary, such as
considering spherical tilings on spheres of various radii and addressing the
cumulative effects of these tilings.

Methods
Data set of viral capsid structures
The capsid structures of T = 1 number were manually curated and selected
according to the seqeuence variations and the experimental resolutions
from VIPERdb version 336. We used atomic coordinates provided by
VIPERdb because they are aligned along the symmetry axis and the align-
ment is necessary for our analysis. The selected structures include the
satellite tobacco necrosis virus (PDB ID 2BUK19 and 4V4M20), the porcine
circovirus 2 (3R0R23, 5ZJU24), the faba beannecrotic stunt virus (6S4421), the
Haliangium ochraceum encapsulin (7ODW22), the satellite Panicum
Mosaic Virus (1STM25), Sesbania mosaic virus deletion mutant (1VB426).
Also, the structure T = 1 number comprising 120-homomers was taken
from the L-A virus (PDB ID 1M1C27). For use as a control reference, two
non-capsid structures were also used. One is the tobaccomosaic virus (PDB
ID 6R7M37 that has a lockwasher shaped ring with 16 1/3 subunits per turn.
The other is the chymotrypsin inhibitor (PDB ID 2M9938) which is sup-
posed to exist as a monomer in the physiological condition, lacking any
symmetries in interacting modes with other monomers.

The subsequent analysis relies on the atomic coordinates of capsid
structures obtained from the VIPERdb database. These coordinates have
been pre-aligned to conform to a standardized icosahedral convention,
known as the VIPER convention39, which ensures consistency in the
orientation of the capsid structures. In this convention, two icosahedral
2-fold axes coincidewith the z and x coordinate axes, while 3-fold and 5-fold
axes lie between the z and x axes in the xz plane.

Fitting of dihedron-unfolding model to experimental capsid
structures
We here describe an optimization method to find a junction point that
approximates the shape of the capsid from its point data, the radii of
amino acids, and the symmetry axes. First, to compare the (normalized)
3D coordinates of the Cα atoms and tile shapes (unfolded dihedron) on a
sphere, we use their gnomonic projections (from the center to z = 1
plane) pi and Rdi, respectively. First, we judged the chirality (left- or right-
handed) by computing the maximum of minimum distances from the
points (the projected positions of the Cα atoms) to the projected axes
Xσ
j ðj ¼ 2; 3; 5Þ, where σ ¼ þ1;�1 represents the left- or right-handed

chirality.

argminσ maxjminidist
�
pi;X

σ
j

�

We created a region Rca as the union of a circle of the average
radius r of amino acid centering pi. Then, we maximized the Dice
coefficient18 between Rca and the tile shape Rdiðx; yÞ computed from
the junction point coordinates (x, y). The Dice coefficient between the

two regions is defined as:

D Rca;Rdiðx; yÞ
� � ¼ 2 Rca \ Rdiðx; yÞ

�� ��

Rca

�� ��þ Rdiðx; yÞ
�� ��

This coefficient ranges from 0 to 1, with 1 indicating perfect overlap.
We chose thismetric for its effectiveness in comparing spatial overlap of two
regions, the real capsid shape Rca and the tile shape Rdiðx; yÞ. To maximize
the overlap, we minimized the following metric over the junction point
coordinates (x, y),

argminx;y 1� D Rca;Rdiðx; yÞ
� �þ Pðx; yÞ� �

whereP x; y
� �

is a penalty function to avoid self-intersection and to keep the
spherical polygon inside a hemisphere. For the optimization, we used
Genetic Algorithm solver Galapagos40 on the 3D CAD Rhinoceros/
Grasshopper.

Pairwise docking simulations and analysis of screw angles
Pairwise rigid-body docking simulations were performed for a pair of
subunits taken from the whole capsid structure with ZDOCK30,31. Two
subunits have identical structure with each other, thus structures obtained
with the simulations are homo-dimers. At first, we applied ZDOCK with
default settings, which outputs 2000 top docking structures at a rotational
sampling of 6° interval, corresponding to 54,000 rotations. However, this
setting did not yield sufficient statistics. Thus, we effectively performed
dense rotational sampling by conducting 1000 independent docking
simulation runs with different initial seeds (used for the randomization of
the orientations of initial structures). Finally, by ranking the results of
independent docking runs based on docking scores, we obtained top
100,000 docking structures, which were then used for the subsequent
analysis.

A spatial displacement of a rigid-body can be represented by a rotation
about an axis and a translation along the same axis, which is called a screw
motion. Here, to investigate the symmetry of the docking structures, we
analyzed the structures in terms of screw motions. The screw axis and
translation and rotation around that axis were determined by using the
Rodriguez equations. Let p1, q1, and r1 be position vectors of three atoms of
monomer 1, and p2, q2, and r2 be position vectors of three atoms of
monomer 2. Then, the Rodriguez equations (http://robotics.caltech.edu/
wiki/images/f/f3/Rodriguez.pdf) are written by,

p2 � p1 ¼ tan
ϕ

2

� �
ω× p2 þ p1 � 2ρ

� �þ dkω

q2 � q1 ¼ tan
ϕ

2

� �
ω× q2 þ q1 � 2ρ

� �þ dkω

r2 � r1 ¼ tan
ϕ

2

� �
ω× r2 þ r1 � 2ρ

� �þ dkω

Here,ω is a unit vector parallel to the screw axis, ρ is a vector to a point
on the screwaxis,ϕ is the angle of rotation about the screw axis, and dk is the
translation along the screw axis. We calculated these screw motion para-
meters for the top 100,000 docking structures.

The RMSDs of the docking structure were evaluated by using the
experimental structure as a reference. In the case of T = 1 structures, the
number of picking a pair structure from a capid is 60P2 ¼ 60× 59 ¼ 3; 540
permutations. We calculated the RMSDs of the top 10,000 docking struc-
tures relative to 3540 reference structures, and obtained the minimum
RMSD value at each region in the space of translation and rotation of the
screw axis.
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Statistics and reproducibility
The genetic algorithm optimization for fitting the dihedron-unfolding
model was performed using Galapagos solver on Rhinoceros/Grass-
hopper. For each viral capsid structure, multiple independent optimi-
zation runs were conducted to ensure convergence to consistent
solutions, as evidenced by the reproducible junction point locations for
structures with (almost) identical sequences (PDB IDs 2BUK/4V4M and
3R0R/5ZJU).

For the pairwise docking simulations, extensive sampling was con-
ducted through 1000 independent ZDOCK runs with different random
seeds, generating 100,000 top-scoring docking structures. Each run sampled
54,000 rotations at 6° intervals. To validate the reliability of the docking
score distributions, we calculated RMSDs between the top 10,000 docking
structures and experimental reference structures. For T = 1 capsids, all
possible pairwise combinations (3540 permutations) from the 60 subunits
were used as reference structures. The consistency between high-scoring
regions and low RMSD regions confirmed the robustness of our docking
analysis results.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Theatomic structuredataused in this study arepublicly available in thePDB
(https://www.rcsb.org) under IDs: 2BUK, 4V4M, 6S44, 7ODW, 3R0R,
5ZJU, 1STM, 1VB4, 1M1C, 6R7M, and 2M99. Pre-aligned atomic coordi-
nates were obtained fromVIPERdb version 3 (https://viperdb.org). All data
supporting the findings of this study are available in Zenodo41.

Code availability
All custom code used in this study is publicly available in Zenodo41. The
analyses were performed using ZDOCK version 3.0.2 (https://zdock.
wenglab.org/software/) for docking simulations, Rhinoceros/Grasshopper
with Galapagos solver for genetic algorithm optimization, and Jupyter
notebooks for data processing and visualization.
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