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SUMMARY

Although antibody variable regions mediate antigen-specific binding, they can also mediate non-

specific interactions with non-cognate antigens, impacting diverse immunological processes and 

the efficacy, safety, and half-life of antibody therapeutics. To understand the molecular basis 

of antibody non-specificity, we sorted two dissimilar human naïve antibody libraries against 

multiple reagents to enrich for variants with different levels of polyreactivity. Sequence analysis 

of >300,000 paired antibody variable regions revealed that the heavy chain primarily mediates 

human antibody polyreactivity, and this is due to the high positive charge, high hydrophobicity, 

and combinations thereof in the corresponding complementarity-determining regions, which can 

be predicted using a machine learning model developed in this work. Notably, a subset of 

the most important features governing antibody non-specific interactions, namely those that 

contain tyrosine, also govern specific antigen recognition. Our findings are broadly relevant for 
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understanding fundamental aspects of antibody molecular recognition and the applied aspects of 

antibody-drug design.

Graphical Abstract

In brief

Chen et al. sorted diverse human antibody libraries against various multiple polyreactivity 

reagents, revealing that heavy-chain variable regions primarily mediate non-specificity. In 

addition, a machine learning model was developed to predict human antibody polyreactivity, 

revealing key features relevant to antibody recognition and drug design.

INTRODUCTION

Antibody recognition of a target antigen typically involves a delicate balance of different 

molecular interactions, including ionic, hydrophobic, and hydrogen-bonding interactions, 

collectively mediating high affinity and specificity. However, antigen-specific antibodies 

also display variable and difficult-to-predict levels of non-specific binding mediated by their 

variable regions,1-3 referred to herein as polyreactivity.4 Antibody polyreactivity is involved 

in diverse immunological processes, ranging from weak antibody binding during early 

antibody maturation5-7 to conferring a competitive advantage during long-term maintenance 

of memory B cells.6,8 In contrast, antibody polyreactivity typically compromises the 
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therapeutic potential of monoclonal antibodies, as high levels of polyreactivity are linked 

to fast anti-body clearance in vivo.2,9-15

Despite the broad importance of human antibody polyreactivity, it has proven challenging 

to study and ultimately predict for several reasons. First, there is no unique definition 

of high or low polyreactivity, and it depends on the reagent(s) used to evaluate these 

interactions. Second, previously reported datasets that link human antibody sequences 

to their corresponding levels of polyreactivity are typically insufficient in terms of size 

and, even more importantly, diversity of germlines, frameworks, and complementarity-

determining regions (CDRs).16-19 Third, even in rare cases where large human antibody 

polyreactivity datasets have been reported, these datasets are limited in their use for model 

development because they lack diversity in the light chain and define polyreactive antibodies 

as those that bind specific antigens as well as polyreactivity reagents.20

We sought to address each of these previous limitations in order to evaluate four 

outstanding questions related to human antibody polyreactivity. First, what molecular 

features of human antibodies are most strongly linked—both positively and negatively

—to antibody polyreactivity? Second, are specific regions within the variable fragment 

(Fv) most important in mediating human antibody polyreactivity? Third, which (if any) 

antibody molecular features linked to polyreactivity are also involved in mediating antigen-

specific binding? Fourth, to what extent can human antibody polyreactivity be predicted? 

Herein, we report the generation of large (>300,000 variants) and self-consistent antibody 

sequence/polyreactivity datasets for two diverse naïve human single-chain (scFv) antibody 

libraries enriched against four different polyreactivity reagents (Figure 1A). We use these 

large datasets to identify molecular features and regions within Fv involved in mediating 

polyreactive interactions and, in some cases, affinity interactions as well. We also use these 

datasets to demonstrate that human antibody polyreactivity can be predicted with high 

accuracy using a relatively simple model that only uses the amino acid sequences of the 

antibody Fv regions.

RESULTS

Generation of deep sequencing datasets for human antibodies with high and low 
polyreactivity

To better understand and ultimately predict human antibody polyreactivity, we first sought 

to generate large datasets of human antibodies enriched for high and low levels of 

polyreactivity. We used two previously reported human single-chain antibody libraries, 

namely libraries #121 and #2,22 displayed on the yeast surface for our analysis (Figure 

S1). Human antibody library #1 was cloned from human spleen and lymph node samples 

from 58 adults.21 Human library #2 was cloned from three samples of human spleen 

cells and two samples from human peripheral blood lymphocytes.22 Both libraries contain 

significant diversity in their variable heavy (VH) and variable light (VL) domain germ-lines, 

frameworks, and CDRs.

To ensure the libraries would be sufficiently enriched or depleted for polyreactive antibodies, 

we sorted the libraries against four different polyspecificity reagents, namely ovalbumin, 
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soluble cytosolic proteins (SCPs; from CHO cells), soluble membrane proteins (SMPs; 

from CHO cells), and insulin. We first selected the top 10% and the bottom 10% of each 

library against the first reagent (ovalbumin) and then subsequently sorted each enriched 

population (ovalbumin+ and ovalbumin−) against SCPs (top 10% of the ovalbumin+ library 

and bottom 10% of the ovalbumin− sample) to generate libraries doubly enriched for non-

specific binding (ovalbumin+/SCP+) or a lack thereof (ovalbumin−/SCP−). This process was 

repeated two more times against SMPs and insulin, which resulted in libraries generally 

enriched for high (ovalbumin+/SCP+/SMP+/insulin+) or low (ovalbumin−/SCP−/SMP−/

insulin−) polyreactivity. After four rounds of sorting, the final enriched libraries were sorted 

one final time against each of the four reagents to collect high- and low-polyreactivity 

samples for deep sequencing analysis, as shown for library #1 in Figure 1B.

To evaluate the quality of the sorted library samples, we randomly isolated 48 high-

polyreactivity and 48 low-polyreactivity antibodies from library #1. Encouragingly, the 

levels of anti-body binding to the four polyreactivity reagents were much higher for 

antibodies enriched for high polyreactivity than those enriched for low polyreactivity (Figure 

1C). These results demonstrate that the enriched libraries display the expected differences 

in polyreactivity and are well suited for further analysis of the determinants of antibody 

polyreactivity.

Identification of Fv molecular features strongly linked to antibody polyreactivity

Next, the enriched antibody library samples were deep sequenced as paired VH/VL 

amplicons, which resulted in the generation of two large antibody Fv sequence datasets, 

namely Dataset S1 for library #1, including 131,255 antibodies with low polyreactivity 

and 115,038 antibodies with high polyreactivity, and Dataset S2 for library #2, including 

34,137 antibodies with low polyreactivity and 93,080 anti-bodies with high polyreactivity. 

Each library contained diverse germline families (Figures 2A-2D). Most (10 out of 11) 

germline families displayed consistent enrichment in either high or low polyreactivity for 

both libraries. For example, VH3, VL1, VL2, and VL3 were enriched in both libraries 

for low polyreactivity, while VH4, VH5, VH6, VK1, VK3, VK4, VK6, and VL6 were 

enriched in both libraries for high polyreactivity. Moreover, one germline family, namely 

VH1, showed opposite behaviors across the two libraries.

We also evaluated the polyreactivity of the most common germlines in each library 

(Tables S1 and S2). Some notable heavy-chain germlines displayed consistent levels 

of polyreactivity in both libraries, including low polyreactivity for VH3-23 and high 

polyreactivity for VH6-1 (Table S1). Notably, only 42% of the most common heavy-

chain germlines were consistent in their levels of polyreactivity across the two 

libraries. Conversely, several notable light-chain germlines displayed consistent levels of 

polyreactivity in both libraries, including VK1-33 (Table S2). Unlike the heavy-chain 

germlines, most (85%) of the common light-chain germlines displayed consistent levels 

of polyreactivity across the two libraries. Finally, the most common VH/VL germline pairs 

and their corresponding levels of polyreactivity are summarized in Table S3.

Next, we performed a standard dimensionality reduction analysis of the antibody sequences 

for the two libraries (Figure 2E). This analysis revealed that library #2 displays larger 
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differences between high- and low-polyreactivity anti-bodies (Figure S2). Sequence 

similarity analysis of the most common heavy-chain germline families in both libraries, 

namely VH1–VH4 and VH6 for library #1 and VH1 and VH3 for library #2, revealed 

that high-poly-reactivity antibodies show higher sequence similarity within each germline 

family than low-polyreactivity antibodies (Figure S3). Similar analysis of the most common 

light-chain germline families, namely VK1, VK3, VK5, and VL1–VL3 for library #1 

and VK1,VL2, and VL3 for library #2, revealed that high-polyreactivity antibodies show 

higher sequence similarity within each germline family for library #1 and low-polyreactivity 

antibodies show higher sequence similarity within each germline family for library #2.

Next, we reasoned that the large differences in the sequence spaces sampled by the two 

libraries provided an opportunity to identify common and potentially general molecular 

features that mediate antibody polyreactivity. Therefore, we first evaluated diverse sequence-

based (SB) Fv features that may mediate antibody polyreactivity, including the net charge 

and the number of specific individual amino acids and combinations thereof, and identified 

the most important features that were consistent in both libraries (Figures 3A and 3B; Table 

S4). Notably, the most important feature was the Fv net charge (pH 7.4), as higher positive 

charge was linked to increased polyreactivity. Interestingly, the Fv net charge distributions 

of both input libraries were similar to those of the corresponding libraries enriched for high 

polyreactivity (Figures 3A and 3B).

The next most significant set of molecular features, which had area under the receiver 

operating characteristic (ROC) curve (AUC) values > 0.8 for both libraries, were those that 

describe the combined numbers of positively charged and hydrophobic residues in the Fv 

region (Figures 3C and 3D; Table S4). Of the ten features composed of positively charged 

and hydrophobic residues with AUC values > 0.8, arginine, lysine, and tryptophan were the 

most common residues. Additional residues observed in these combined features included 

isoleucine, tyrosine, and proline.

Interestingly, molecular features that describe hydrophobicity alone in the Fv region were 

less significant (Figures 3E and 3F; Table S4). For example, only six such features were 

identified across the two libraries with AUC values > 0.7. Tryptophan was the only 

individual hydrophobic residue that alone led to AUC values > 0.7 for both libraries (0.74 

for library #1 and 0.73 for library #2).

We also sought to identify any Fv molecular features negatively associated with antibody 

polyreactivity (Table S4). This analysis led to the identification of five such features with 

AUC values > 0.7. Four features contained aspartic acid alone or in combination with 

glutamate and at least one polar residue (asparagine or glutamine). This finding reveals that 

increased levels of these residues in Fv are associated with reduced polyreactivity. The other 

feature negatively linked to antibody polyreactivity was the number of glycine residues in 

Fv.

Heavy-chain CDRs of human antibodies primarily govern polyreactivity

Our identification of the most significant and general Fv molecular features in human 

antibodies mediating polyreactivity naturally raises the question about which variable 
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domain (VH vs. VL), or even which subsets of the CDRs, is most important. Therefore, 

we further analyzed the ability of each key molecular feature, when limited only to a 

subset of Fv residues, to differentiate between high- and low-polyreactivity antibodies in 

both libraries (Table S4; Figure 4). Notably, this analysis revealed that the VH domain was 

more important than the VL domain in mediating polyreactivity. For example, for the most 

significant Fv features (AUC > 0.8), the VH AUC values are an average of 0.13 larger than 

the VL AUC values (Table S4). This behavior was observed for the hydrophobicity features, 

as the VH AUC values are 0.22 larger on average than the VL values. Interestingly, there is 

little difference between the VH and VL AUC values for features negatively correlated with 

polyreactivity.

We also performed a similar analysis of the CDRs, which revealed that they contribute 

significantly to the observed AUC values (Table S4; Figure 4). For example, the Fv AUC 

values are 0.91 (library #1) and 0.89 (library #2) for the net charge feature, which are close 

to the corresponding AUC values for the CDRs (0.89 for library #1 and 0.90 for library 

#2). Moreover, the heavy-chain CDRs generally displayed higher AUC values than those for 

light-chain CDRs (average difference of 0.18 for features with Fv AUC values > 0.8; Table 

S4; Figure 4).

We also observed similar patterns of behavior for the individual CDRs, although the results 

are less significant (Table S5). Notably, the most important features for any single CDR, 

as defined by AUC values > 0.7 for both human libraries, were associated with HCDR2. 

There were five HCDR2 features positively correlated with polyreactivity, including the 

net charge (AUC of 0.71–0.78), the combined numbers of positively charged (arginine and 

lysine) and hydrophobic (especially tyrosine and proline) residues (AUC values of 0.70–

0.81; three features), and the numbers of hydrophobic residues (tryptophan, tyrosine, and 

isoleucine; Table S5; Figure S4). There were also two HCDR2 features negatively correlated 

with polyreactivity, namely the number of glycine residues (AUC values of 0.71–0.77) 

and the combined number of negatively charged and polar residues (glutamate, aspartate, 

asparagine, and glutamine; AUC values of 0.70–0.77; Table S5).

In contrast, the only other feature for a different CDR with AUC values > 0.7 in both 

libraries was the net charge of HCDR3 (AUC values of 0.72–0.73), which is positively 

correlated with polyreactivity. Given the variable length of HCDR3, we also analyzed 

subsets of antibodies with fixed HCDR3 lengths from each library. We found that relatively 

long (15-residue) HCDR3s had higher AUC values (0.86–0.94) relative to shorter HCDR3s 

(5–12 residues; AUC values of 0.55–0.82) when considering the net charge of HCDR3 

(Table S6). In addition, the ability of HCDR2 features to distinguish between high- and 

low-polyreactivity antibodies varies for the specific VH germline genes (Table S7). For 

example, the net charge in HCDR2 is positively linked to high polyreactivity for the VH3-7 

germline. In contrast, the number of asparagine, glutamine, aspartate, and glutamate residues 

in HCDR2 is linked to low polyreactivity for the VH4-4 germline (AUC values > 0.8 for 

both human libraries).

We also analyzed the eleven most similar pairs of high- and low-polyreactivity antibodies 

from library #1 to determine if charge and hydrophobicity features explain the differences 
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in polyreactivity for closely related antibodies (Table S8). Notably, we found that most of 

these antibodies show an increased net charge in VH (9 out of 11), Fv(11 out of 11), and 

HCDRs (9 out of 11), as well as increased numbers of the tryptophan, tyrosine, arginine, and 

lysine residues in VH (90%) and phenylalanine, tryptophan, arginine, and lysine residues in 

Fv (80%). These results support our findings that increased levels of positively charged and 

hydrophobic residues are linked to increased polyreactivity.

Given the critical role of the CDRs, especially the heavy-chain CDRs, in mediating 

polyreactivity, we wondered if the most important features that govern antibody 

polyreactivity also contribute to antigen-specific binding. To evaluate this question, we 

isolated 468 antibody/antigen complexes from the Protein Data Bank (PDB; Dataset S7), 

identified the paratope residues (<5 Å from the antigen), and evaluated whether each feature 

was enriched in the paratope vs. non-paratope regions in the VH and VL regions (Table 

S9; Figure 5). Interestingly, some of the features that mediate polyreactivity are strongly 

depleted or enriched in antibody paratopes, while others are not. For example, the net charge 

(pH 7.4) of antibody paratopes is reduced by approximately one charge unit relative to that 

of non-paratope residues (VH and VL; Figures 5A and 5B). The depletion of positive charge 

in the paratopes of antigen-specific antibodies is similar to the reduction in positive charge 

(or increase in negative charge) in diverse variable regions and CDRs of antibodies with low 

polyreactivity, revealing similar mechanisms for increasing antibody specificity.

We also observed similar behavior, but in the opposite direction, for other features that 

were both linked to increased polyreactivity and strongly enriched in the paratopes of 

antigen-specific antibodies (Table S9; Figure 5). For example, one of the hydrophobicity 

features (combined isoleucine, tryptophan, and tyrosine content) was strongly enriched in 

antibody paratopes, especially in VH (AUC of 0.93; Figure 5C). Given that this same feature 

for VH and the heavy-chain CDRs is also linked to high polyreactivity (AUC values of 

0.75–0.88), our findings suggest that increased hydrophobicity is involved in mediating both 

antigen-specific and polyreactive interactions, highlighting the delicate balance between 

specific and non-specific interactions.

Importantly, we also identified molecular features linked to increased antibody 

polyreactivity that were not strongly enriched or depleted in antibody paratopes (Table 

S9). An example is one of the combined positive charge and hydrophobicity features, 

which is the number of tryptophan, arginine, and lysine residues in the variable regions 

(Figures 5E and 5F). This feature displayed AUC values for the paratope analysis close to 

0.5 (0.52 [negative correlation] for VH and 0.51 [positive correlation] for VL), indicating 

a lack of ability to distinguish between enrichment and depletion of such residues in 

antibody paratopes. Given that this feature bears the strongest connection to increased 

antibody polyreactivity (AUC values of 0.80–0.82 for VH and heavy-chain CDRs; Table S4; 

Figure 5), this is a striking example of a molecular feature typically involved in mediating 

polyreactive interactions without mediating antigen-specific interactions. Interestingly, other 

combined positive charge and hydrophobicity features that included tyrosine displayed 

strong paratope enrichment (AUC values of 0.84–0.88 for VH), while those without 

tyrosine showed little enrichment in the paratopes (AUC values of 0.52–0.61 for VH). 

The same was observed for the hydrophobicity features, as those with tyrosine showed 

Chen et al. Page 7

Cell Rep. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



strong paratope enrichment (0.81–0.94), while those without tyrosine showed little paratope 

enrichment (0.50–0.59). This observation is notable given that tyrosine content alone was 

not significantly enriched in polyreactive antibodies (AUC values of 0.52–0.67 [Fv], 0.59–

0.71 [VH], and 0.62–0.76 [heavy-chain CDRs]; Table S4) but is enriched in antibody 

paratopes (AUC values of 0.97 [Fv], 0.91 [VH], and 0.80 [heavy-chain CDRs]; Table S9). 

This reveals that tyrosine is important for mediating both specific and non-specific binding, 

the latter of which appears limited to antibody variable regions with sufficiently high levels 

of hydrophobicity and/or positive charge.

Random forest models for classifying antibody polyreactivity

We next sought to evaluate if molecular features linked to anti-body polyreactivity could be 

combined into a random forest model to accurately predict this property. We used antibody 

library #1 for model training and antibody library #2 as a holdout set for testing because 

library #1 is both better balanced in terms of high and low polyreactive antibodies and much 

more diverse (Figure S2). For example, library #1 was generated from more unique human 

samples (58 for library #1 vs. 5 for library #2), it is more evenly distributed across germline 

families in both high- and low-polyreactivity samples (Figures 2A and 2B), and there are 

more unique antibodies in the deep sequencing datasets after enrichment for high (115,038 

for library #1 vs. 93,080 for library #2) and low (131,255 for library #1 vs. 34,137 for library 

#2) polyreactivity.

Model training was conducted in two steps. In the first step, we generated an initial model 

using the 31 most significant SB features and 12 previously reported SB features weighted 

by site-specific solvent accessibilities23 (SB-SE features; Table S10). In the second step, we 

generated the final model using up to 10 of the most important SB features in the initial 

model and up to 12 SB-SE features. The training of both models used standard 10-fold 

cross-validation (80% training and 20% testing for antibody set #1; see STAR Methods for 

more detail).

The performance of our final model with 18 features (Table S11) is summarized in Table 1 

and Figure S5. The training and validation accuracies were >95% (antibody set #1; 246,293 

antibodies). As a control, we confirmed that the model accuracies were poor (<55%) when 

the experimental labels for high- or low-polyreactivity antibodies were randomized in the 

training set. The relative importance of the 18 features revealed that the two most important 

ones were the net charge of VH (rank #1) and Fv (rank #2). Moreover, the combined 

tryptophan, tyrosine, arginine, and lysine content (WYRK) in VH was also important (rank 

#3). Notably, the model also performed well when applied to the second antibody library 

(antibody set #2; 127,217 anti-bodies), with an accuracy of 86.5%, even though the second 

library was not used for training.

We also evaluated whether this model could predict the level of polyreactivity for 

additional antibody datasets that were smaller but better characterized (Figures 6 and S6). 

Encouragingly, we found that the model performs well for 88 single-chain human antibodies 

randomly isolated from library #1 (antibody set #3; Figure 6A), a set of 47 single-chain 

human preclinical and clinical-stage antibodies (antibody sets #4 and #6; Figure 6B), a set of 

20 clinical-stage immunoglobulin IgGs that were held out during model training (antibody 
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set #4; Figure 6C), a set of 80 clinical-stage IgGs (Dataset S8) evaluated in a separate study 

(Figure 6D),24 and a set of 15 bococizumab variants (Dataset S9; Figure 6E).25 Moreover, 

we observed strong model performance for predicting non-specific binding for a set of 125 

emibetuzumab variants and a library of 4,000 emibetuzumab variants (Figure S6).26 Finally, 

given that previous work has reported that antibody repertoires for naïve B cells are more 

polyreactive than those for memory or plasma B cells,27 we next evaluated the predicted 

polyreactivity of human antibodies from a large sequence database, namely the Observed 

Antibody Space.28 Notably, we found that a greater percentage of naïve antibodies are 

predicted to be polyreactive (49.6% ± 0.3%) relative to those from memory B cells (28.4% ± 

1.9%) or plasma cells (24.4% ± 2.4%).

Next, we compared our model to several related models trained on the first library (antibody 

dataset #1) using different types of models and features (Table 1). Interestingly, we could 

not identify another model that was able to generalize across the different datasets with the 

same level of performance. For example, removing the 11 SB-SE features from our model 

and replacing them with additional SB features resulted in lower performance, especially 

for antibody sets #4–#6. Moreover, random forest models (models #3, #5, and #8) trained 

with protein language model (ESM-229) features alone or in combination with SB features 

also failed to generalize across diverse datasets as well as our optimal model (model #1). 

As expected, simpler models based on single features were also unable to generalize across 

the different datasets while maintaining high performance. We also found that other types 

of models, such as a support vector classifier (SVC) model trained on position-specific 

scoring matrix (PSSM) features or a stochastic gradient descent (SGD) model trained one-

hot encoded (OneHot) features, resulted in modest prediction performance. Moreover, we 

evaluated a previously reported model for predicting antibody polyreactivity—an automated 

immune molecule separator (AIMS) model with SB features,17 and observed modest 

performance despite that this model used more features (>50) relative to our best model 

(18 features). Overall, these findings demonstrate the ability of our random forest model to 

predict human antibody polyreactivity more accurately than other related models.

We also tested the ability of the Therapeutic Antibody Profiler (TAP)—which provides five 

developability guidelines for selecting antibodies with appropriate biophysical properties30

—to identify polyreactive antibodies (Table S12). However, we found that TAP flagged 

antibodies with high and low polyreactivity at relatively low frequencies (2%–35%) and 

typically flagged low polyreactive antibodies at a higher frequency. For example, TAP flags 

low polyreactive antibodies more than high polyreactive ones based on CDR length, CDR 

patches of surface hydrophobicity, CDR patches of negative charge, and structural Fv charge 

symmetry parameters, while it flags high polyreactive antibodies more for CDR patches of 

positive charge. More generally, this highlights the challenge of predicting specific antibody 

biophysical properties, such as polyreactivity, using general guidelines developed from 

clinical-stage antibodies regardless of their specific biophysical properties.

Finally, we also analyzed the distribution of molecular features linked to polyreactivity 

for antibody paratopes and the corresponding epitopes for a set of 468 antibody/antigen 

complexes from the PDB and their predicted polyreactivities (Table S13). First, we found 

that 42% of the PDB antibodies were predicted to be polyreactive, and the top five 
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antibodies with the highest polyreactivity probabilities are HIV broadly neutralizing anti-

bodies (Dataset S7), which is notable given that these types of antibodies are known to have 

a high risk for being polyreactive.31-34 Second, some molecular features, such as paratope 

charge at pH 7.4, were positively associated with polyreactivity (Figure S7). In contrast, the 

same feature for the corresponding epitopes showed the opposite correlation. The increased 

positive charge in paratopes is more common in high-polyreactivity antibodies, while the 

increased positive charge in epitopes is more common for low polyreactive antibodies. In 

addition, high-polyreactivity antibodies are linked to large positive differences in charge 

between the paratope relative to the epitope, while the opposite is true for low-polyreactivity 

antibodies. This results in a negative correlation between paratope charge vs. epitope charge 

for antibodies with high and low predicted polyreactivity. We also observed similar results 

for a second molecular feature, namely the combined numbers of tryptophan, tyrosine, 

arginine, and lysine residues. However, the correlations between the number of such residues 

in the paratope and epitope were weaker than those for net charge, and the correlation for 

high-polyreactivity antibodies was not significant.

DISCUSSION

One of the most interesting findings of our study is that the heavy-chain CDRs govern 

human antibody polyreactivity. This finding, based on the analysis of >300,000 antibodies 

across two highly dissimilar human antibody libraries, is notable because it explains 

mutational results from several previous studies using much smaller panels of preclinical 

or clinical-stage antibodies. Of the HCDRs, we find that HCDR2 and, to a lesser extent, 

HCDR3 are most strongly linked to polyreactivity, although the importance of HCDR3 was 

length dependent (Table S6).

For example, mutations that reduce non-specific binding for emibetuzumab are located 

in the heavy-chain CDRs, and the most effective sets of mutations include those in 

HCDR2.23 Likewise, mutations that reduce bococizumab non-specific binding are also 

located in HCDR2.25,35 Moreover, a preclinical antibody (MEDI-1912) with high non-

specific binding was optimized by introducing mutations into two heavy-chain CDRs 

(HCDR1 and HCDR2).10 Similar findings were observed for a human antibody repertoire 

enriched for high polyreactivity, which led to the strong enrichment of VH6 antibodies 

whose polyreactivity was governed by HCDR2.19 These and related studies19,27,36 highlight 

the key role of the VH domain and heavy-chain CDRs in mediating human antibody 

polyreactivity.

Our study also identified several key molecular features of heavy-chain CDRs mediating 

human antibody polyreactivity. Our observation that increased positive charge in the Fv, 

VH, CDRs, and heavy-chain CDRs is linked to increased polyreactivity is consistent with 

many previous studies, as summarized in multiple reviews.1,2,27 However, our study also 

demonstrates that the charge of heavy-chain CDRs is generally more important in mediating 

human antibody polyreactivity than that of the light-chain CDRs, and this behavior is 

primarily due to HCDR2 and, to a lesser degree, HCDR3. These findings are supported 

by observations that positively charged mutations in these heavy-chain CDRs commonly 
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increase polyreactivity, while negatively charged mutations in the same CDRs commonly 

reduce polyreactivity.19,23,25,35,37-43

Our finding that increased levels of the combined numbers of positively charged residues

—especially arginine and lysine— and hydrophobic residues—especially tryptophan, 

tyrosine, isoleucine, and proline—in the heavy-chain CDRs are linked to increased 

antibody polyreactivity deserves further consideration. These specific combined features are 

particularly interesting because they are more significant than any other features in our study 

except for the charge features. While positively charged and aromatic residues have been 

individually linked to polyreactivity,23,25,35,37,41,42 we show that the combination is much 

more significantly linked to polyreactivity. For individual amino acids, our observation that 

increased tryptophan content in the heavy-chain CDRs is most strongly linked to increased 

polyreactivity is consistent with several previous studies.18,19,39 Conversely, our finding 

that increased aspartic acid content in VH and the heavy-chain CDRs is linked to reduced 

polyreactivity is also consistent with several previous studies.23,25,35,37,38,40,44 Moreover, 

the fact that reduced glycine content in VH and the heavy-chain CDRs is linked to increased 

polyreactivity is notable because previous studies using smaller and/or less diverse datasets 

have found both the same and opposite results.19,26,39 The specific context of glycine 

residues in VH and the heavy-chain CDRs likely determines their impact on polyreactivity, 

but our study highlights that increased glycine content, like increased aspartic acid content, 

is generally beneficial for reducing polyreactivity for human antibodies.

We also demonstrate that a subset of molecular features linked to increased human antibody 

polyreactivity are also enriched in antibody paratopes, especially in the VH domain. While 

this may seem contradictory, it is notable that all of the amino acid features linked to 

both increased polyreactivity and enrichment in antibody paratopes contain tyrosine and 

positively charged and/or hydrophobic residues. Importantly, we found that tyrosine content 

alone was not strongly linked to polyreactivity, as reported previously,41 and it was the most 

strongly enriched feature in antibody paratopes. Therefore, it appears that tyrosine, in the 

context of hydrophobic and/or positively charged residues, can enhance polyreactivity. This 

finding has interesting implications not only for understanding the natural mechanisms of 

antibody evolution but also for improving the design of antibody mutations and libraries for 

enhancing antibody affinity and specificity.45-49

Our reported model for predicting human antibody polyreactivity also deserves further 

consideration. First, our best model contains 18 features, but the top 6 features that 

contribute most (>75%) to the model performance are sequenced-based features based 

on the VH and Fv regions and not specifically on the CDRs (Table S11). While the 

performance of our model did improve by also employing features based only on CDRs, 

as 7 of 18 of our model features are only based on CDR composition, we found that models 

based only on CDR features were unable to generalize across diverse datasets with high 

accuracy. Second, our model validation for predicting human anti-body polyreactivity is 

notable because it was tested against the largest and most diverse antibody holdout sets 

reported to date, including a diverse human antibody library (131,255 antibodies in library 

#2). This is particularly important, as previous attempts to develop models that predict 

human polyreactivity have used much smaller datasets,17 datasets that are strongly biased 
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toward single human antibody families (e.g., VH6),18 or datasets that lack diversity in light 

chains and use non-standard definitions of polyreactivity.20 Third, we intentionally limited 

our models to a relatively small number of features (<20) despite the large size of our 

training and testing sets to increase their potential generality and simplify their use and 

interpretability. The fact that our model only uses 18 features is notable because this is 

less than that used in recently reported models (≥46 features) trained and tested using a 

single dataset (~19,000 antibodies)18 and a second reported model that appears to use >50 

features and is trained on much smaller datasets (~1,000 antibodies).17 Fourth, although 

we found that random forest models trained using features from a protein language model 

(ESM-2) were unable to outperform those trained on SB features due to a lack of ability to 

generalize across diverse datasets, it will be important in the future to explore the potential 

of antibody-specific protein language models50,51 to further improve model performance and 

generalization.

Our study also opens the door to several exciting future research directions. First, we 

expect that our model for predicting antibody polyreactivity—which has been trained 

on diverse human germlines—will enable the analysis of human antibody repertoires to 

evaluate how polyreactivity changes during anti-body maturation at much larger scales than 

possible previously. While experimental analysis of germline and matured anti-bodies has 

revealed a general trend toward reduced polyreactivity for matured antibodies,5,6,19,27 these 

conclusions are based on relatively small datasets and a limited set of germlines. Second, we 

also expect that our model will be useful for investigating the potential role of polyreactivity 

in mediating the ability of rare antibodies to broadly neutralize different viral variants for 

HIV, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and other viruses. 

These broadly neutralizing antibodies, at least in some cases, accumulate large numbers 

of mutations, and it remains incompletely understood if polyreactivity contributes to or 

is associated with their unique ability to recognize different viral variants.31,52-57 Third, 

we expect that our model—and the identified molecular features linked to polyreactivity

—can be used to guide the design of antibody libraries with low polyreactivity. This 

is particularly important for isolating lead antigen-specific antibodies from non-immune 

libraries using in vitro display technologies, such as phage and yeast surface display, 

because it is relatively common to isolate antibodies with higher levels of polyreactivity 

using such display methods than for antibodies generated using immunization.1,16 Fourth, 

we expect that our model will be useful during antibody humanization to guide the selection 

of frameworks resulting in humanized variants with low polyreactivity. This possibility is 

particularly exciting given emerging approaches for generating humanized antibodies with 

frameworks that have diverse physicochemical properties.58 Finally, we expect that our 

model will be useful for re-engineering preclinical and clinical-stage anti-bodies to reduce 

polyreactivity, which is especially important in cases where high polyreactivity is linked to 

fast antibody clearance.2,9-15

Limitations of the study

There are limitations to this work that will need to be addressed in the future. First, our 

random forest model for predicting antibody polyreactivity requires antibody sequences 

to be aligned and numbered using methods such as ANARCI59 via a standard anti-body 
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numbering scheme, such as the Kabat numbering used in this work. This process is 

needed because some of our features (SB-SE) require predictions of amino acid solvent 

accessibilities.23 This process is relatively inefficient, and future work should address 

this limitation. Second, our models are limited to human antibodies, and future work is 

needed to develop similar types of models for single-domain antibodies, such as nanobodies 

(VHHs) with diverse frameworks in addition to diverse CDRs. Third, our models permit 

the classification of high and low polyreactivity, and future work should extend our 

findings to regression models that would be even more useful for multi-objective antibody 

optimization.26

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Peter M. Tessier (ptessier@umich.edu).

Materials availability

Antibody sequences used for training and testing in this study are published in Datasets S1, 

S2, S3, S4, S5, S6, S7, S8, and S9. All sequences of antibodies were verified via Sanger 

sequencing.

Data and code availability

• Antibody sequences are provided in the Tessier lab GitHub repository: https://

zenodo.org/doi/10.5281/zenodo.13387056.

• Codes to generate the random forest model are available in the Tessier lab 

GitHub repository: https://zenodo.org/doi/10.5281/zenodo.13387056.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

STAR★METHODS

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines—The yeast strain EBY10061 was used for display of antibody libraries by fusing 

them to the Aga2 protein. EBY100 was transformed using a standard media solution [40% 

(w/v) PEG 3350, 100 mM Lithium acetate, 10 mM Tris (pH 7.5), 0.4 mM EDTA]. Yeast 

harboring the plasmids were then recovered in SDCAA medium with shaking at 30°C. 

Yeast surface display of the scFvs was induced by transferring mid-exponential phase cells 

(OD600 at 2 to 4) into SD-GCAA medium with shaking at 30°C for 20 h before flow 

analysis. The subsequent analysis for the library sorting and characterization of individual 

antibody variants is described in the methods details.

METHOD DETAILS

Human scFv library sorting and clone evaluation—To generate large datasets of 

scFvs with low and high levels of non-specific binding, two human scFv libraries (human 
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library #121 and #222 were displayed on yeast (Aga2-VH-linker-VL) and sorted first for full-

length scFv display by MACS and then progressively against four different polyspecificity 

reagents by FACS. The initial sort using MACS (sort 1) was conducted with cMyc antibody 

(Cell Signaling Technology, 2276S; library #1) or V5 antibody (Abcam, ab27671; library 

#2) to select full-length scFvs. To perform the MACS selections, 2 × 109 cells were 

incubated with 80 nM cMyc or V5 antibody in PBSB (1 g/L BSA, PBS) with 1% milk 

at room temperature (3 h). Afterward, the cells were washed once with PBSB and incubated 

with Protein G beads and gently rocked for 30 min at 4°C. The cells suspension was then 

passed through a MACS column for bound cells. After washing, the cell/bead complexes 

were transferred into SDCAA media (20 g dextrose, 5 g casamino acids, 6.7 g yeast nitrogen 

base without amino acids, 16.75 g sodium citrate, and 4 g anhydrous citric acid per liter) and 

grown at 30°C for 2 d.

Next, the scFv libraries were progressively sorted for positive and negative binding to 

four biotinylated polyspecificity reagents (0.13 mg/mL), namely ovalbumin (Sigma Aldrich, 

A5503; sort 2), soluble cytosolic proteins from Chinese hamster ovary (CHO) cells (SCP60; 

sort 3), soluble membrane proteins from CHO cells (SMP60; sort 4) and insulin (Sigma 

Aldrich, I9278; sort 5). The SCP and SMP reagents were prepared using CHO cell lysates.60 

CHO cells were cultured, pelleted and washed sequentially with PBSB and Buffer B (50 

mM HEPES, 0.15 M NaCl, 2 mM CaCl2, 5 mM KCl, 5 mM MgCl2, 10% glycerol, pH 

7.2). Buffer B was then supplemented with protease inhibitor (Sigma Aldrich, 4693159001) 

for all subsequent experiments, as denoted as Buffer B+. The cells were pelleted again and 

resuspended in 5 mL of Buffer B+. The resuspended cells were homogenized for four cycles 

(30 s per cycle) and then sonicated for three cycles (30 s per cycle). The suspension was 

then centrifuged at 40,000× g for 1 h. The supernatant, containing the SCP fraction, and 

the pellet, containing the SMP fraction, were collected, biotinylated, and used for evaluating 

antibody polyreactivity.

The libraries were sorted via a FACS MoFlo Astrios (Beckman) using standard protocols.63 

Yeast cells were incubated with the polyspecificity reagents for 3 h at room temperature 

(ovalbumin, SCP and insulin) or 20 min on ice (SMP). The polyspecificity reagents were 

biotinylated and detected via streptavidin Alexa Fluor 647 secondary (1:1000; Invitrogen, 

S21374). The top 10% and bottom 10% of the scFv binding population of yeast cells 

that expressed human scFvs were collected separately and cultured for the next round of 

positive or negative selection. The enriched library samples for high non-specific binding to 

ovalbumin in sort 2 were next selected for high non-specific binding to SCP in sort 3, while 

the enriched libraries for low non-specific binding to ovalbumin in sort 2 were next selected 

for low non-specific binding to SCP in sort 3. This process was repeated in successive 

sorts to generate enriched scFv library samples that were either broadly polyreactive or 

non-polyreactive.

Yeast plasmids were extracted from the positive and negative populations from sort 5 via 

yeast minipreps (Zymo, D2004), and transformed into DH5-α component cells. Single 

colonies were picked, and scFv coding fragments was confirmed via Sanger sequencing. 

The sequenced scFv plasmids were transformed into yeast cells (EBY100), as described 

above. Non-specific binding of the polyspecificity reagents to the scFvs was evaluated using 
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26 μg/mL biotinylated polyspecificity reagents and streptavidin Alexa Fluor 647 conjugate 

(1:1000; Invitrogen). Human scFv expression was detected using mouse cMyc (1:1000; Cell 

Signaling Technology) and goat anti-mouse Alexa Fluor 488 secondary (1:200; Invitrogen). 

To compare the non-specific binding levels of different scFvs, the median binding signals 

were normalized for each scFv between two control scFvs. The median value for each scFv 

was normalized between a positive control (FP3) with a score of 1 and a negative scFv 

(FN4) with a score of 0.

Deep sequencing of human libraries—Plasmids (pCTcon262) from the sorted libraries 

were isolated using yeast mini preps (Zymo, D2004). The variable light and heavy domains 

were amplified from the plasmids and purified with a 1% agarose gel. The products were 

then gel purified using a QIAquick Gel Extraction Kit (Qiagen, 28704). The concentrations 

of the purified amplicons were then determined using a Qubit 4 Fluorometer. Each sample 

(50 μL at 10 ng/μL) was sent to the University of Wisconsin Sequencing Core for PacBio 

sample preparation and sequencing. The output bam files from PacBio sequencing were 

first converted to fastq files via BedTools and then converted into a fasta format for ease of 

processing.64 The fasta files were evaluated and full-length sequences without stop codons 

were collected into a dictionary containing the number of occurrences of each sequence.

Human library #1 scFv dataset—The deep sequencing data from antibody set #1 was 

analyzed to identified scFvs in human library samples sorted either for binding or a lack 

of binding to ovalbumin, insulin, CHO soluble cytosolic proteins (SCP) and CHO soluble 

membrane proteins (SMP). The resulting library samples, which are referred to as either 

positive or negative samples against each reagent, were collected in three independent 

experiments. The antibody sequences were pooled for the twelve antibody library samples 

(four reagents with three biological replicates) sorted positively for non-specific binding, 

while the corresponding twelve antibody library samples sorted for a lack of non-specific 

binding were also pooled. Next, the two sets of pooled library sequences were processed 

to eliminate duplicates with each pooled sequence sets and any duplicates between the two 

different sequence sets. Afterward, the remaining variable heavy (VH) and variable light 

(VL) domains in each pooled sequence set were aligned in ANARCI using a database of 

Hidden Markov Models,59 and scFvs were eliminated from further consideration if VH 

and VL germlines could not be assigned. Finally, scFvs were eliminated if the number of 

amino acids in specific antibody regions exceeded maximum limits: 134 residues for VH; 12 

residues for HCDR1; 19 residues for HCDR2; 21 residues for HCDR3; 122 residues for VL; 

17 residues for LCDR1; 11 residues for LCDR2; and 12 residues for LCDR3. The antibody 

CDRs were defined using a combination of Chothia and Kabat numbering. This resulted in a 

final set of 131,255 scFv sequences selected for low non-specific binding and 115,038 scFv 

sequences selected for high non-specific binding, which together (246,293 scFvs) is referred 

to as antibody set #1 (Dataset S1).

Human library #2 scFv dataset—The deep sequencing data for antibody set #2 was 

processed in the same manner as the corresponding data for set #1. The library samples were 

collected by sorting against the same four polyspecificity reagents as used for set #1, and 

two biological replicates were performed. After processing the sequencing data, the final 
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sets of antibodies included 34,137 scFv sequences selected for low non-specific binding 

and 93,080 scFv sequences selected for high non-specific binding, which together (127,217 

scFvs) is referred to as antibody set #2 (Dataset S2).

Additional antibody datasets with experimental measurements—The models 

developed in this work were trained or evaluated using four additional sets of antibodies. 

Antibody set #3 contained 96 selected clones from human library #1 and were identified 

using Sanger sequencing from (Dataset S3). Of the 96 selected clones, 88 of these met 

the sequence selection requirements and were used for testing the models. Antibody set #4 

contained 20 clinical-stage antibodies that were selected based on displaying either generally 

high or generally low levels of non-specific binding (Dataset S4).16 These antibodies were 

selected based on the previously reported non-specific binding values from three assays, 

namely the polyspecificity reagent (PSR) assay using soluble membrane and cytosolic 

proteins65 and two ELISAs using either baculovirus particles15,32 or a mixture of proteins, 

lipid and nucleic acid reagents.16 Each of the selected antibodies displayed either higher or 

lower values for all three assays than the published threshold values for high levels of non-

specific binding. Two additional mAbs were initially identified in this analysis (crenezumab 

and natalizumab), but their VH and VL germlines were not observed in antibody set #1 and 

were excluded from further analysis. A second set of clinical-stage antibodies was also used 

during the training process (antibody set #5). This set included the variable regions of 103 

mAbs and their corresponding values of non-specific binding to the PSR reagent (Dataset 

S5). Finally, a set of 27 scFvs provided by Boehringer Ingelheim (antibody set #6) was used 

for model evaluation (Dataset S6).

Identification of molecular features linked to antibody polyreactivity—A diverse 

panel of molecular features were evaluated for their ability to discriminate between 

antibodies with high and low levels of non-specific binding in antibody set #1 and set 

#2. The features were evaluated for the antibody VH, VL and Fv, as well as individual 

CDRs, sets of three HCDRs or LCDRs, and the entire set of six CDRs, and were based 

on two categories of features, namely: (i) sequence-based (SB) features; and (ii) sequence-

based features weighted by site-specific solvent accessibilities (SB-SE).23 For evaluating SB 

features, two sub-categories were evaluated: (i) number of amino acids (e.g., number of Asp 

and Glu residues in VH); and (ii) theoretical net charge at pH 7.4 (+1 for Lys and Arg, +0.1 

for His, and −1 for Asp and Glu).

For the features in category (i) of the SB features, the number of amino acids were evaluated 

in terms of seven groups based on their properties: (a) hydrophobic amino acid (Phe, Ile, 

Leu, Pro, Val, Trp and Tyr); (b) positively charged amino acid (Arg, Lys and His); (c) 

hydrophobic and positively charged amino acid (Phe, Ile, Leu, Pro, Val, Trp, Tyr, Arg, Lys 

and His); (d) hydrophilic amino acid (Gln, Ser, Thr and Asn); (e) negatively charged amino 

acid (Asp and Glu); (f) hydrophilic and negatively charge amino acid (Gln, Ser, Thr, Asn, 

Asp and Glu); (g) the twenty amino acids. In each group, only certain number of residues 

were selected, generating various subgroups of SB features: 2–5 residues for feature type 

(a); 2–3 residues for feature type (b); 2–7 residues for feature type (c); 2–4 residues for 

Chen et al. Page 16

Cell Rep. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



feature type (d); 2 residues for feature type (e); 2–5 residues for feature type (f); and one 

residue for feature type (g).

The SB-SE features required evaluating the site-specific solvent accessibilities of residues 

in the VH and VL regions. This was performed using a published Random Forest machine 

learning model trained on over 900 antibodies in the Protein Data Bank66 and analyzed via 

RStudio package.

The most significant features that discriminated between antibodies with low and high 

levels of non-specific binding (antibody sets #1 and #2) were identified by calculating the 

area under of the ROC curve (AUC) for logistic regression analysis. A subset of the most 

significant features is reported in Table S4 based on different AUC cutoffs due to different 

extents of significance for different feature groups: (i) AUC>0.8 for SB feature types (a) 

and (b); (ii) AUC>0.75 for SB feature types (c), (d) and the number of tryptophan; (iii) 

AUC>0.70 for SB feature type (f), the number of aspartic acid and the number of glycine 

residues. The number of tyrosine residues is also given for reference. The AUC values for 

these features in six different antibody regions (Fv, VH, VL, CDR, HCDR, and LCDR) were 

analyzed for comparison (Table S4). The individual CDRs were also evaluated and reported 

in Table S5.

Additionally, significant sequence-based features in individual HCDRs for discriminating 

between high and low polyreactivity were also analyzed for a subset of antibodies with 

different fixed HCDR3 lengths. Antibodies with 5, 8, 10, 12, and 15 residues in HCDR3 

were evaluated using AUC analysis for both library #1 and #2.

Molecular features linked to antibody affinity interactions—The same molecular 

(SB) features listed in Table 1 were evaluated for their contributions to affinity interactions. 

For the dataset of 468 antibody-antigen complexes from the Protein Data Bank (Dataset S7), 

the number of residues for each SB feature in category (i) was identified in VH and VL 

domains as well as paratope (<5 Å from the antigen) and non-paratope regions in VH and 

VL domains for each antibody. Next, the percentage of paratope residues for each feature in 

each variable region (e.g., % of WRK residues in VH paratope) was calculated by dividing 

the number of each feature in the paratope (e.g., # of WRK residues in the VH paratope) 

by the length of corresponding paratope (e.g., # of VH paratope residues) for each antibody. 

As a comparison, the percentage of non-paratope residues for the same feature in each 

variable region (e.g., % of WRK residues in the non-paratope region of VH) was calculated 

by dividing the feature value in the non-paratope region (e.g., # of WRK residues in VH 

non-paratope region) by the number of non-paratope residues in the corresponding variable 

region. As for the features in category (ii) of the SB features, the theoretical net charge 

(pH 7.4) in the paratope was compared with the corresponding non-paratope region in each 

variable region. The ability of these features to distinguish between enrichment or depletion 

from the paratope was evaluated using AUC analysis (Table S9). The median values for 

paratope and non-paratope regions in the VH and VL domains are also reported.

Germline polyreactivity analysis—The most common VH germlines, VL germlines and 

VH/VL germline pairs for library #1 and library #2 were evaluated for polyreactivity if there 
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are at least a total of 50 sequences in high and low polyreactivity antibodies. The number 

of high and low polyreactivity anti-bodies, the total number of antibodies and the ratio of 

high to low polyreactivity for each listed VH germline gene, VL germline gene, and VH/VL 

germline gene pair in both libraries are reported in Tables S1, S2, and S3, respectively. In 

addition, the ability of significant sequence-based features in HCDR2 to distinguish between 

high and low polyreactivity antibodies was evaluated for the VH germlines listed in Table 

S1. AUC of the features were calculated for both library #1 and #2 and reported in Table S7.

Related to Figure S3, up to 1000 antibody sequences were randomly selected from each of 

the most common germline families for library #1 and #2 (2000 antibody sequences total). 

The sequence similarity per germline family was calculated by averaging the sequence 

similarities of all antibody pairs within the randomly selected 1000 sequences for each 

germline family. The sequence similarity of each antibody pair was computed using the sum 

of blocks substitution matrix score (BLOSUM62) for each amino acid pair of the aligned 

sequences.

Analysis of similar antibodies with high and low polyreactivity—For library #1, 

1000 antibody sequences were randomly selected from the libraries enriched for high and 

low polyreactivity (2000 antibodies total). Each antibody in the high polyreactivity set was 

paired with each one in the low polyreactivity set. The similarity of each antibody pair was 

computed using the BLOSUM62 scoring matrix. Of all possible pairs within the selected 

set, 11 of the most similar antibody pairs were sampled. The net charge and key molecular 

features were calculated and compared.

Random forest model generation and analysis—The molecular (SB) features were 

preprocessed by normalizing feature values from 0 to 1 using MinMaxScaler function 

in the scikit-learn preprocessing package in Python. The antibodies with high and low 

polyreactivity in antibody set #1 (Dataset S1) were split into training (80%) and test 

(20%) sets using stratified sampling. The training set was further divided into ten random 

partitions (folds) for 10-fold cross-validation, nine of which were used for training and 

the other for validation (and this was repeated ten times). The first-generation model was 

trained using the random forest classifier package in the scikit-learn ensemble package in 

Python. The model was optimized by tuning the hyperparameters and selecting the best 

model based on two criteria: (i) minimum coefficient of variation for the ten validation 

accuracies calculated for antibody set #1 (80% training set); and (ii) area under the ROC 

curve >0.75 (logistic regression) for predicting the relative polyreactivity (as judged by PSR 

experimental measurements16) for 123 clinical-stage anti-bodies (antibody sets #4 and #5). 

The parameters of the best first-generation random forest model were n_estimator of 5, 

max_depth of 20, min_sample_split of 20 and min_samples_leaf of 1.

The first-generation model was used to identify the most important molecular features for 

predicting antibody polyreactivity. Next, up to 18 SB features were combined with up to 

11 SB-SE features,23 for training the second-generation random forest model using a total 

of 11–18 features per model. The models were trained as described for the first-generation 

model except the best model was chosen based on the following three criteria: (i) > 90% 

accuracy for the average of the ten validation accuracies calculated for anti-body set #1 

Chen et al. Page 18

Cell Rep. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(80% training set); (ii) minimum coefficient of variation for the corresponding calculations 

in (i); and (iii) area under the ROC curve >0.8 (logistic regression) for predicting the relative 

polyreactivity for antibody set #5. The parameters of the best second-generation random 

forest model (referred to as random forest model #1 in Table 1) were n_estimator of 15, 

max_depth of 15, min_sample_split of 100 and min_samples_leaf of 1.

Additional model generation and analysis—For the SVC model, two PSSMs were 

generated for antibodies with low and high polyreactivity in antibody set #1 (PSSM1 for 

low polyreactivity antibodies and PSSM2 for high polyreactivity antibodies). Each antibody 

sequence was given two scores, one from PSSM1 and the other from PSSM2. Next, for 

the SVC model, an optimized radial basis function, was trained using antibody set #1 to 

differentiate between antibodies with low and high polyreactivity using a C parameter of 

10. For the SGD model, a multiple sequence alignment of the antibodies in antibody set 

#1 was created using ANARCI.59 The antibodies in set #1 were one-hot encoded using 

all amino acids, including gaps, and the positions observed in antibody set #1 alignment. 

Positions observed in other antibody sets, but not antibody set #1, were removed. The 

one-hot encoding resulted in a matrix with 5,355 columns. The one-hot encoded matrix 

based on antibody set #1 was concatenated and an 80/20% training/test split was made to 

train the SGD model using α = 0.00001 and a modified huber loss function.

For the AIMS model,17 the IMGT CDRs of each antibody in set #1 were retrieved and 

the model was trained using standard cross validation (80/20% training/test splits). The 

Jupyter notebook for the original AIMS model were used for model development. Minor 

modifications of the original code were performed to enable use of a model trained on 

one dataset to make predictions on other data-sets. The AIMS model calculates several 

sequence-based properties for each position in the CDRs for use in a linear discriminant 

analysis algorithm, which resulted in over 5,600 features for antibody set #1. The model was 

optimized with respect to the total number of features (N). This was done by evaluating the 

test accuracies for antibody sets #1 and #2 for a range of the numbers of features (500–900 

features). A value of N of 700 was chosen to balance the maximum accuracy for antibody 

dataset #2. The accuracy for antibody dataset #1 could be further improved by using even 

more features, but this also resulted in reduced model generality, as judged by the accuracy 

for antibody set #2.

Analysis of paratopes and epitopes of predicted polyreactive antibodies—
First, the paratope residues for each antibody and the corresponding epitope residues in 

each antigen were identified. In the paratopes and epitopes, the number of residues for 

each feature was calculated and normalized by the length of the paratopes and epitopes, 

respectively. The difference for the two quantities (paratope-epitope) was also calculated. 

The distributions of the three quantities were visualized for both predicted high and low 

polyreactivity, with the AUC value representing the separation for the two groups. The 

correlation between paratope and epitope properties was evaluated using a bivariate plot 

with the Spearman coefficient. Similar analysis was also performed for net charge in 

paratopes and epitopes.
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QUANTIFICATION AND STATISTICAL ANALYSIS

The areas under the ROC curve in Figures 3 and 4 were calculated using Python. The 

p-value analyses in Figure 6 were performed in MATLAB using the Anderson-Darling test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Generation of large polyreactivity datasets for diverse human antibody 

repertoires

• Antibody polyreactivity is primarily linked to the heavy-chain CDRs

• Some molecular features are linked to both specific and non-specific antibody 

interactions

• Development of a machine learning model for predicting human antibody 

polyreactivity
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Figure 1. Overview of the library sorting, deep sequencing, and model training methods used to 
generate machine learning models for predicting human antibody polyreactivity
(A) Two human single-chain variable fragment (scFv) libraries displayed on the surface of 

yeast were sorted for positive or negative binding to multiple poly-specificity reagents. The 

enriched libraries were deep sequenced to generate large datasets of antibody sequences and 

corresponding classifications for either high or low polyspecificity. One of the large human 

scFv datasets was used along with a smaller dataset for clinical-stage antibodies to train 

machine learning models to predict antibody polyspecificity. Finally, the models were tested 

on the second large human scFv dataset (not used for training) and additional independent 

datasets for preclinical and clinical-stage antibodies.

(B) The human scFv library (library #1)21 was displayed on the surface of yeast and sorted 

successively against ovalbumin (0.13 mg/mL [2.9 μM]; fluorescence-activated cell sorting 

[FACS] sort #1), soluble cytosolic proteins (SCPs) from CHO cells (0.13 mg/mL; FACS sort 

Chen et al. Page 26

Cell Rep. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



#2), soluble membrane proteins (SMPs) from CHO cells (0.13 mg/mL; FACS sort #3), and 

insulin (0.13 mg/mL [22.4 μM]; FACS sort #4). FACS cytograms are shown for FACS sort 

#5, which was performed using the output libraries from FACS sort #4 to collect samples 

for deep sequencing analysis. The FACS cytograms report the antibody (scFv) expression 

on the x axis and non-specific binding on the y axis. The positive and negative non-specific 

binding populations that were selected for deep sequencing analysis are shown in red (high 

non-specific binding) and blue (low non-specific binding) gates.

(C) Individual scFv variants were isolated after FACS sort #4, and their levels of non-

specific binding were evaluated using yeast surface display and flow cytometry. The four 

polyspecificity reagents were used as described in (B) except at a lower concentration (0.026 

mg/mL). The reported levels of non-specific binding were first normalized to their scFv 

expression levels and then normalized between two scFv standards (FN4 for the negative 

control and FP3 for positive control; Dataset S3). In (C), the data are averages of two 

biological replicates, and the error bars are standard errors.
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Figure 2. Germline family and sequence comparisons for antibody libraries #1 and #2 after 
enrichment for high and low levels of poly-reactivity
(A–D) Distribution of germline families for antibody (A and B) library #1 and (C and D) 

library #2.

(E) Analysis of sequence differences between the two libraries. The sequences were 

OneHot encoded, subjected to dimensionality reduction via a truncated singular value 

decomposition, and embedded into two-dimensional space for visualization with t-

distributed stochastic neighbor embedding (t-SNE).
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Figure 3. Molecular features that strongly differentiate between human antibodies with high and 
low polyreactivity
Distributions of key molecular features linked to polyreactivity for human antibodies 

(libraries #1 and #2) and their corresponding area under the ROC curve (AUC) values 

calculated using logistic regression analysis. The same features for the input antibody 

libraries and a human repertoire dataset were also calculated.

(A and B) Fv charge (pH 7.4) distribution for (A) library #1 and (B) library #2.

(C and D) Distributions of the number of tryptophan, arginine, and lysine residues in Fv for 

(C) library #1 and (D) library #2.

(E and F) Distributions of the number of phenylalanine, isoleucine, proline, tryptophan, and 

tyrosine residues in Fv for (E) library #1 and (F) library #2.

In (A) and (B), the net charge (pH 7.4) was calculated using charges of +1 for Arg and Lys, 

+0.1 for His, and −1 for Asp and Glu.
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Figure 4. Charge and hydrophobicity features based on antibody regions that include the heavy-
chain CDRs strongly differentiate between antibodies with high and low levels of polyreactivity
Distributions of key molecular features for different antibody regions in Fv linked to 

polyreactivity for human antibodies (libraries #1 and #2) and their corresponding AUC 

values. The same features for the input libraries and a human repertoire dataset were also 

calculated.

(A and B) Net charge (pH 7.4) distributions for (A) library #1 and (B) library #2.

(C and D) Distributions of the number of tryptophan, arginine, and lysine residues for (C) 

library #1 and (D) library #2. The antibody regions are noted as VH (variable heavy domain), 

VL (variable light domain), CDRs (six CDRs for the heavy and light chains), HCDRs (three 

heavy-chain CDRs), and LCDRs (three light-chain CDRs).
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Figure 5. A subset of molecular features that differentiate between high- and low-poly-reactivity 
antibodies also differentiate between paratope and non-paratope residues
Distributions of molecular features for paratope and non-paratope residues in VH and VL for 

468 anti-bodies and their corresponding AUC values.

(A and B) Net charge (pH 7.4) distributions for (A) VH and (B) VL.

(C and D) Distributions of the number of isoleucine, tryptophan, and tyrosine residues for 

(C) VH and (D) VL.

(E and F) Distributions of the number of tryptophan, arginine, and lysine residues for (E) VH 

and (F) VL. AUC values with a negative sign next to them signify that the feature values are 

depleted in the antibody paratope or non-paratope residues.
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Figure 6. Evaluation of machine learning model for predicting human antibody polyreactivity
The ability of the machine learning (random forest) model developed in this work to predict 

the level of human antibody polyreactivity was tested using several sets of antibodies 

with experimentally defined levels of non-specific binding to multiple reagents. The model 

predictions were tested on the following antibody sets: (A) antibody set #3 (88 human 

scFvs), (B) antibody sets #4 and #6 (47 human scFvs), (C) antibody set #4 (20 human 

clinical-stage IgGs), (D) antibody set #8 (80 clinical-stage IgGs),24 and (E) 15 bococizumab 

variants with HCDR2 and HCDR3 mutations (antibody set #9).25 The reported p values 

were calculated using the Anderson-Darling test. In (A), (B), (D), and (E), the data are mean 
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values, the errors are standard deviations, and the numbers of biological replicates are (A) 

two, (B) three, (D) three, and (E) two. In (C), the data are from a previous publication,16 and 

the number of biological replicates is unknown.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-myc-tag (9B11) antibody Cell Signaling Technology Cat#2276S; RRID:AB_331783

Mouse monoclonal anti-V5 tag antibody Abcam Cat#Ab27671; RRID:AB_471093

Goat anti-mouse IgG Alexa Fluor 488 Invitrogen Cat#A11001; RRID:AB_2534069

Bacterial and virus strains

DH5α competent cells Thermo Fisher Scientific Cat#18265017

Chemicals, peptides, and recombinant proteins

10x Phosphate Buffered Saline (PBS) Fisher Scientific Cat# BP39920

Bovine Serum Albumin Fisher Scientific Cat#BP9706100

Poly(ethylene glycol) 3350 Sigma Aldrich Cat#P4338

Lithium acetate Fisher Scientific Cat#AC268640010

Trizma base Sigma Aldrich Cat#T1503-1KG

Ethylenediaminetetraacetic Acid Fisher Scientific Cat#O2793-500

Agarose Fisher Scientific Cat#BP160-500

TAE Buffer Fisher Scientific Cat#BP13324

Ovalbumin Sigma Aldrich Cat#A5503

Biotinylated Soluble cytosolic proteins from CHO cells Makowski et al.60 N/A

Biotinylated Soluble membrane proteins from CHO cells Makowski et al.60 N/A

Insulin Sigma Aldrich Cat#I9278

Sulfo-NHS-LC-biotin Thermo Fisher Scientific Cat#21335

Streptavidin Alexa Fluor 647 Invitrogen Cat# S32357

NeutrAvidin PE Invitrogen Cat#A2660

Dextrose (D-Glucose) Fisher Scientific Cat#D16-10

Yeast Nitrogen Base without Amino Acids Fisher Scientific Cat#DF0919-15-3

Casamino Acids Fisher Scientific Cat#BP1424-500

Sodium Citrate Dihydrate Fisher Scientific Cat#S279-500

Citric Acid Fisher Scientific Cat#A940-500

D(+)-Galactose Fisher Scientific Cat#AC150610051

Sodium Phosphate Monobasic Monohydrate Fisher Scientific Cat#S369-500

Sodium Phosphate Dibasic Dihydrate Fisher Scientific Cat#S472-500

Lithium acetate Fisher Scientific Cat# AC268640010

Critical commercial assays

Zymoprep Yeast Plasmid Miniprep II Zymo Research Cat#D2004

QIAquick Gel Extraction Kit QIAGEN Cat# 28704

Non-fat dry milk Kroger Cat#0001111008733

Deposited data

Human Antibodies This paper Datasets S1, S2, S3, S4, S5, S6, S7, S8, and S9

Original Code This paper https://doi.org/10.5281/zenodo.13387057

Experimental models: cell lines
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REAGENT or RESOURCE SOURCE IDENTIFIER

Yeast: EBY100 Julian et al.61 N/A

Recombinant DNA

pCTcon2 Chao et al.62 Addgene Cat#41843

Software and algorithms

Python version 3.9 Python Software Foundation https://www.python.org

RStudio Desktop version 2024.4.1.748 Posit team https://posit.co/download/rstudio-desktop

MATLAB R2019a MathWorks https://www.mathworks.com/products/matlab.html

Others

Beckman Coulter MoFlo Astrios Beckman Coulter Cat#B52102

Protein G Dynabeads Invitrogen Cat# S311-500

Cell Rep. Author manuscript; available in PMC 2024 November 15.

https://www.python.org
https://posit.co/download/rstudio-desktop
https://www.mathworks.com/products/matlab.html

	SUMMARY
	Graphical Abstract
	In brief
	INTRODUCTION
	RESULTS
	Generation of deep sequencing datasets for human antibodies with high and low polyreactivity
	Identification of Fv molecular features strongly linked to antibody polyreactivity
	Heavy-chain CDRs of human antibodies primarily govern polyreactivity
	Random forest models for classifying antibody polyreactivity

	DISCUSSION
	Limitations of the study

	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	STAR★METHODS
	EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
	Cell lines

	METHOD DETAILS
	Human scFv library sorting and clone evaluation
	Deep sequencing of human libraries
	Human library #1 scFv dataset
	Human library #2 scFv dataset
	Additional antibody datasets with experimental measurements
	Identification of molecular features linked to antibody polyreactivity
	Molecular features linked to antibody affinity interactions
	Germline polyreactivity analysis
	Analysis of similar antibodies with high and low polyreactivity
	Random forest model generation and analysis
	Additional model generation and analysis
	Analysis of paratopes and epitopes of predicted polyreactive antibodies

	QUANTIFICATION AND STATISTICAL ANALYSIS

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table T2

