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Abstract
This paper presents an innovative feature engineering framework based on lattice structures for the automated identifi-

cation of Alzheimer’s disease (AD) using electroencephalogram (EEG) signals. Inspired by the Shannon information

entropy theorem, we apply a probabilistic function to create the novel Lattice123 pattern, generating two directed graphs

with minimum and maximum distance-based kernels. Using these graphs and three kernel functions (signum, upper

ternary, and lower ternary), we generate six feature vectors for each input signal block to extract textural features.

Multilevel discrete wavelet transform (MDWT) was used to generate low-level wavelet subbands. Our proposed model

mirrors deep learning approaches, facilitating feature extraction in frequency and spatial domains at various levels. We

used iterative neighborhood component analysis to select the most discriminative features from the extracted vectors. An

iterative hard majority voting and a greedy algorithm were used to generate voted vectors to select the optimal channel-

wise and overall results. Our proposed model yielded a classification accuracy of more than 98% and a geometric mean of

more than 96%. Our proposed Lattice123 pattern, dynamic graph generation, and MDWT-based multilevel feature

extraction can detect AD accurately as the proposed pattern can extract subtle changes from the EEG signal accurately. Our

prototype is ready to be validated using a large and diverse database.

Keywords Lattice123 pattern � AD detection � EEG signal classification � Feature engineering � Self-organized
classification model

Introduction

Alzheimer’s disease (AD) is a neurologic disease (Ciaccio

et al. 2021; Santiago and Potashkin 2021). AD patients

manifest symptoms like recent memory loss (Morton et al.

2021) and, in advanced stages of the disease, the inability

to perform activities of daily living (Puthusseryppady et al.

2022). Age, head trauma, environmental, and genetic fac-

tors contribute to the development of the disease (Breijyeh

and Karaman 2020). AD generally affects persons aged

65 years and above, but there are also cases involving

younger persons (Atri 2019). There is no definitive diag-

nostic test for AD (Dubois et al. 2021; Khare and Acharya

2023). Instead, doctors diagnose based on the patient’s

history and assessment of neurological function (Sperling

et al. 2020). Blood tests and brain imaging are usually

performed to exclude organic causes before confirming a

final AD diagnosis (Fink et al. 2020; Wolinsky et al. 2018).

While no specific treatment currently targets AD, medi-

cations can help alleviate symptoms. Additionally, physical

modification of the living environment and personalized

therapy may help improve the quality of life (Atri 2019).

Artificial intelligence-based automated disorder detec-

tion models have been grown since AI is one of the most

effective methods to solve nondeterministic problems

(Haleem et al. 2019). For instance, Acharya et al. (2019)

proposed an automated model to automatically detect AD

using magnetic resonance images of the brain. However,

MRI is an expensive model to create an automated model.

Therefore, some researchers have been used EEG signals to

detect AD (Cassani et al. 2018). Our research has presented

a novel handcrafted method and our model aims to gen-

erate meaningful features from EEG signals to automati-

cally detect AD. The proposed model has been
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implemented on an EEG dataset and this dataset has two

classes which are AD and control and proposal attained

more than 98% classification performances in three

experiments of the used EEG dataset.

Literature review

In the last few years, several studies have been published

on EEG-based automated diagnosis of AD and mild cog-

nitive impairment (MCI), a lesser state impairment in

cognition and activities of daily living that may lead to AD

(Table 1). Several studies used deep learning-based meth-

ods (Alves et al. 2022; Bi and Wang 2019; Huggins et al.

2021; Ieracitano et al. 2019), which entail high computa-

tional complexity and costs. Some studies attained only

modest classification performance (Cassani and Falk 2019;

Ieracitano et al. 2019, 2020; Pirrone et al. 2022), whereas

others attained high accuracy (Alves et al. 2022; Dogan

et al. 2022) but on a balanced dataset.

Literature gaps

The literature gaps based on Table 1 are given below:

• Most of the models developed have used conventional

feature extraction and classifiers.

• Few works based on deep learning techniques have

yielded high classification accuracies with high com-

putational complexity. Training a deep model requires

expensive hardware, such as graphical, tensor, or neural

processing units. To enable training on simpler com-

puter configurations, there is a need for a lightweight

yet highly accurate model.

Table 1 Related works on automated AD detection

Paper Dataset Method Results (%)

Bi and Wang (2019) 4 healthy, 4 MCI, 4 AD Spectral topography maps, spike convolutional deep

Boltzmann machine and discriminative contractive

slab

Acc: 95.04

Cassani and Falk (2019) 20 healthy, 34 AD Spectral feature extraction, ANOVA, and SVM Acc: 88.1

F1: 86.2

Ieracitano et al. (2019, 2020) 63 healthy, 63 MCI, 63 AD Power spectral density images, custom-designed

CNN

Acc: 83.3

Ieracitano et al. (2020) 63 healthy, 63 MCI, 63 AD Continuous wavelet transform, bispectrum features,

multi-layer perceptron classifier

Acc: 89.22

Huggins et al. (2021) 52 healthy, 37 MCI, 52 AD Continuous wavelet transform, tiled topographical

images, AlexNet-based CNN

Acc: 98.9

Pirrone et al. (2022) 20 healthy, 37 MCI, 48 AD Power spectrum density, short-time Fourier

transform, kNN

Acc: 86.0

Alves et al. (2022) 24 healthy, 24 AD Pearson’s correlation, custom-designed CNN,

hyperparameter optimization

Acc: 100

Pre: 100

Rec: 100

Dogan et al. (2022) 11 healthy, 12 AD Novel primate brain pattern, iterative neighborhood

component analysis, kNN

Acc: 100

Pre: 100

Rec: 100

Puri et al. (2022) 11 healthy, 12 AD Empirical mode decomposition, Hjorth parameters

using Kruskal–Wallis test, SVM

Acc: 92.90

Sen: 94.32

Spe: 94.34

Pre: 94.33

F1: 94.32

Puri et al. (2023) 11 healthy, 12 AD Low-complexity orthogonal wavelet filter banks,

SVM, wavelets

Acc: 98.60

Sen: 97.34

Spe: 99.85

Rossini et al. (2022) 16 MCI, 24 AD, 13 other dementias Graph theory, principal components analysis, SVM AUC: 97.00

Acc: 95.00

Acc accuracy, CNN convolutional neural network, F1 F1 score, kNN k-nearest neighbor, MCI mild cognitive impairment, Pre precision, Rec
recall, Sen sensitivity, Spe specificity, SVM support vector machine
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Motivation

We have proposed a dynamic pattern-based feature

extraction function, a lattice-based function, to overcome

the existing literature gaps. This helps create a lightweight

model that works like a deep learning model. Our pre-

sented feature engineering model is accurate with lower

computational complexity than the deep learning models.

EEG depicts the spatiotemporal electrical activation of

underlying brain regions recorded using a set of surface

electrodes placed at standardized positions over the scalp

(Friedrich et al. 2022). It has been used to study diverse

neuropsychiatric conditions, including AD (Bouwman

et al. 2022). However, manual interpretation of the EEG

readouts from multiple electrodes (or channels) is time-

intensive and requires expert knowledge (Pirrone et al.

2022), which has necessitated the development of auto-

mated methods (Pirrone et al. 2022; Puri et al. 2023;

Rossini et al. 2022). We were motivated to develop an

accurate and computationally lightweight model for EEG-

based AD diagnosis. We adopted a handcrafted feature

engineering method on a novel lattice pattern termed Lat-

tice123. Lattices, a geometric construct common in popular

science (e.g., post-quantum cryptography), have been used

as directed graph pattern generators for local textural fea-

ture extraction (Cutello et al. 2007; Damewood et al. 2022;

Song et al. 2022). In this work, we proposed a simple

lattice pattern, Lattice123, combined with a probabilistic

kernel designed to dynamically generate directed graphs

for downstream textural feature extraction using binary

feature generation functions akin to local binary pattern

models (Ojala et al. 2002). The main contribution of this

work is the innovative lattice-based dynamic feature

extraction function. It searches for the optimal pattern in

the EEG signal through lattice-based feature extraction.

Our developed model comprises this novel lattice-based

pattern and a self-organized feature engineering process. In

our model, two directed graphs were generated by Lat-

tice123 for every one-dimensional EEG input signal data

block, and three binary feature generation functions were

used to extract local textural features, i.e., the feature

extraction function extracted 6 (= 2 9 3) feature vectors

per block. Moreover, the EEG signal was decomposed

using the multiple discrete wavelet transform (MDWT)

(Dia et al. 2009) to partition it in the frequency domain,

thereby enabling multilevel extraction of features to emu-

late deep modeling. Other model elements selected for

their known effectiveness and computational efficiency

included iterative neighborhood component analysis

(INCA) feature selection (Tuncer et al. 2020b) and iterative

hard majority voting (IHMV) (Dogan et al. 2021). The

latter facilitated the generation of additional voted results

from channel-wise outputs and the automatic selection of

both channel-wise and overall best results, which rendered

the model fully self-organized.

Novelties and contributions

We have proposed a new lattice-based pattern that

dynamically generated two directed graphs for extracting

features using three extraction kernels. Detailed binary

(AD vs. normal) channel-wise and overall classification

results were presented on the multichannel EEG study

dataset. The computationally lightweight and self-orga-

nized model was able to automatically generate the most

suitable feature extraction graphs per the signal input and

select the best channel-wise and overall voted results.

Dataset

We used a publicly available EEG signal dataset of 59

channels to investigate facial recognition deficits for

detecting AD (Mazzi et al. 2020). In this dataset, EEG

signals were collected from nine participants (eight healthy

individuals and one with AD) through three experiments.

Participants were seated comfortably before a monitor in a

dimly lit room, maintaining a fixed distance. Visual stimuli

were presented on acathode ray tube (CRT)monitor using

E-prime2 software, with eye movements monitored. Three

experiments were conducted on different days for patients

and on the same day for controls. Each trial began with a

fixation cross followed by a warning tone and stimulus

presentation. Participants performed a discrimination task

and stimuli were presented for 300 ms.

Experiment 1

Participants indicated whether the stimulus presented was a

face, a house, or a scrambled image.

For experiments 2 and 3, participants were instructed to

discriminate between upright and inverted faces.

Experiment 2

Stimuli consisted of faces with neutral or fearful

expressions.

Experiment 3

Stimuli involved famous or unfamiliar faces.

The primary objective of these experiments was to

detect amnesia or agnosia using EEG signals. We seg-

mented each EEG signal into 15-s intervals and sampled at
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250 Hz to obtain 3750 sample values. The distribution

details of the dataset are shown in Table 2.

It may be noted from Table 2 that the EEG signal

dataset used in this work is imbalanced.

Proposed model

The self-organized AD detection model has the following

layers: (1) feature extraction comprising EEG signal

decomposition using MDWT (this enabled downstream

multilevel feature generation, thereby mimicking deep

learning) and Lattice123-based feature engineering (see

section ‘‘Dataset’’); (2) INCA feature selector (Tuncer

et al. 2020b) to remove redundant features, thereby

reducing data dimensionality; (3) a standard shallow

k-nearest neighbor (kNN) classifier (Peterson 2009) to

calculate channel-wise results; (4) IHMV (Dogan et al.

2021) to generate additional channel-wise voted feature

vectors; (5) a greedy algorithm to calculate the best

channel-wise results; and (6) IHMV plus greedy algorithm

to generate additional overall voted prediction vectors and

to calculate the overall best results, respectively. Our

model was implemented in the MATLAB (2021a) pro-

gramming environment on a computer with 16 GB mem-

ory, an Intel i7 7700 processor, and a Windows 11

operating system. The graphical clarification of the pro-

posed Lattice123 pattern-based has been given in Fig. 1.

The steps involved in each of these layers are detailed in

the following subsections.

The abbreviations of this figure are as follows. AD:

Alzheimer’s disease, F: concatenated extracted feature

vector, f: extracted feature vector, HC: healthy control, L:

low-pass filter wavelet bands, s: selected feature vector.

In this work, each EEG record contained 59 channels,

each producing a spatially unique signal utilized as an input

signal to the model. MDWT was applied to each signal,

and four wavelet bands were generated, corresponding to

four low-pass filter coefficients. The raw EEG signal and

the four wavelet bands underwent Lattice123-based feature

extraction to generate six feature vectors each. INCA was

then applied to the generated six feature vectors to create

six selected feature vectors for each signal, which were

input to the kNN classifier to calculate six predicted

vectors. IHMV was then applied to the predicted vectors to

generate voted predicted vectors. The greedy algorithm

was implemented to select the final predicted vector, rep-

resenting the best channel-wise result. The 59 channel-wise

final predicted vectors generated per EEG record were next

input to the IHMV function to generate more voted vectors,

from which the best overall binary classification result was

selected using the greedy algorithm.

Lattice123 pattern

In graph-based feature engineering, features are generated

using kernel function operations within the framework of

either fixed patterns (Subasi et al. 2021; Tuncer et al.

2021a, 2021b) or adaptive patterns that are dynamically

generated based on the signal input (Jiang et al. 2022;

Tuncer et al. 2020a). In feature engineering, conventional

feature extraction functions are employed as static patterns

to generate features. However, these static patterns are

limited in producing meaningful features from certain data

blocks. Therefore, a dynamic feature extractor is needed to

extract the hidden patterns from each block. In this

research focus, we utilized the novel Lattice123 process

(Fig. 2) to generate two directed graphs using a proba-

bilistic walking path detection function.

The lattice used for graph generation is shown in Fig. 2.

The patterns (graphs) are determined using this lattice,

which comprises 19 numbered vertexes (v) and 28 directed

edges (all angled downwards). First, the vertexes were

populated sequentially by bit values in the input signal

block. Maximum and minimum walking paths starting and

ending at v1 and v19 were then calculated to generate two

directed graphs for downstream (walking way) feature

extraction. Histogram-based features have been extracted

using the generated graphs. Therefore, the presented fea-

ture extraction model is named the Lattice123 pattern. The

overview of the Lattice123 pattern is shown in Fig. 3.

The presented Lattice123 pattern is a histogram-based

feature extraction algorithm, and the steps of this algorithm

are given below:

1. Normalize the input signal to integer values between 1

and 100 by deploying min–max normalization.

N ¼ S� Smin
Smax � Smin

� �
� 99þ 1 ð1Þ

where N represents normalized signal; S, signal value;

Smin, the minimum value of the signal; and Smax, the

maximum value of the signal.

2. Extract the histogram of the normalized signal.

H ¼ hðNÞ ð2Þ

Table 2 Overview of the used EEG signal dataset

No Class Experiment 1 Experiment 2 Experiment 3

1 Healthy 1249 1209 1376

2 AD 348 353 374

Total 1597 1562 1750
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where H represents the histogram of the normalized

signal; and hð:Þ, the histogram extraction function. In

this step, we have extracted a histogram of the nor-

malized signal.

3. Calculate the probability of each value.

pri ¼
HiPn
i¼1 Hi

; i 2 f1; 2; . . .; ng ð3Þ

where pri represents the probability of the ith value;

and n, the length of the signal.

4. Divide the signal into overlapping blocks of length 19.

s jð Þ ¼ S iþ j� 1ð Þ; i 2 1; 2; . . .; n� 18f g; j
2 1; 2; . . .; 19f g ð4Þ

v jð Þ ¼ N iþ j� 1ð Þ ð5Þ

where s represents an overlapping block of the input

signal, S; and v, the normalized overlapping block.

5. Calculate the probability matrix using probability

values and relationships.

Mk;j ¼ prvðjÞ; k 2 1; 2; . . .; 18f g ð6Þ

where M represents the probability matrix; and Mk;j,

the probability of the jth value, where the parent value

of the jth value is the kth value.

6. Using minimization and maximization operations,

create two walking paths (directed graphs) from vertex

1 to vertex 19 of the Lattice 123 pattern.

w1
1 ¼ 1;w2

1 ¼ 1; ð7Þ

w1
t ¼ argmin Ms1

t�1
;:

� �
; t 2 f2; 3; . . .; 8g ð8Þ

w2
t ¼ argmax Ms2

t�1
;:

� �
ð9Þ

w1
9 ¼ 19;w2

9 ¼ 19 ð10Þ

where w represents the walking path. In this work, we

have generated two walking paths (w1 and w2). By

using a probability matrix (Ms1
t�1

;:) of each data block,

we have generated patches and each path has nine

values.

7. Extract feature vectors using the walking paths and

three kernels: signum, upper ternary, and lower ternary.

j1 a; bð Þ ¼ 0; a� b\0

1; a� b� 0

�
ð11Þ

j2 a; bð Þ ¼ 0; a� b� tr
1; a� b[ tr

�
ð12Þ

Fig. 1 Block diagram of the

proposed model: a model

overview and b Lattice123-

based feature extraction. In this

work, we have generated two

paths (maximum and minimum)

by deploying the probabilistic

way generation function,

applying three feature extraction

functions, and generating 6

(= 3 9 2) feature vectors
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j3 a; bð Þ ¼ 0; a� b� � tr
1; a� b\� tr

�
ð13Þ

where j1ð:Þ; j2ð:Þ and j3ð:Þ represent signum, upper

ternary and lower ternary kernels, respectively; a; b,

the input values of the kernels and we have used signal

values as inputs; and tr, the threshold value for the

ternary functions, which, in this model, was calculated

as half the standard deviation of the signal. Six-bit

groups were thus extracted using these three kernels

and two walking paths.

bitc tð Þ ¼ jl s wk tð Þ
� �

; s wk t þ 1ð Þ
� �� �

;
t 2 1; 2; . . .; 8f gk 2 1; 2f g; l 2 1; 2; 3f g;
c 2 1; 2; . . .; 6f g

ð14Þ

where bit represents the binary feature array and c:

category of the generated bit. Each bit array contained

eight binary features.

8. Generate feature signals (map signals) using binary-to-

decimal transformation.

mc ið Þ ¼
X8
t¼1

bitc tð Þ � 2t�1 ð15Þ

where m represents the map signal. Six map signals

were generated.

9. Extract histograms of the map signals.

Hc ið Þ ¼ hðmcÞ ð16Þ

Each generated histogram represents a feature vector of

length 256 (= 28). Six feature vectors were generated. The

proposed Lattice123 pattern generates two graphs for each

data block, which have been utilized as a pattern. More-

over, three kernels have been used to extract binary fea-

tures for each graph. Therefore, this feature extraction

method generated 6 feature vectors.

Feature extraction

The MDWT-based decomposition of the raw input EEG

signal yielded four wavelet bands. These banded signals

plus the raw EEG signal were input to the Lattice123-based

feature extraction model. The 11 steps that define the

proposed Lattice123-based model are detailed below.

Step 1: Read channel-wise signals from the EEG record

of the study dataset.

Step 2: Apply MDWT using Daubechies 4 (db4) mother

wavelet filter function to the raw EEG signal to decompose

it into four wavelet subbands corresponding to four low-

pass filter coefficients.

L1H1½ � ¼ #ðSÞ ð17Þ
LhHh½ � ¼ # Lh�1ð Þ; h 2 f2; 3; 4g ð18Þ

where L represents the low-band filter; H, the high-band

filter; and #ð:Þ, the discrete wavelet transform function, h:

number of wavelet levels.

Step 3: Extract features from the raw signal and low-

pass the wavelet subbands by deploying the Lattice123

pattern.

f 10f
2
0f

3
0f

4
0f

5
0f

6
0

	 

¼ LðSÞ ð19Þ

f 1t f
2
t f

3
t f

4
t f

5
t f

6
t

	 

¼ L Ltð Þ; t 2 f1; 2; 3; 4g ð20Þ

where Lð:Þ represents the Lattice123-based feature

extraction function,S: EEG signal, and f , the extracted

feature vector of length 256. For instance,f 10: the first fea-

ture vector of the raw EEG signal.

Step 4: Merge the feature vectors according to type.

Fq jð Þ ¼ f qp jþ p� 256ð Þð Þ; p 2 0; 1; . . .; 4f g; q
2 f1; 2; . . .; 6g ð21Þ

Fig. 2 The used lattice for the graph generation. There are one (v1),

two (v2 and v3), and three (v4, v5, and v6) vertexes in the top three

tiers, which explains its name: Lattice123. In this research, we have

used a nine-leveled Lattice123 Pattern. Therefore, we have used 19

vertexes
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where F represents the concatenated feature vector of

length 1280 (= 256 9 5). Six concatenated feature vectors

were obtained from each channel-wise input signal.

Feature selection

We employed an iterative feature selector, an enhanced

version of neighborhood component analysis (NCA),

known as INCA (Tuncer et al. 2020b). It is an iterative

approach used to determine the optimal number of features.

It involves a series of iterations, during which additional

features are systematically selected. A loss value calcula-

tion function is applied to evaluate the informativeness of

the selected feature vectors in each iteration. The process

continues iteratively, and the feature vector with the best-

computed loss value is ultimately chosen as the final

selected feature vector. The steps involved in feature

selection are given below.

Step 5: Apply INCA to calculate the qualified indexes of

all features in each concatenated feature vector.

idq ¼ uðFq; yÞ ð22Þ

where uð:Þ represents the neighborhood component anal-

ysis feature selection function; y, the real output; and id,

the qualified indexes array. The most accurate feature

vector was selected using the following operations.

fsrq k; jð Þ ¼ Fq k; idq jð Þ
� �

; r 2 1; 2; . . .; fv� ivþ 1f g;
k 2 1; 2; . . .; dimf g; j 2 1; 2; . . .; vf g; v 2 fiv; ivþ 1; . . .; fvg:

ð23Þ

accrq ¼ C fsrq; y
� �

: ð24Þ

inq ¼ argmax accrq

� �
ð25Þ

sq k; zð Þ ¼ Fq k; idq zð Þ
� �

; z 2 1; 2; . . .; inq þ iv� 1
� �

ð26Þ

where fs represents the selected feature vectors; acc,

accuracy value; Cð:Þ, the accuracy calculation function; in,

index of most accurate feature vector; iv. initial value of

loop; fv, the final value of loop; s, the selected final vector.

These equations describe the process of iterative feature

selection using the INCA algorithm. The aim is to

Fig. 3 Overview of the

Lattice123 pattern. In this work,

we have used a one-dimensional

signalsix, and we have obtained

six feature vectors, and the

length of each feature vector is

equal to 256
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iteratively select and evaluate feature vectors to identify

the most accurate and informative features for further

processing. The loop range is set from 100 to 512, and the

accuracy is obtained using the kNN classifier function.

Calculation of channel-wise predicted vectors

The six selected feature vectors were input to a standard

distance-based kNN classifier [50] to calculate the corre-

sponding predicted vectors. The parameter settings were:

k,1; distance, L1-norm; voting, no; validation and tenfold

cross-validation (CV).

Step 6: Classify the selected six feature vectors using the

1NN classifier (k = 1) with a tenfold CV.

pq ¼ dðsq; yÞ ð27Þ

where p represents the predicted vector; and dð:Þ, the kNN
classifier function.

Calculation of channel-wise voted prediction
vectors

IHMV (Dogan et al. 2021) can potentially generate better

results in systems that give rise to multiple results, such as

our model, which produced six predicted vectors per

channel. IHMV calculated qualified indexes for the pre-

dicted vectors, sorted in descending order. Then, the pre-

dicted vectors were iteratively (loop range 3 to 6) voted on

by deploying the mode function, which generated addi-

tional voted vectors.

accq ¼ Hðpq; yÞ ð28Þ

id ¼ nðaccÞ ð29Þ

vpr�2 ¼ x pid jð Þ;pid jþ1ð Þ; . . .; pid rð Þ

� �
; r 2 f3; 4; . . .; npg

ð30Þ

where Hð:Þ represents the accuracy calculation function;

nð:Þ, the sorting function; id, are sorted indexes; xð:Þ, the
mode function; np, the number of predicted vectors; and

vp, voted prediction vector, of which four were created

from the six predicted vectors generated per channel.

Step 7: Apply IHMV to the six predicted vectors to

create four voted prediction vectors.

Calculation of best channel-wise result

From among the ten prediction vectors per channel (six

calculated by the kNN classifier; four voted by IHMV), the

greedy algorithm was applied to calculate, one at a time,

the best channel-wise results for 59 channels.

Step 8: Apply a greedy algorithm to select the best

channel-wise result.

accq ¼ Hðpq; yÞ ð31Þ

accqþg ¼ H vpg; y
� �

; g 2 f1; 2; 3; 4g ð32Þ

x ¼ maxðaccÞ ð33Þ

where x represents the index of the most accurate predic-

tion vector and cp, the channel-wise prediction vector;

Step 9: Repeat steps 1 to 8 until the best channel-wise

results are calculated for all channels.

cpa ¼
px; x� 6

vpx�6; x[ 6

�
; a 2 1; 2; . . .; ncf g ð34Þ

where nc represents the number of channels, i.e., 59.

Calculation of the overall best result layer

After calculating the results of all channels, the IHMV and

greedy algorithm were again applied to these results to

iteratively (loop range 3 to 59) generate the overall best

result for the 59-channel EEG record.

Step 10: Apply IHMV to all 59 channel-wise results to

generate an additional 57 (= 59–3 ? 1) voted prediction

vectors.

Step 11: Select the most accurate predicted vector

among the 116 (= 59 ? 57) predicted vectors by deploying

the greedy algorithm.

Results

Model parameters

Model parameters are summarized in Table 3.

Performance metrics

Model performance for binary classification into AD versus

healthy classes in the three experiments was assessed using

standard metrics: accuracy and geometric mean (square

root of the product of sensitivity and specificity) (Powers

2020), the latter being preferred due to the imbalanced

study dataset.

Channel-wise results

Channel-wise results in the three experiments were excel-

lent, with at least 96% accuracy and 93% geometric mean

across all experiments (Fig. 4). For Experiments 1, 2, and

3, the best channel-wise accuracies were 97.62% (Channel

56), 99.42% (Channel 32), and 98% (Channel 21),

respectively, while the best geometric means were 96.09%

(Channel 36), 99.10% (Channel 49), and 96.52% (Channel

53), respectively.
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Confusion matrixes of the best channel-wise results as

ascertained by the geometric mean (Fig. 5) or accuracy

criteria (Fig. 6) demonstrate low rates of misclassification,

which attest to the robustness of the model.

Overall classification results

For Experiments 1, 2, and 3, the overall best accuracies

were 98.37%, 99.62%, and 98.74%, respectively and the

overall best geometric means were 96.74%, 99.45%, and

97.52%, respectively. In addition, confusion matrices of

the overall best results obtained demonstrated low mis-

classification rates (Fig. 7).

Using Fig. 7, we have computed this model’s classifi-

cation accuracy, sensitivity, specificity, precision, F1-score

and geometric mean. These results are presented in

Table 4.

The results presented in Table 4 the used metrics are:

accuracy, sensitivity, specificity, precision, F1-score, and

geometric mean.

Our Lattice123 pattern-based self-organized feature

engineering model demonstrated high performance metrics

for all three experiments. In Experiment 1, the proposed

model achieved 98.37% overall accuracy and this results is

a high classification accuracy. Moreover, our model

reached 93.97% sensitivity for AD detection and 96.74% of

geometric mean was computed.

In Experiment 2 is the best accurate expirement since

our model yielded 99.62% and 99.45% classification

accuracy and geometric mean respectively. Moreover, our

model reached 99.15% AD detection rate for this

experiment.

In Experiment 3, our proposal achieved 98.64% overall

classification accuracy. In this point, our model reached

higher classification performance than Experiment 1 for

Experiment 3.

Table 4 clearly illustrates that the presented lattice-

based EEG signal classification model achieved[98%

overall classification accuracies and over 93% AD detec-

tion sensitivities for all experiments. These results high-

light that our proposed model has high and general (tested

across three different experiments) classification perfor-

mances for AD detection using EEG signals, attributable to

the dynamic structure of the recommended Lattice123

feature extraction function.

Computational complexity

The proposed handcrafted feature engineering architecture

has low time complexity. Lattice123 is a dynamic pattern-

based feature generator in which a probabilistic matrix was

created using relations (directed edges in Fig. 1). The time

burden is Oðr � nÞ, where r represents the number of

edges; and n, the length of the signal. Taking into account

the signal decomposition using MDWT, the combined

MDWT- and Lattice123-based multilevel feature extrac-

tion has a time burden given by O r � n� log r � nð Þð Þ. The
time burden of the INCA-based feature selection is

O sþ lcð Þ; where s represents the time complexity coeffi-

cient of the neighborhood component analysis; l, the

number of loops; and c, the time complexity coefficient of

the classifier—we used kNN as the classifier, which has a

time complexity of OðcÞ. The computational complexity of

IHMV, a basic loop-based mode function majority voting

algorithm, depends on the length of the predicted vectors

(number of observations) and the number of feature vectors

(channels). Hence, the time complexity is Oði� f Þ, where i
represents the number of iterations; and f , the number of

Table 3 Transition table of the Lattice123-based classification model

Method Parameters Output

MDWT Wavelet filter, db4; levels, n = 4; subbands, low-pass filter

coefficient subbands

4 wavelet subbands

Lattice123 Block size, 19; walking path creation function, probability;

generated graphs, n = 2; kernels, n = 3

The proposed feature vector generates six

types of feature vectors, and each feature

vector’s length is 256

Feature extraction using

MDWT ? Lattice123

Raw EEG signal ? 4 wavelet subbands used as input 6 concatenated feature vectors, each of

length 1280

INCA Loop range, 100–512; accuracy calculator, kNN 6 selected feature vectors, each of different

optimal lengths

kNN k, 1; distance, L1-norm; voting, no; validation, tenfold CV 6 predicted vectors

IHMV Loop range, 3 to N, where N = 6 for channel-wise and N = 59 for

overall result calculations; kernel, mode function

4 voted vectors were generated for each

channel, and 57 were generated for overall

result calculation

Greedy algorithm Selection criteria: predicted vector with maximum accuracy Most accurate predicted vector
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observations. The time burden of the greedy algorithm is

Oða� f Þ, where a represents the time complexity coeffi-

cient of the accuracy calculation. Therefore, the total time

burden of our architecture is

O r � n� log r � nð Þ þ sþ lcþ i� f þ a� fð Þ, which is a

linear function. Unlike deep learning architectures, there is
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Fig. 4 Channel-wise classification performance in the three experiments
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Fig. 5 Confusion matrixes of the best channel-wise results per geometric mean. Classes 1 and 2 represent Control and AD, respectively
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no need for computationally intensive hyperparameter

tuning.

Comparison with the literature

We benchmarked our model against published binary AD

vs. healthy classification models (Table 5). All studies used

different datasets. Dogan (2022) and Alves (2022) attained

100% classification performance on balanced datasets.

Using the hold-out CV strategy, Fabrizio (Vecchio et al.

2020) attained 95% accuracy on a large dataset. Cassani

and Falk (2019) attained a modest 88% accuracy using a

leave-one-subject-out CV. We attained over 98% accuracy

in all experiments based on a small study dataset using a

tenfold CV. The small dataset precluded the use of the

leave-one-subject-out CV strategy. Our model attained

excellent results on an imbalanced dataset, offering a good

balance of performance and undemanding computational

cost.

Discussion

We have presented an accurate, computationally light-

weight, handcrafted lattice-based feature engineering

architecture for automated AD detection using EEG sig-

nals. Inspired by the Shannon information entropy theorem

(Shannon 1951), we applied a probabilistic function to a

novel Lattice123 pattern to generate two directed graphs

using minimum and maximum distance-based kernels

(Tasci et al. 2022). Six feature vectors were produced for

each input signal block using these two graphs and three

kernel functions: the signum, upper ternary, and lower

ternary. Moreover, MDWT-based signal decomposition

gave rise to low-level wavelet subbands that enabled

downstream feature extraction in the frequency and spatial

domains at multiple levels, which mimicked deep models.

To reduce data dimensionality, INCA selected the optimal

numbers of the most discriminative features from the

extracted feature vectors. Finally, the coupled IHMV and

greedy algorithm were applied to generate additional voted
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Fig. 6 Confusion matrixes of the best channel-wise results per accuracy. Classes 1 and 2 represent Control and AD, respectively
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vectors and the final selection of the best channel-wise and

overall results. Our model was trained and tested on a

dataset partitioned into three experiments. Excellent binary

classification accuracy exceeding 98% was attained for all

experiments. Moreover, the used dataset is imbalanced.

Therefore, we computed other classification performance

metrics as well. For instance, our model achieved over 96%

geometric mean for all experiments. The computed results

have been discussed below.

Across all experiments, the model consistently demon-

strated exceptional performance, achieving an overall

accuracy of 98.37%, 99.62%, and 98.74% in Experiments

1, 2, and 3, respectively. The overall geometric means were

96.74%, 99.45%, and 97.52% for Experiments 1, 2, and 3,

Table 4 Results (%) obtained

using Lattice123 Pattern-based

self-organized feature

engineering model

Metric Experiment 1 Experiment 2 Experiment 3

Class Result Class Result Class Result

Accuracy Control – Control – Control –

AD – AD – AD –

Overall 98.37 Overall 99.62 Overall 98.74

Sensitivity Control 99.60 Control 99.75 Control 99.64

AD 93.97 AD 99.15 AD 95.45

Overall 96.79 Overall 99.45 Overall 97.55

Specificity Control 93.97 Control 99.15 Control 95.45

AD 99.60 AD 99.75 AD 99.64

Overall 96.79 Overall 99.45 Overall 97.55

Precision Control 98.34 Control 99.75 Control 98.78

AD 98.49 AD 99.15 AD 98.62

Overall 98.42 Overall 99.45 Overall 98.70

F1-score Control 98.97 Control 99.75 Control 98.21

AD 96.18 AD 99.15 AD 97.01

Overall 97.58 Overall 99.45 Overall 98.46

Geometric mean Control – Control – Control –

AD – AD – AD –

Overall 96.74 Overall 99.45 Overall 97.52

Table 5 Comparison of our study with published models for binary classification of Alzheimer’s disease vs. healthy control (HC)

Paper Dataset Method Validation Results (%)

Cassani and Falk (2019) 20 HC, 34 AD Spectral feature extraction,

ANOVA, SVM

LOSO CV Acc: 88.1, F1 86.2

Vecchio et al. (2020) 120 HC, 175 AD Exact low-resolution brain

electromagnetic tomography,

SVM

Hold-out CV (80:20) Acc: 95.0, Sen: 95.0,

Spe: 96.0

Alves et al. (2022) 24 HC, 24 AD Pearson’s correlation, custom-

designed CNN, hyperparameter

optimization

tenfold CV Acc: 100, Pre: 100,

Rec: 100

Dogan et al. (2022) 11 HC, 12 AD Primate brain pattern, INCA, kNN tenfold CV Acc: 100, Pre: 100,

Rec: 100

Our model 8 HC, 1 AD Lattice123, MDWT, INCA, kNN,

IHMV, greedy algorithm

tenfold CV Experiment 1:

• Acc:98.37, GM:96.74

Experiment 2:

• Acc:99.62, GM:99.45

Experiment 3:

• Acc:98.74, GM:97.52

Alternative dataset

11 HC, 12 AD

Acc: 100, Pre: 100,

Rec: 100
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respectively, further emphasizing the model’s robustness.

The confusion matrices obtained for the overall best results

are shown in Fig. 7.

The consistent high performance across all experiments

indicates that the Lattice123 Pattern-based self-organized

feature engineering model effectively captures intricate

patterns from the EEG signals.

Experiment 2 performed better than other experiments

yielding an accuracy of 99.62%, highlighting the model’s

ability to discriminate between upright and inverted faces

based on EEG signals.

Hence, our presented Lattice123 Pattern-based self-or-

ganized feature engineering model is an accurate and

robust automated AD detection model.

To examine the relative contributions of the dynami-

cally generated graphs and local feature extraction kernel

functions to the accuracy of the Lattice123 model, we

analyzed the mean accuracies of the six individual pre-

dicted feature vectors generated from every channel

(Fig. 8). The combination of minimum probabil-

ity ? lower ternary function in Experiment 2 attained the

highest accuracy.

The feature vectors are enumerated 1 to 6 based on

combinations of Lattice123-generated minimum- and

maximum-distance probability graphs and local textural

feature extraction kernel functions: 1, minimum probabil-

ity ? signum function; 2, maximum probability ? signum

function; 3, minimum probability ? upper ternary func-

tion; 4, minimum probability ? lower ternary function; 5,

maximum probability ? upper ternary function; 6, maxi-

mum probability ? lower ternary function.

We evaluated their feature selector indexes to examine

the relative contributions of the one-dimensional raw EEG

signal and the four MDWT-generated wavelet subbands to

feature engineering accuracy. To standardize the compar-

ison, we analyzed only the most accurate channel-wise

performance, i.e., Channel 32 in Experiment 2 (Fig. 6),

using the optimal combination of minimum-distance

graph ? lower ternary function (Fig. 8). Using this stan-

dardized scheme, INCA chose 214 features, which yielded

a 98.37% classification accuracy. The distribution of these

features across the signal input and their relative neigh-

borhood component analysis-generated weights (Fig. 9)

demonstrate that the raw EEG signal contributed the

greatest number of selected features (86/214) to the chan-

nel-wise results. The most weighted signal input was the

L1 wavelet subband, in which the sum of weights of its

selected features was the highest at 6.55. These analyses

underscore the positive effect of MDWT on feature

extraction and downstream model classification

performance.

We also analyzed the optimal lengths of INCA-gener-

ated selected feature vectors in the three experiments. The

mean lengths of the selected feature vectors were 274.02,

253.65, and 262.20 for Experiments 1, 2, and 3, respec-

tively (Fig. 10).

Feeding the selected feature vectors to the downstream

kNN classifier, the model attained (without using majority

voting) accuracies of 96%, 98.27%, and 96% for Experi-

ments 1, 2, and 3, respectively. By applying the IMHV and

greedy algorithm, more accurate channel-wise results were

observed, albeit on the specific best-performing single

channels (see section ‘‘Overall classification results’’ and

Figs. 3 and 5), which underscore the positive effects of

majority voting. In the last layer of the model, IHMV was

applied to all the best channel-wise results, and the greedy

algorithm was employed to calculate the final overall best

result. As a result, 98.37%, 99.62%, and 98.74% classifi-

cation accuracies were attained for Experiments 1, 2, and 3,

respectively, based only on limited numbers of the top 4, 9,

and 7 channel-wise results. Accordingly, for the study

dataset, the individual EEG channels that contributed the

most toward model accuracy in all three experiments can

be summarized (Table 6), the position of which may offer

an element of explainability for result interpretation. For

instance, EEG channels overlying the frontal region (de-

noted by ‘‘F’’ in Table 6) feature relatively prominent

among valuable channels contributing to accurate AD

classification.

Based on the above analysis, our findings are given

below:

• The proposed Lattice123 pattern produced six feature

vectors per input signal block using these graphs and

three kernel functions (signum, upper ternary, and

lower ternary). The minimum-distance graph ? lower

ternary function is found to be the best combination

based on our analysis.

• Mean lengths varied between 253.65 and 274.02,

demonstrating diversity in selected feature vector

lengths.

• Selected feature vectors coupled with the kNN classifier

achieved 96%, 98.27%, and 96% accuracy for Exper-

iments 1, 2, and 3, respectively.

• IHMV and greedy algorithm achieved the channel-wise

overall accuracies of 98.37%, 99.62%, and 98.74% for

Experiments 1, 2, and 3, respectively.

• Identified the EEG channels that contributed to obtain-

ing the highest detection performance in the frontal

region.

Highlights and limitations

Highlights of the work are given below:
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• We have proposed a novel Lattice123 pattern. Using a

probabilistic graph generation function, directed graphs

(walking paths) were dynamically generated per signal

data block for downstream textural feature extraction

• The diagnostic model comprising Lattice123, multi-

level feature extraction enabled by MDWT signal

decomposition, INCA feature selector, kNN classifier,

IHMV, and the greedy algorithm was trained and tested

on an imbalanced public EEG dataset partitioned into

three experiments.

• The handcrafted self-organized model attained an

excellent performance level of [ 98% accuracy for

binary classification of AD versus healthy subjects

across all three experiments, with linear computational

complexity.

Limitations of our work are as follows:

• The small study dataset comprised only nine subjects,

which precluded subject-wise validation.

• Default classifier settings were used. Fine-tuning oper-

ations could result in better classification performance.
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Conclusions

A novel lattice-based feature engineering model was pro-

posed, demonstrating accuracy and computational effi-

ciency for EEG-based AD detection. Dynamic directed

graph generation by the proposed Lattice123 allowed local

textural feature extraction customization specific to the

input signal data block. Additionally, MDWT enabled

multilevel feature generation, positively affecting model

performance as assessed by the higher relative weight of

decomposed wavelet subbands on feature selection.

Incorporating effective information fusion methodology

through IHMV and the greedy algorithm facilitated the

automatic selection of the best channel-wise and overall

results. The model achieved over 98% classification

accuracies across all experiments in the study dataset,

underscoring the advantages of the individual upstream

model components. Moreover, this model is explainable

since we have detected the most informative channels by

using the findings of the presented Lattice123-based AD

detection model. In our future work, we aim to gather

larger EEG datasets to enhance our model’s capabilities.

We plan to incorporate extensive validation on independent

datasets to address the need for validation. This validation

process will enable us to accurately assess the generaliz-

ability of our proposed model across diverse scenarios.

Additionally, we plan to broaden the scope of our model to

include the detection of neurodegenerative disorders like,

such as mild cognitive impairment (MCI), Alzheimer’s

disease, Parkinson’s disease etc. Furthermore, we will

explore alternative models like lattice structures to generate

features and improve the classification performances. Also,

we aim to provide confidence to the clinicians by imple-

menting the explainable artificial intelligence to the pro-

posed model (Loh et al. 2022). These enhancements will

ensure that our model meets the highest standards of val-

idation and generalizability.
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