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Unravelling mutational signatures with
plasma circulating tumour DNA

Sebastian Hollizeck 1,2,5, Ning Wang1,2,5, Stephen Q. Wong1,2,
Cassandra Litchfield1, Jerick Guinto1, Sarah Ftouni1, Richard Rebello 3,
Sehrish Kanwal 3, Ruining Dong 3, Sean Grimmond 3, Shahneen Sandhu1,2,
Linda Mileshkin 1,2, Richard W. Tothill 2,3,4, Dineika Chandrananda 1,2,6 &
Sarah-Jane Dawson 1,2,3,6

The use of circulating tumour DNA (ctDNA) to profile mutational signatures
represents a non-invasive opportunity for understanding cancer mutational
processes. Here we present MisMatchFinder, a liquid biopsy approach for
mutational signature detection using low-coveragewhole-genome sequencing
of ctDNA. Through analysis of 375 plasma samples across 9 cancers, we
demonstrate that MisMatchFinder accurately infers single-base and doublet-
base substitutions, as well as insertions and deletions to enhance the detection
of ctDNA and clinically relevant mutational signatures.

Mutational signatures are distinct patterns of DNA mutations imprin-
ted on tumour genomes by diverse processes during cancer
development1–3. Certain intrinsic pathway errors in DNA replication or
repair such as mismatch repair deficiency (dMMR) and homologous
recombination deficiency (HRD) lead to mutational signatures that if
correctly detected, can predict sensitivity to specific therapeutics
including immunotherapy in patients with dMMR4,5 and PARP inhibi-
tors in patients with HRD6,7. Thus, mutational signature analysis is
invaluable to understanding tumour biology and personalising treat-
ments for better clinical outcomes. However, implementation of
mutational signature analysis in the clinic is currently challenging due
to the need for costly deep sequencing of both tumour and germline
samples for accurate somatic variant calling. Moreover, tumour tissue
is not always available. Alternative methods are therefore needed to
help overcome these challenges.

In this work, we developed a method called MisMatchFinder
which shifts away from a traditional variant-focused approach and
instead utilises read-based somatic variant inference prior to muta-
tional signature deconvolution (Fig. 1a). The tool is suitable for low-
coverage whole-genome sequencing (LCWGS) data (<10×) and is tai-
lored for circulating tumour DNA (ctDNA), thus offering a means to
characterise mutational signatures without the need for invasive
biopsies.

Results
Description and performance of MisMatchFinder in simulated
and clinical sequencing data
The MisMatchFinder algorithm identifies mismatches within reads
compared to the reference genome and filters background noise
unrelated to somatic mutations through (i) the use of high thresholds
for mapping and base quality, (ii) strict consensus between over-
lapping read-pairs, (iii) gnomAD-based germline variant filtering8, and
(iv) a ctDNA-centric fragmentomicsfilter9 (Fig. 1a). A readdepth filter is
optional and allows for scaling beyond low sequencing coverage,
providing additional flexibility. Once high-confidence mismatches are
selected, these can be used to extract novel signatures or fit pre-
defined ones2. MisMatchFinder is equipped to analyse single-base, and
doublet-base substitutions, as well as insertions and deletions (indels).
In this study, we utilised all three types to assign weights to the
mutational signatures in the Catalogue Of Somatic Mutations In Can-
cer (COSMIC) database (version 3.2)1 using non-negative matrix fac-
torization with quadratic programing10. To identify signatures that
were over-represented in ctDNA rather than normal cell-free DNA
(cfDNA), we derived detection thresholds using signature weights
from a panel of healthy cfDNA controls (details in “Methods”).

To optimise the performance of MisMatchFinder, we system-
atically tested each filtering step using both in silico and patient
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data. We first simulated “clean” reads without germline or somatic
variants where any deviations from the reference genome would
solely represent sequencing errors. We determined that at both 3×
and 10× depth, when only selecting for mismatches where paired-
reads had strict consensus and high base qualities (BQ ≥ 32), only 1
error in 10 million bases was miscounted as a variant (Fig. 1b). This

error rate is far lower than most tumour mutational burden
estimates11.

We next investigated the effectiveness of the germline filter by
separately spiking in somatic variants related to multiple different
signatures into LCWGSdata (3×) froma healthy cfDNA control. For this
exercise, we selected two “peak-like” signatures of SBS2 (associated
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with Apolipoprotein B mRNA editing enzyme catalytic polypeptide-
like; APOBEC) and SBS7a (related to Ultraviolet; UV-damage); both
very distinct and dominant in C >T mutations. In contrast, we also
investigated the “flat”, non-distinctive SBS3 HRD signature, which is
more difficult to fit, to assess the germline filter. We observed how
removing variants annotated within gnomAD enhanced the detection
of all three signatures, indicating this was a stringent but necessary
filtration step (Fig. 1c). Further testing of this filter using additional
signatures (SBS4, SBS7c, SBS13, and SBS44) across mutational loads
simulated according to the COSMIC database, highlighted the gen-
eralisability of the germline filter effect (Supplementary Fig. 1).

We then assessed a fragmentomics filter which selects for paired-
reads in specific size ranges previously evidenced to be enriched for
ctDNA in plasma9 (Supplementary Fig. 2). We applied MisMatchFinder
to plasma LCWGS at 3× from bladder cancer (tumour purity (TP) 12%),
breast cancer (TP 66%), and melanoma (TP 26%) patients with SBS2,
SBS3, and SBS7a signatures, respectively and compared signature
weights before and after the filter. This was assessed across 20 in silico
replicates in each cancer type. We observed statistically significant
increases (p-value < 10−10) in all signatures investigated, with a median
1.27-fold increase for SBS2, 1.66-fold increase for SBS3 and 1.28-fold
increase for SBS7a, respectively (Fig. 1d). This established that the
fragmentomics filter enhanced the tumour signal in plasma LCWGS to
facilitate signature detection.

Using the same patient data as above, we then assessed the
combined effect of all previously described filters by quantifying the
sensitivity of MisMatchFinder to detect specific mutational signatures
as a function of changing TP and sequencing depth. To understand the
limits of detection, we first analysed signature weights from Mis-
MatchFinder across a panel of 60 healthy plasma LCWGS controls. A
beta distribution was fitted to the healthy control weights per muta-
tional signature and the 99th quantile was selected as the detection
threshold to identify signatures that were over-represented in ctDNA
(Fig. 1e and ‘Methods’). Thereafter, when applying MisMatchFinder to

the plasma LCWGS data from the bladder cancer, breast cancer, and
melanoma patients, we observed that signature detection increased
with increasing TP from 1% to 10% across SBS2, SBS3 and SBS7a (Fig. 1f)
when sequencing depth was fixed at 3×. When varying the sequencing
depth but fixing TP at the original values, all three signatures were
identifiable even at 0.5× (Fig. 1g). We further explored additional
coverage and purity combinations for signature detection and noted
that coverage ≤1× introduced substantial variability, particularly for
the flat SBS3 signature which was more apparent in samples with low
TP (<10%) (Supplementary Figs. 3 and 4), suggesting that higher
sequencing depths should be used in scenarios with low TP.

As further orthogonal validation, we directly compared muta-
tional signature detection using (i) gold-standard high-coverage
tumour-germline paired variant calling then (ii) paired variant calling
using WGS of plasma and germline samples and finally (iii) Mis-
MatchFinder for LCWGS of plasma (3×) without the matched germline
sample, in a patient with bladder cancer and another patient with
BRCA1-mutant breast cancer. Here, MisMatchFinder was found to
reliably detect clinically relevant signatures identified in the tumour,
including APOBEC and HRD signatures, as well as other signatures
which have previously been found in bladder or breast cancers,
respectively1. The cosine similarities between signatures from Mis-
MatchFinder in 3× plasma datasets and high-coverage, tumour-
germline somatic calling were 0.999 for bladder cancer and 0.662
for breast cancer patients (Fig. 1h, i). Furthermore, we performed this
tumour/plasma concordance analysis across varying sequencing
depths (9× down to 0.1×) and tumour purities (10% down to 1%). These
results showed that the key mutational signatures remain consistent
even at extreme values of coverage and TP (Supplementary Fig. 5).

MisMatchFinder signature analysis for detecting cancer-related
and clinically relevant signatures
After evaluating MisMatchFinder’s performance, we appraised its
capacity to extract different mutational signatures between plasma

Fig. 1 | Description and performance of MisMatchFinder in simulated and
clinical sequencing data. a Schematic describing the MisMatchFinder algorithm
for within-sample mutational signature detection in a liquid biopsy context.
b Sequencing error rates following distinct filtering approaches applied to LCWGS
data simulated to only contain sequencing errors. Error rates are shown after (A) no
filters are applied; retaining allmismatches. The following filters are incremental i.e.
(C) is a subset of (B) and (D) a subset of (C). (B) Read-pair consensus; retains only
mismatches within paired-read overlaps after building consensus for differing base
and/or quality, (C) Strict consensus; only retains mismatches that have the same
base between paired-reads, and (D) +High BQ; retains mismatches with the same
base inboth readswith basequality (BQ)≥ 32.Data are provided in Zenodo [https://
doi.org/10.5281/zenodo.13845728]. c Effect of gnomAD germline variant filtering
on signature detection. Assessed for the APOBEC signature SBS2, the HRD sig-
nature SBS3 and the UV-damage signature SBS7a in LCWGS data simulated with
varying mutational burdens with depth of coverage fixed at 3×. Source data are
provided as a Source Data file. d Effect of the fragmentomics filter to enrich for
mismatches originating from ctDNA. Signature weights presented for SBS2, SBS3,
and SBS7a, derived from bladder cancer (estimated at 12% tumour purity (TP)),
BRCA1-mutant breast cancer (66% TP), and melanoma (26% TP) plasma datasets
from three cancer patients. For each cancer type, boxplots represent 20 in silico
replicates at 3× sequencing depth. Box plots indicate median (middle line),
25th–75th percentile (box) and 1.5 times the inter-quartile range from the first and
third quartiles (whiskers). Outliers were omitted. Two-sided t-tests were performed
to compare signature weights using all fragments and using filtered fragments.
Source data are provided as a Source Data file. e The distributions of signature
weights and detection thresholds (vertical lines) for SBS2, SBS3, and SBS7a from60
healthy control plasma LCWGS datasets. Source data are provided as a Source Data
file. f Effect of tumour purity (TP) in plasma on the limit of signature detection
applying all filters and detection limits described inb–e for depth of coveragefixed
at 3×. Assessed for signatures SBS2, SBS3 and SBS7a in 20 ctDNA-healthy admix-
tures from a bladder cancer, a BRCA-mutant breast cancer and amelanomapatient,

respectively. For each cancer type, each vertical line represents a boxplot of the
signature weights of 20 in silico replicates at different TPs. The bounds of each
vertical line are the 25th to 75th percentile and the median signature weights are
denoted by the symbols. The horizontal lines denote the detection thresholds per
signature type derived fromhealthy plasma controls. Source data are provided as a
Source Data file. g Impact of sequencing coverage on the limit of signature
detection applying all filters and detection limits described in b–e for TP at the
original levels. Assessed for SBS2, SBS3 and SBS7ain 20 ctDNA-healthy admixtures
from bladder cancer, a BRCA1-mutant breast cancer and a melanoma patient,
respectively. For each cancer type, each vertical line represents a boxplot of the
signature weights of 20 in silico replicates at different depths of coverage. The
bounds of each vertical line are the 25th to 75th percentile and the median sig-
nature weights are denoted by the symbols. The horizontal lines denote the
detection thresholds per signature type derived from healthy plasma controls.
Source data are provided as a Source Data file. h Comparison of grouped SBS
mutational signatures detected from paired tumour tissue and plasma in a bladder
cancer patient. The three columns of signatures were obtained from somatic var-
iants called using 1) high-coverage paired tumour-germline data, 2) plasma-
germline data, and 3) variants inferred from low-coverage plasma data (3×)without
a germline control using MisMatchFinder (MMF). The signatures assessed were
thosewhich have previously been found in bladder cancers1 (APOBEC: SBS2, SBS13;
Aging: SBS1, SBS5; and Others: SBS8, SBS29, and SBS40). Pairwise cosine simila-
rities of signature sets from 2) and 3) against the tumour-germline signatures are
annotated above the plots. Source data are provided as a Source Data file.
i Comparison of grouped SBS mutational signatures detected from paired tumour
tissue and plasma in a BRCA1-mutant breast cancer patient. The three columns
represent the same groups as for h The signatures assessed were those which have
been previously found in breast cancers1 (APOBEC: SBS2, SBS13; HRD: SBS3; Aging:
SBS1, SBS5; Others: SBS8, SBS9, SBS17a, SBS17b, SBS18, SBS37, SBS40, and SBS41).
Source data are provided as a Source Data file.
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samples from healthy and cancer patients. We first utilised a publicly
available12 pan-cancer plasma LCWGS dataset (1–2×), encompassing
271 sampleswith lowTP across 7 cancer types and 262 healthy controls
(Fig. 2a). PCAanalysisusing all SBSsignatures (apart fromthose related
to sequencing artefacts) showedmoderate separation between cancer
and healthy samples (Fig. 2b). Further analysis showed that the

APOBEC-linked SBS2 signature can be used as a major discriminatory
signature, separating cancer samples from healthy samples, across
most cancer types (Fig. 2c). Furthermore, we identified that Mis-
MatchFinder’s quantification of the SBS2 signature improved ctDNA
detection over copy number-based tumour purity assessment in this
ultra-low-coverage pan-cancer cohort (Fig. 2d). These findings are
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consistent with the APOBEC signature being one of the most widely
detected signatures in human cancers1 which could be utilised to
enhance cancer detection through liquid biopsy.

Next, we analysed three independent clinical cohorts encom-
passing 101 patients, to further validateMisMatchFinder’s capability to
identify distinct clinically relevant signatures. We first analysed a
cohort of 45 breast cancer patients with known BRCA mutation status
and as expected, identified strong enrichment of the HRD SBS3 sig-
nature (Fig. 2e, f). In this cohort, we compared the performance of
MisMatchFinder to shallowHRD13, a computational tool for detecting
HRD from low-coverage tumour sequencing data. MisMatchFinder
detected SBS3 in all 6 cases (100%) with known BRCA1 or BRCA2
germline mutations, compared to shallowHRD which only predicted
HRD in 5/6 (83%) of these cases (Supplementary Fig. 6). Mis-
MatchFinder also detected an SBS3 signature in 8/39 patients without
a germline BRCA mutation, and 6 out of these 8 cases were also vali-
dated by shallowHRD (Supplementary Fig. 6). In parallel, we also
looked at deletions within microhomology regions for the 6 BRCA
mutation cases and the 39 BRCA wild-type cases. As expected, we
observed that the cases with a known BRCA germlinemutation had the
highest number of microhomology deletions (Supplementary Fig. 7).
Importantly, the 8 BRCA wild-type cases which showed an elevated
SBS3 mutational signature profile, also had an elevated number of
microhomology deletions compared to BRCA wild type cases with no
SBS3 detected (Mann–WhitneyU-test, p-value = 0.023), adding further
evidence for the presence of HRD in these cases (Supplementary
Fig. 7). In a cohort of 40 melanoma patients, the UV exposure sig-
natures SBS7a, DBS1, and SBS7b were among the top signatures
detected among all cases, suggesting that theseUV-damage signatures
may enhance ctDNA detection in this disease (Fig. 2g, h). Lastly, in a
cohort of 16 colorectal cancer patients with known microsatellite
instability (MSI) status, detectionof dMMR indel-based signatures (ID1,
ID2) and SBS44 was confined to theMSI-high cases showing specificity
of theMisMatchFinder tool beyond SBS signatures to encompass indel
signature detection for improved dMMR assessment (Fig. 2i, j).

Discussion
Our study demonstrates the feasibility of cost-effective ctDNA analysis
fromLCWGSdata for clinically relevantmutational signaturedetection
that can be applied to single samples. We recommend that at least 1x
coverage for plasma sequencing data is essential for detecting muta-
tional signatures with distinct profiles such as SBS2 and SBS7 even for
estimated tumour purity levels >3%. However, for “flat”, non-
distinctive signatures such as SBS3, higher sequencing depth (>3×) is
necessary to ensure robust results, particularly in samples with <10%
TP. While these are conservative recommendations for recovering
mutational signatures in liquid biopsy samples based on our analyses,
the limits of detection will also be influenced by the variable

mutational burden across different tumour types. Whenever possible,
we recommend using a panel of healthy plasma controls of similar
sequencing depth and other pre-analytical factors to derive detection
thresholds for a high-confidence ctDNA-based mutational signature
signal.

Despite the advances thatMisMatchFinder brings to the field, our
current study has some limitations. Whilst we have undertaken a
detailed assessment of the performance of our tool for SBS signature
detection, in silico simulation of indels to assess the detection of dif-
ferent ID signatures is more challenging and has not been performed.
Indels do not emerge at random positions within the genome and are
enriched in certain sequence contexts such as short tandem repeats
and microhomologies14,15. This has limited our ability to assess ID sig-
nature detection using MisMatchFinder with simulated data. Further-
more, whilst MisMatchFinder is able to retrieve somatic variants from
LCWGS plasma sequencing data, it still relies on established tools for
signature fitting which have been developed for tumour tissue
sequencingdata and can vary inperformance16,17. In the future, with the
generation of more matched tumour/normal/plasma sequencing
datasets across various cancer types, signaturefitting algorithmscould
be specifically tailored for ctDNA andmay further improvemutational
signature assessment in liquid biopsies.

Other studies have explored the use of machine learning to
identify mutational patterns from ctDNA sequencing analysis to
enhance cancer detection18,19. Whilst the incorporation of machine
learning approaches can improve the sensitivity of ctDNA detection,
they rely on training and validation across large datasets, and are also
susceptible to batch effects20 which limit their ability to be easily
translated for widespread clinical adoption. In contrast, Mis-
MatchFinder can facilitate broader integration ofmutational signature
analysis from serial blood collections, to enable the evolution of
mutational processes to be monitored over time, particularly in
patients receiving therapy. MisMatchFinder holds the potential for
novel insights into the predictive and prognostic roles of mutational
signatures in clinical settings andmay provide opportunities to inform
clinical decisions through optimised personalised cancer treatment
strategies.

Methods
Ethics information for plasma samples and sequencing data
generation
This study utilised a combination of sequencing datasets downloaded
from public repositories and those generated at the Peter MacCallum
Cancer Centre (PMCC) and the University of Melbourne. Forty-six
patients with breast cancer, 41 melanoma patients and 60 healthy
controls were recruited following informed consent with each study
approved by the PMCC Human Research Ethics Committee (Breast
HREC 15/72;MelanomaHREC 11/105 and 07/38; Healthy controls HREC

Fig. 2 | MisMatchFinder signature analysis for detecting cancer-related and
clinically relevant signatures. a Tumour purity distribution in a pan-cancer
plasma cohort comprising 271 samples across 7 cancer types and 262 healthy
controls using 1-2x LCWGS. The red dashed line denotes ichorCNA’s detection limit
for tumour purity estimation. Source data are provided as Supplementary Data 3.
b Principal component analysis of healthy controls against four cancer types with
high estimated tumour purity analysed using all SBS signatures excluding those
linked to sequencing and library preparation artefacts. Source data are provided as
Supplementary Data 3. c Distribution of the APOBEC-enzyme activity linked
SBS2 signature weights across the cohort in a. The number of asterisks quantifies
the statistically significant difference between each cancer type with the healthy
control group using a two-sided t-test (*p ≤0.05, **p ≤0.01, ***p ≤0.001, ****p ≤0.0001,
ns non-significant). The exactp-values from left to right are: 1, 3.3e-20, 6.9e-31, 5.5e-
29, 1.1e-32, 8.1e-24, and 2.0e-28. Box plots indicate median (middle line), 25th to
75th percentile (box) and 1.5 times the inter-quartile range from the first and third
quartiles (whiskers). Outliers were omitted. Source data are provided as

Supplementary Data 3. d Receiver Operating Characteristic (ROC) curves and area
under the curve (AUC) values for discriminating cancer from healthy plasma using
tumour purity estimates from a and SBS2 weights from (c). Source data are pro-
vided as Supplementary Data 3. e Detection frequency of the top SBS/DBS and
indel-based signatures previously found in this cancer type, for 45 breast cancer
patients with known BRCA1/2 mutational status. Source data are provided as Sup-
plementary Data 1. f Hierarchical clustering of all samples and signatures in
e annotated by their estimated tumour purity in plasma. NDicna relates to samples
with TP below the limit of detection of ichorCNA. Source data are provided as
Supplementary Data 1. g As in e for 40 patients with melanoma with varying TP.
Source data are provided as Supplementary Data 1. h As in f for cohort and sig-
natures in g. Source data are provided as Supplementary Data 1. i As in e for 16
patients with colorectal cancer with known microsatellite instability (MSI) status.
Source data are provided as Supplementary Data 2. j As in f for cohort and sig-
natures in i. Source data are provided as Supplementary Data 2.
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17/56). In addition, one patient (case 1205) with bladder cancer, ori-
ginally diagnosed as cancer of unknown primary, was recruited fol-
lowing informed consent within the SUPER cohort study at PMCC
(HREC 13/62 and 11/117). All patient consent was provided in written/
signed form. Sex and gender were not considered in the study design
as this information was not necessary for the particulars of the study.

Libraries for low coverage whole genome (LCWGS) sequencing
from plasma cfDNA were generated at the PMCC Genomics Core
Facility using the NEBNext® UltraTM II DNA Library Prep Kit following
the standard protocol and sequenced on the Illumina Novaseq plat-
form to generate 100bp paired-end reads at an average sequencing
depth of ~9× (Supplementary Data 1).

A LCWGS dataset (~0.3–4×) of plasma cfDNA from 16 colorectal
cancer patients with known microsatellite instability status, as well as
21 healthy individuals, was accessed from the European Genome‐
phenome Archive (EGA) (accession number EGAS00001006377, Sup-
plementary Data 2). A pan-cancer LCWGSdataset of plasma cfDNAwas
accessed from EGA (accession number: EGAS00001003611) contain-
ing 271 samples across 7 cancer types and 262 healthy cfDNA controls
with average coverage between 1× and 2× (Supplementary Data 3).

Paired-end sequencing reads from all low-coverage plasma data-
sets were aligned to the human reference genome (GRCh38) using
bwa-mem21 (version 0.7.17) with alternate-contig aware mapping. Pre-
sumed PCR and optical duplicates were marked using the Picard tools
software suite (version 2.17.3).

The MisMatchFinder algorithm
MisMatchFinder identifies “mismatches” from the reference genome
with a mismatch in this work considered as any position in an aligned
read which does not show the same base as the reference genome at
the aligned position. Themismatch inherits all the metrics of the read,
such as mapping quality, base quality and read position.

WithinMisMatchFinder, the “MD” and “CIGAR” tags of sequencing
reads were used to reconstruct the sequence of the read and its
positions where the read showed a different base than the reference.
MisMatchFinder allows several filtering criteria to reduce this set of
mismatch sites to decrease the impact of germline variants, and
sequencing errors and to increase the probability of retaining somatic
variants.

MisMatchFinder allows for user-defined thresholds for standard
filters such asmapping quality (MQ) and base quality (BQ). The default
cut-offs are MQ= 20, and BQ= 65 with the BQ reflecting the sum of
base qualities of paired reads in regions of overlap. There are further
filters applied to set theminimumaverage basequality across a read or
read pair (default: 25) and the minimum and maximum number of
mismatches per read (default: 1 and 15, respectively). Usersmay specify
a minimum and maximum length of a fragment for paired-end
sequencing and this filter was used to enrich for ctDNA reads in this
study. Finally, MisMatchFinder filters out alignments flagged as sec-
ondary or presumed PCR and optical duplicates.

Users can provide a whitelist bed-file and in this work, we have
used this option to restrict the analysis to only highly mappable
regions of the genome (unique mappability ≥ 85%). A blacklist is also
optional but was not used in this study.

MisMatchFinder allows several options to calculate internal con-
sensus in regions where paired reads overlap to adjust for differences
between forward and reverse reads. In many variant calling methods,
these differences are used by measuring the “strand bias” or “strand
balance probability” by looking at a specific locus and evaluating the
discrepancy of all forward and reverse reads at that position. As our
method examined each read/fragment independently, these bias
estimates cannot be calculated, however, in the overlapping region of
both reads, a consensus can be generated. If both reads agreed on the
mismatch, the BQ of the reads were summed to emphasize the
increased evidence for these variants. In contrast, if they disagreed the

base with the higher quality was used and its quality was decreased by
half of the BQ of the lower quality base. To increase the stringency of
the method, MisMatchFinder can be configured to only use mis-
matches in regions where paired reads overlap (‘–onlyOverlap’), which
significantly reduces the number of sequencing errors which were
retained in the final analysis. For the most stringent analysis, the user
can also enable the ‘–strictOverlap’ option in addition
to ‘–onlyOverlap’. Here, formismatches found in regions where paired
reads overlap, the tool will only consider a mismatch if both reads
agree with each other.

Users can provide a file containing any variants they wish to be
excluded from the analysis and MisMatchfinder uses the echtvar
(https://github.com/brentp/echtvar) encoded file format for near-
instant variant lookup. In this study, we used the gnomad v3.1.2 file
distributed with echtvar to filter for variants found in this database.

For compatibility with downstream signature deconstruction
methods, MisMatchFinder outputs a VCF for each sample analysed in
concordance with the v4.2 VCF specifications. For further filtering,
MisMatchFinder also reports the number of independent fragments
that support the mismatch as the ‘MULTI’ field in the INFO column, to
allow the user to apply further confidence thresholds if higher-depth
sequencing is available.

The MisMatchFinder tool is programmed in Rust. We offer Mis-
MatchFinder as a fully compiled static binary file, as well as the source
codes and libraries used within the tool in: https://atlassian.petermac.
org.au/bitbucket/projects/SJDAW/repos/mismatchfinder/browse.

Other data required for filters such as gnomAD variants for the
germline filter, and high mappability regions as white-listed regions
used in this study can be found in the Zenodo repository (https://doi.
org/10.5281/zenodo.13845728)22.

Signature fitting
Signature fitting was performed with the sigminer10 R package v2.3.0
with default settings using the Cosmic v3.2 human reference genome
GRCh38 signature catalogue for SBS, DBS, and ID signatures. Sigminer
also corrects for potential GC bias of sequencing through background
estimation of variants. In this study, signatures associated with
sequencing and library preparation artefacts were removed and the
weights renormalised, so that the sum of weights for each sample
equalled 1.

Signature detection and usage of a panel of healthy plasma
controls
Signature detection thresholds were computed by fitting a beta dis-
tribution for each signature across healthy samples from the same
source, after removing the two samples with the highest and lowest
weights, to ensure a more conservative fit and lessen the effect of
potential outliers. For amore stable fitting of signatures, the R package
fitdistrplus23 (v 1.1-8) was used with “moment matching estimation”
and the mean and the standard deviation of the controls were used as
initial states for the optimisation. The 99th quantile was used as the
detection threshold for all signatures.

Comparison of MisMatchFinder plasma-based analysis with
matched tumour tissue data
Temporally matched tumour (fresh frozen biopsies), blood germline
and plasma samples were collected from a bladder cancer patient
(sample id: 1205) and a BRCA1-mutant breast cancer patient (sample id:
MBCB196) to directly compare signature analysis using gold-standard
tumour-germline paired variant calling with MisMatchFinder. For this
purpose, somatic variant calling was performed with the DRAGEN
pipeline24 (v4.2.4) using the human reference genome GRCh38, on all
canonical chromosomes according to the user guide. The output VCF
files from DRAGEN were further processed through an in-house post-
processing workflow to prioritise small somatic variant calls (https://
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github.com/umccr/umccrise/tree/master). Both SNV and indel results
were used for the reconstruction of signatures. The deletions within
microhomology regions were labelled by VarSCAT15 (v1.1.0), where the
definition of deletion within microhomology was based on
HRDetect25,26.

To comprehensively assess the concordance between signatures
captured in plasma compared to those detected in the tumour,
somatic variants were called from high-coverage, tumour-germline
sequencing data of each patient with the DRAGEN pipeline (v4.2.4)
with downstream filtering as described above. The resulting somatic
variants were fitted to mutational signatures (COSMIC v3.2) with sig-
miner (v2.3.0). Then the same workflow was used to call somatic var-
iants and signatures from the high-coverage, plasma-germline paired
data. The signatures of each sample were grouped into similar cate-
gories where possible (e.g. SBS2 and SBS13 grouped as APOBEC) and
then intersected with signatures previously found in bladder and
breast cancers, respectively1 to assess cancer-type specific signature
concordance. We used cosine similarities in these signature subsets as
compared to tumour-germline results to quantify signature con-
cordance in all associated analyses.

Comparison of MisMatchFinder and shallowHRD for HRD sig-
nature detection
shallowHRD13 (v1.13, hg38 version, default parameters) was run on the
plasma LCWGS from 45 breast cancer patients with known BRCA
mutant status and compared directly with MisMatchFinder.
QDNAseq27 (v1.32.0) was used to generate genome-wide copy number
values using 50 kb windows as input for shallowHRD.

Mutation assays
Mutations in BRCA1 and BRCA2 genes for the 45 breast cancer patients
were detected through routine clinical sequencing performed at
PMCC Molecular Pathology as part of standard clinical care.

Inferring tumour purity from LCWGS of plasma
Tumour purity was estimated in each LCWGSdataset using ichorCNA28

(version 0.2.0) implementing a window size of 1Mb (--window) and
restricting counts to autosomes (--chromosome), using default values
for the other parameters.

Simulating “clean” sequencing data
Simulation with ‘art_illumina’29 (v2.5.8) was performed with a read
length of 100bp, a mean insert size of 166, and an insert size standard
deviation of 24 using the profile of the HiSeqX TruSeq, v2.5 (HSXt).
These metrics were computed from the in-house healthy plasma
sequencing data to more closely represent cfDNA characteristics. The
fastq files produced this way were then aligned and processed as
described previously.

Spike-in for germline filter and mutational burden estimation
For all the assessed signatures, variants were selected from theCOSMIC
somatic variant catalogue (v3.2) to replicate each respective signature
profile. Each variant was annotated with its trinucleotide context in the
GRCh38 reference genome and normalised to only contain pyrimidine
nucleotides at the centre. The reverse complement was used when the
central nucleotide was a purine. The number of variants required to be
spiked into a healthy plasma control was calculated using the target
mutation rate rm, and the genomic length ngenome of the reference and
normalised by 1 � 106 to equate to mutations per million.

dx
dy

nðvarsÞ= rm
1 � 106 � ngenome ð1Þ

This formula equates to about 300 variants at rm =0:1 up to
300,000 at rm = 100: The bamsurgeon tool (v1.2.1) was used to spike in

these variants at a constant allele frequency of 0.1. To allow bamsur-
geon to make little to no changes, as expected in LCWGS, we changed
the minimum mutation reads (-minmutreads) to 0, the minimum
depth to 1 (-mindepth) and allowed a higher-than-normal skew in the
coverage difference before and after (-d 0.7). Lastly, a fixed seed was
used to create reproducible results. The spiked-in variants were then
analysed with sigminer to verify that the signatures were conserved.

Limit of detection simulations for tumour purity (TP) and
sequencing depth
We established the limit of detection as a function of both coverage
depth and tumour purity for SBS2 (bladder cancer), SBS3 (breast
cancer), and SBS7a (melanoma) using LCWGS of patient plasma sam-
ples (sample ids: 1205, MBCB196 and PMC1141_18_02_2019, respec-
tively). These samples are referred to as the “source data” below. The
starting tumour purities were estimated at 12% TP for the bladder
cancer case, 26% TP for the melanoma case and 66% TP and 11% TP for
the two breast cancer cases.

Sequencing depth analysis
Each source data sample was downsampled with fixed seeds at each
downsampling step. Downsampling was performed with samtools
v1.1330 using a subsampling fraction (f ) based on the number and
lengthof reads of the sourcedata (nreads � lenread), the required number
of reads to reach the desired depth of coverage (deptht), and the size
of the reference genome in base pairs (ngenome):

f =
ngenome � deptht

lenread � nreads
ð2Þ

To ensure a representative result, each source dataset was
downsampled 20 times per target depth.

Purity-based limit of detection
As in the depth-based downsampling, the seeds for different target
purities were kept stable to ensure the same selection of reads was
used at the different levels. To reach the target tumour purity, but
remain at a stable depth, reads from the sourcedatawere removed and
replaced with reads from a healthy control sample. The fraction of
reads taken from the sourcedata (f tumor) is calculated from theoriginal
tumour purity of the source data (ps) and the target tumour purity (pt)

f tumour =
pt

ps
ð3Þ

The subsampling fraction for the healthy reads was calculated
using the number of reads from the source data (ns) and the number of
reads from the donor data (nd).

f normal = 1� f tumour

� � � ns

nd
ð4Þ

A random sampling of both the source and the healthy data was
performed with samtools before merging into in silico datasets at
various target purities (1–10%). In order to have an accurate repre-
sentation of the sampling distribution, weperformed this replacement
20 times per target purity in each source dataset.

Other statistical analysis
Principal Component Analysis was carried out using the prcomp R
function (version 4.2.0), allowing for scaling of signature weights.
Centering was omitted, to maintain the information that signature
weights cannot be negative. Cosine similarities between tumour/
plasma signature sets were measured with the cosine function within
the lsa R package (version 0.73.3).
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The pan-cancer LCWGS dataset used in this study is available from the
European Genome‐phenome Archive (EGA) under accession number:
EGAS00001003611. The signature weights for this cohort are con-
tained within Supplementary Data 3. The sequencing data for the 16
colorectal cancer patients with knownmicrosatellite instability status,
as well as 21 healthy individuals, is available from EGA under accession
number EGAS00001006377. The signature detection information for
this cohort is contained within Supplementary Data 2. The sequencing
data frombreast cancer andmelanomapatients, aswell as the in-house
healthy controls, are available under EGA accession numbers
EGAS00001007593 and EGAS50000000569. The signature detection
information for these cancer samples is contained within Supple-
mentary Data 1. The tissue, germline and plasma sequencing for the
bladder cancer case is available from EGA under accession number
EGAS50000000452. Access will be granted by application to the
relevant Data Access Committees for each cohort, and will be gov-
erned by the provisions laid out in the associated informed consent for
each cohort and the terms contained in the relevant Data Access
Agreements. Other data required for filters such as gnomAD variants
for the germline filter, and high mappability regions as white-listed
regions used in this study can be found in the following Zenodo
repository: https://doi.org/10.5281/zenodo.1384572822. Source data
are provided with this paper.

Code availability
WeofferMisMatchFinder as a fully compiled static binaryfile, aswell as
the source codes and libraries used within the tool in the following
repository: https://atlassian.petermac.org.au/bitbucket/projects/
SJDAW/repos/mismatchfinder/browse. The reference files and small
demo files for MisMatchFinder can be found in Zenodo (https://doi.
org/10.5281/zenodo.13845728)22.
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